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Abstract
Today’s edge networks continue to see an increasing num-
ber of deployed IoT devices. These IoT devices aim to in-
crease productivity and efficiency; however, they are plagued
by a myriad of vulnerabilities. Industry and academia have
proposed protecting these devices by deploying a “bolt-on”
security gateway to these edge networks. The gateway ap-
plies security protections at the network level. While security
gateways are an attractive solution, they raise a fundamental
concern: Can the bolt-on security gateway be trusted?

This paper identifies key challenges in realizing this goal
and sketches a roadmap for providing trust in bolt-on edge IoT
security gateways. Specifically, we show the promise of using
a micro-hypervisor driven approach for delivering practical
(deployable today) trust that is catered to both end-users and
gateway vendors alike in terms of cost, generality, capabilities,
and performance. We describe the challenges in establishing
trust on today’s edge security gateways, formalize the adver-
sary and trust properties, describe our system architecture,
present preliminary results, and discuss open questions. We
foresee our trusted security gateway architecture becoming a
practical and extensible foundation towards realizing robust
trust properties on edge security gateways.

1 Introduction
IoT devices are increasingly being deployed into edge en-
vironments, from home networks to manufacturing floors.
Unfortunately, these devices are plagued by a myriad of vul-
nerabilities [2,73], which attackers have leveraged as stepping
stones into protected networks and as launch pads for other
attacks [4, 36, 39, 46]. Consequently, these IoT devices pose a
continuing threat to the security of our edge networks.

Industry and academia have proposed securing (potentially
vulnerable) IoT devices on edge networks with on-site secu-
rity gateways [7,9,13,24,43,54,73]. These “bolt-on” security
gateways are designed to intercept all traffic to and from an
IoT device and apply security protections via middleboxes at
the network level (e.g., a firewall). These middleboxes can be
used to implement “network patches” which mitigate a de-
vice’s vulnerabilities without patching the device’s software.

While bolt-on security gateways are gaining popularity and
are a deployable solution, they raise a fundamental question:
How do we ensure that the system providing these network
level protections is trustworthy? As an example scenario,
consider a smart factory with a plethora of IoT devices pro-
tected by multiple security gateways. The factory’s security
gateways provide network level protections tailored to each in-
dividual IoT device’s vulnerabilities. Unfortunately, security

gateways form a single point of failure. They are particularly
vulnerable to an adversary who can compromise the security
gateway (by exploiting OS and/or application vulnerabili-
ties), as the gateway typically runs commodity software (e.g.,
Linux, Docker, OVS, Snort, etc.). Once compromised, an ad-
versary can modify the gateway’s protections (e.g., remove a
firewall rule) thereby enabling attacks against an IoT device
in order to stop/alter production (à la [8, 29]).

Current approaches for securing applications in untrusted
cloud environments could potentially be applied to establish
trust in security gateways. These approaches rely on hardware-
specific capabilities (e.g., SGX [37, 59], MPX [76]). Unfor-
tunately, such approaches have high performance overheads
(not practical for IoT deployments) and also lack generality.
They are limited to a specific processor class and only support
user space applications with constrained memory allocation.
Furthermore, addressing security vulnerabilities [31, 51, 71]
requires fabricating newer revisions of the hardware.

At a high level, we envision a trusted IoT security gateway
architecture, that provides an overarching guarantee that the
correct security protections are applied to each IoT device’s
network traffic at all times, including when under attack (more
details in §4). We use this aforementioned definition of trust
throughout this paper. Our architecture aims to provide robust
trust properties to a broad range of legacy hardware platforms
utilizing existing software with a reasonable performance
overhead. There are three challenges to realizing our vision:
• Formalizing Adversary and Trust Properties (§4): To

design a trusted architecture, we need to consider a rich
adversary model, where the adversary could attack any
software component and data in transit. Existing security
gateway architectures often utilize a software defined net-
work (SDN) architecture [73], where the data plane enforces
network level protections, and the control plane orchestrates
these protections to achieve a policy. While prior work on
SDN security [14, 26, 69] explored some attack scenarios,
they tackle a limited adversary model, only analyzing a
subset of the architecture (e.g., routing, application per-
missions). Both control and data plane elements and their
communications must be protected to achieve trust.

• Supporting Dynamic Middleboxes (§5): The architecture
must provide trust in dynamic middleboxes that are con-
stantly being reconfigured (e.g., IoT devices frequently
leaving and joining edge networks). Prior work in cloud
computing proposed using secure hardware (e.g., SGX,
TrustZone), placing entire applications in a trusted execu-
tion environment (e.g., enclave). While this approach could
prevent tampering, it fails to support today’s dynamic mid-



dleboxes due to limited available memory (e.g., 128MB on
SGX [34]), reduced functionality (e.g., inability to perform
system calls [18] required for timestamps), and the high
performance costs of changing enclaves (e.g., reducing per-
formance by up to 30% [52,66]). Furthermore, only placing
pieces of the application in an enclave suffers severe perfor-
mance costs [52]. An ideal solution provides trust to legacy
software on any hardware platform in a performant manner.

• Secure and Efficient Communication (§6): A trusted se-
curity gateway requires secure communications, enforcing
protections at a per-packet granularity both between and
across the control and data planes. Existing tunneling tech-
niques (e.g., IPSec, TLS) could be used between planes, but
are too expensive for protecting across a plane (e.g., tunnel-
ing a packet between middleboxes on the data plane). Low
performance overheads are required for latency-sensitive
devices (e.g., real-time, closed-loop robot controllers).

In this paper, we argue that a micro-hypervisor based ap-
proach is a promising architectural basis for building trust in
edge security gateways. A micro-hypervisor, like a traditional
hypervisor, is a software reference monitor that provides core
security capabilities (e.g., memory isolation, mediation, and
attestation) that can be applied to effectively address the afore-
mentioned challenges. In contrast to traditional hypervisors,
these capabilities are provided with a dramatically reduced
trusted computing base (TCB) and complexity (hence the mi-
cro prefix) which enable formal verification to rule out poten-
tial vulnerabilities [3,62,63]. Furthermore, micro-hypervisors
provide an extensible foundation for realizing robust trust
properties without a loss of generality and minimal perfor-
mance overhead [50, 58, 61–63]. Last but not least, in con-
trast to approaches using specific hardware capabilities which
limit applications (e.g., SGX’s limitations described above),
micro-hypervisors can support a variety of hardware plat-
forms (x86 [50, 62], ARM [61], microcontroller [3]) running
unmodified software (e.g., Linux) [3, 58, 63]. Thus, a micro-
hypervisor provides a practical and secure foundation for
building security mechanisms towards realizing our vision.

Our intuition to leverage a micro-hypervisor based ap-
proach is motivated by the success micro-hypervisors have
had on commodity platforms [60]. However, to the best of our
knowledge, micro-hypervisors have not been used in edge IoT
gateways. To this end, our contributions are: (1) a more holis-
tic system adversary model for an edge IoT security gateway
and (2) a high-level architecture based on micro-hypervisors
to enable a practical and flexible solution.

2 Motivation
Traditional security solutions (e.g., antivirus) fall short for IoT
devices due to resource requirements and device heterogeneity
[24, 73]. Security gateway based approaches [7, 9, 13, 24, 43,
72, 73] have been proposed to secure IoT deployments.
“Bolt-on” Security Gateways: At a high level, these ap-
proaches insert a security gateway running virtualized mid-

Figure 1: Attack vectors for bolt-on security architecture.

dleboxes (e.g., firewall, IDS) to protect deployed IoT devices.
To achieve this, the gateway intercepts all traffic to and from
the IoT device and sends the network traffic to a middlebox
which imposes a security policy (e.g., IoT may not SSH).

While initially these security gateways employed a single
monolithic middlebox running a static configuration (e.g., an
IDS with a default ruleset), recent work [24, 72, 73] high-
lighted the need for isolated (e.g., each device has its own set
of middleboxes), device-specific (e.g., each middlebox config-
ured to protect a specific device’s vulnerabilities) middleboxes
that support dynamic security policies (e.g., changing based
upon context, such as other device’s status). The need for these
new capabilities has increased the complexity of the security
gateway architectures (shown in Figure 1), adding virtual
switches (vSwitch) for routing data to the appropriate mid-
dleboxes and a remote controller for dynamically configuring
each gateway’s protections (e.g., middlebox configurations,
vSwitch routes) to achieve the security policy.

These “bolt-on” gateways are promising for securing IoT
deployments; however, they are currently untrusted. Under
attack, these security gateways could become ineffective, or
even worse, become a launchpad for new attacks.
Motivating Scenario: An attacker could launch attacks at
multiple points in the architecture (shown in Figure 1). For
example, an attacker could: (1) use an unpatched exploit [35,
70] to compromise the gateway itself (B in Figure 1) and
(2) modify the middlebox configuration such that it allows
the attacker’s traffic to pass through to enable the attacker to
compromise a factory’s IoT device and steal proprietary data
(à la [46]). Beyond modifying the software, an attacker could
also tamper with network messages. For example, modifying
packets on the data channel between the vSwitch and the
middlebox (D in Figure 1), redirecting traffic to the wrong
middlebox, evading security inspections.

A trusted security architecture needs to protect the gateway
and controller’s software while prohibiting tampering with
network traffic. We look to prior work for potential solutions.
Strawman Solution from Prior Work: A natural strawman
solution would be to run the gateway and controller software
in an enclave, with a secure tunnel (e.g., IPSec, TLS) pro-
tecting the control channel. This solution has been used for
securing middleboxes from untrusted cloud providers [37,59].

While this solution could prevent tampering with the gate-
way and controller software and protects control messages, it
requires specific hardware and has three key limitations. First,
only limited applications are supported. Applications running
inside an enclave have limited memory access (i.e., 128MB



for SGX) and can only perform user space actions (e.g., no
system calls). Second, there is a significant performance over-
head for initiating communication with an enclave, which is
magnified if multiple enclaves must be utilized (e.g., isolating
multiple middleboxes in a chain), impacting low-latency edge
devices. Third, vulnerabilities identified in trusted hardware
may require long timelines to patch. This approach would
be sufficient for a single, static protection on the gateway;
however, the need to support dynamic middleboxes which are
isolated and constantly changing entails a different approach.

Ideally, we want a solution that can be deployed on a wide
range of hardware platforms, including resource-constrained
edge platforms. Further, it needs to support existing software
applications, while adding minimal performance overhead.

3 Trusted Security Gateway Architecture
We envision a trusted, extensible, and widely-deployable edge
security gateway architecture that addresses the security chal-
lenges of today’s edge IoT deployments. When fully realized,
our architecture would enable new trustworthy “security-as-a-
service” offerings that providers (e.g., edge ISPs, CDNs, IoT
providers) could offer to IoT consumers, ensuring the correct
security protections are applied at all times. For instance, this
architecture could provide a trusted mechanism for enforcing
IoT security best practices (e.g., access-control policies in a
device’s Manufacturer Usage Description specification [25]).

We can consider a strawman design space categorized
along two axes. First, approaches dependent on hardware
functionality (e.g., [37, 59]) are limited in both the hardware
platforms and software they can support. Additionally, their
security properties rest on a complex and opaque implemen-
tation in microcode and silicon [12], known to have vulnera-
bilities [31, 51, 71]. Second, pure software approaches (e.g.,
formal verification, secure programming languages) are lim-
ited as they require significant reimplementation and verifi-
cation effort. As many commonly used software applications
on edge security gateways span over 100,000 lines of C/Java
this quickly becomes intractable.

We argue that it is dangerous to tie critical security features
to either hardware implementations that require new hardware
to address threats, or to software approaches that require sig-
nificant reimplementation or formal verification effort of the
entire software stack. Instead we advocate leveraging legacy
hardware features in combination with a small TCB and ex-
tensible software framework to provide our fundamental trust
properties and protect edge devices from evolving threats.

Consequently, we make a case for a micro-hypervisor based
approach to enable a trusted edge security gateway archi-
tecture (Figure 2) that allows retrofitting security protec-
tions to only the necessary system components. A micro-
hypervisor is in essence a software reference monitor [45],
that acts as a guardian, implementing access control to sys-
tem resources (e.g., files, sockets) using a small TCB. These
protections can be applied in a fine-grained manner, protect-

Figure 2: High-level view of a trusted, extensible, and
widely-deployable edge security gateway architecture.

ing a single data value (e.g., secret key) or a complex set
of objects (e.g., virtual machine) with minimal performance
overhead. Micro-hypervisors provide a strong foundation
for fine-grained mediation, isolation, and attestation with a
small TCB [30, 50, 62, 63], which allows for security ser-
vices to be designed and implemented as extensions [63].
Due to their simplicity and small TCB, micro-hypervisors
are amenable to formal verification for ruling out potential
vulnerabilities within their code [3, 63]. Additionally, micro-
hypervisors can potentially be supported on any hardware
platform (e.g., x86 [50, 62], ARM [61], microcontroller [3]).

We build on top of the aforementioned micro-hypervisor
enabled foundational capabilities to construct our trusted se-
curity gateway architecture. The controller and gateway’s
software run on top of a micro-hypervisor, allowing us to
support any commodity OS and application stack. On the
controller, we migrate critical data (e.g., the security policy)
into micro-hypervisor extensions to isolate it from untrusted
software (e.g., the OS). Further, all access is mediated by the
micro-hypervisor, prohibiting an attacker from subverting the
data’s integrity. On the gateway, we assign a set of customized
middleboxes to each device and isolate these from each other.
Additionally, we periodically measure the signature of each
middlebox and the vSwitch to verify their integrity. Finally,
the controller and the gateway run trusted agents, which are
micro-hypervisor extensions used to mediate communication
between the control and data planes, to ensure the instantiated
protections correctly reflect the security policy.

Our micro-hypervisor based architecture provides three key
benefits. First, it provides fine-grained isolation and media-
tion which allow for precisely ensuring that the architecture
enforces the correct protections while being performant. Sec-
ond, it is extensible allowing for rapid growth of new security
functionality and response to emerging threats. Third, it is
widely-deployable, supporting a wide range of hardware plat-
forms (e.g., x86, ARM) while utilizing existing software, with
a low performance overhead for providing trust.

There are three challenges our architecture must address:
• Necessary Security Properties (§4): Identify the security

properties that ensure trust under a holistic adversary model.
These properties guide the design of our architecture.

• Support Dynamic Middleboxes (§5): Enable protecting
the dynamic middleboxes required by an IoT environment,
ensuring an adversary cannot modify the protections.



Table 1: Holistic adversary capabilities, generated using
the STRIDE model (referencing Fig. 1’s attack vectors).

Example Threat Vector Violates
Modify controller software (e.g., security policy) A Psw1, Psw2Modify gateway software (e.g., middlebox config) B
Spoof command (e.g., add routing rule) A or B Psw3
Spoof control channel message (e.g., vSwitch route) C Pcomm4
Tamper with data channel message (e.g., skip middlebox) D Pcomm5

• Secure Communications (§6): Provide per-packet protec-
tions with a low performance impact, guaranteeing an ad-
versary cannot modify or spoof packets.

We now show our key building blocks that address these.

4 Adversary and Trust Properties
Our goal is to provide end-to-end protections against a holis-
tic threat model. Within the SDN domain, this would entail
protecting both the control and data planes (e.g., from BGP
hijacking [17,48]). However, prior works on IoT security gate-
ways have typically only considered a narrow threat model.

To this end, we systematically define such an adversary,
with a goal of inhibiting the gateway’s protections (i.e., enable
exploiting a protected IoT device). We assume our adversary
has knowledge of the security architecture as well as network
access to all devices. We group our adversary capabilities into
two categories: (1) ability to compromise a device’s software
stack (i.e., software on the controller or gateway; A, B in
Figure 1), and (2) ability to inject/modify network messages
(i.e., the control, data channels; C, D in Figure 1).

We use the STRIDE threat modeling tool [53] to generate
a set of adversary capabilities (summarized in Table 1), that
inhibit the architecture’s ability to protecting an IoT device.
While not a complete list, we use it to define the fundamental
security properties needed for our trusted architecture.

Based upon our adversary model (Table 1), we posit that
there are a minimum of five fundamental properties required
for a trusted security gateway architecture.
• Software Integrity (Psw1): Ability to detect code and data

modifications (e.g., changes in middlebox configuration).
• Data Isolation (Psw2): Ability to isolate security critical

logic (e.g., keep the OS from accessing the security policy).
• Data Mediation (Psw3): Ability to have a trusted entity

mediate access to security critical data (e.g., blocking an
untrusted application’s access to secret keys).

• Secure Control Channel (Pcomm1): Ability to trust data
transferred between the controller and gateway (e.g., the
gateway only executes commands from the controller).

• Secure Data Channel (Pcomm2): Ability to that trust pack-
ets are routed through the correct middleboxes (e.g., packets
should not be processed by a wrong middlebox).

We envision our architecture supporting additional properties,
but focus on these five as fundamental to a trusted architecture.
These fundamental properties can be grouped into: (1) pro-
tecting running code (Psw) and (2) protecting communications
(Pcomm). Next, we discuss our approach for providing these.

5 Supporting Dynamic Middleboxes
Ideally, the entire codebase on both the control and data
planes could be robustly protected from an attacker. How-
ever, we view this as impractical as it either incurs significant
performance costs (e.g., multiple enclaves to process each
packet) or requires significant reimplementation (e.g., mi-
grating 100,000+ lines of C/Java). Instead we look to apply
fine-grained security properties to the portions of the codebase
that impact the architecture’s protections, thereby creating a
robustness against our adversary (§4). Specifically, we apply
periodic, remote attestation to guarantee the code’s integrity
(providing Psw1). This allows the code to run with minimal
performance degradation, while bounding the duration it is
vulnerable to attack. Additionally, critical code (e.g., security
policy) can be protected with a hypervisor extension to isolate
it (providing Psw2) and mediate access to it (providing Psw3).
Periodic, Remote Attestation: IoT security gateways rely
upon a large codebase to provide device-specific protections.
We look to prior work in remote attestation, such as Trusted
Platform Modules (TPM) [6,11], in order to precisely guaran-
tee that the appropriate software stack is running (providing
Psw1). Upon boot, the correct baseline software stack, com-
posed of the micro-hypervisor, OS, and critical software com-
ponents (e.g., controller, vSwitch, middleboxes, etc.) is veri-
fied. Subsequently, new modules that will impact the provided
protections (e.g., a new middlebox’s code prior to loading)
are attested, thereby allowing the architecture to ensure that
the correct protections are instantiated.

During runtime, we periodically re-attest critical modules
(e.g., controller, vSwitch, middleboxes) ensuring an attacker
has not tampered with them. For example, the middlebox code
must be run outside of the hypervisor to enable high packet
throughput. To bound the potential impact of an attacker tam-
pering with this code (i.e., the protection not being applied),
the controller remotely attests critical software components
on the gateway at the end of every epoch, where the epoch
duration can be adjusted to provide a trade-off between the
vulnerable window’s length and the security overhead.

We leverage a virtual trusted platform module (vTPM) on
the micro-hypervisor to provide this attestation capability. A
vTPM is a software implementation of a physical TPM and
provides many of the same capabilities [5]. Specifically, we
leverage its ability to securely store a chain of measurements,
by extending a program control register (PCR), and securely
providing those stored values (i.e., a PCR quote). These two
capabilities enable determining if a software stack on a local
or a remote machine matches a known configuration. These
vTPM measurements can be applied at a fine granularity, with
separate storage for multiple measurements.
Protecting the Controller’s Security Policy: While attes-
tation can provide significant guarantees about a code’s in-
tegrity, there are some pieces of code that merit further pro-
tection (e.g., code impacting decisions about the protections
provided by the security gateway). Our micro-hypervisor ap-



proach enables selectively isolating this code (Psw2) and re-
quiring that access to it be mediated by a trusted entity (Psw3).
Examples of such pieces of code are the secret keys used to
establish a secure control channel between the planes and the
security policy on the controller.

As a concrete example, consider the controller’s security
policy. The security policy is critical to ensuring the correct
protections are implemented (e.g., modifying it could result
in the gateway’s middleboxes not protecting the IoT devices).
This code can be extracted from the controller and placed into
memory isolated by the micro-hypervisor (providing Psw2).
Further, access to this memory is mediated by the micro-
hypervisor’s code white-listing (providing Psw3), to ensure
that only the controller’s code can access the security policy.
This combination prohibits an attacker in control of the OS
from accessing and modifying hypervisor protected pieces of
code, without requiring significant changes to existing code.

6 Secure and Efficient Communication
Our security architecture requires trust guarantees on both the
control channel (between controller and gateway, Pcomm1) and
the data channel (along the gateway’s packet processing path,
Pcomm2). We leverage the micro-hypervisor to provide isola-
tion and mediation to secure these communication channels.
Secure Control Channel: It is crucial that communication
between the control and data plane can be trusted as these
messages often impact the security protections provided by
the gateway. We look to bolster the guarantees provided by
traditional tunneling (e.g., IPsec/TLS) between the controller
and the gateway to ensure a compromised controller or gate-
way cannot send spoofed messages over the tunnel (e.g., ma-
licious middlebox configuration commands). To protect these
communications (Pcomm1), we leverage a trusted agent pair
running in the micro-hypervisor to mediate these commu-
nications (e.g., access the secret keys required to send data
over this channel). There is an agent on the controller and
a corresponding agent on the gateway, which together are
responsible for mediating access to the secure channel.
Secure Data Channel: On the data plane, the security pro-
tections are dependent upon each packet being processed by
the correct middlebox. We can build on prior work on routing
path verification (e.g., control plane [27], data plane [32]), to
provide per-hop guarantees with a low performance overhead.
Specifically, our goal is to guarantee that packets follow the
correct path and are processed by the correct sequence of
middleboxes on the data plane (Pcomm2). While traditional
tunnels could be established between each middlebox and the
vSwitch, this would result in significant overhead and process-
ing delays. To protect the data channel, we propose leveraging
the micro-hypervisor to enforce the correct path (i.e., mid-
dlebox chain) for each packet. We achieve this by having
the micro-hypervisor sign and verify each packet along its
processing path, dropping packets that fail verification. Our
approach differs from prior per-hop authentication proposals

(e.g., [27, 32]) as packets remain on a single host where a
hypervisor can maintain secret keys.

These digital signatures create a connection between the
raw packet data and the middlebox processing the packet,
by the secret key (protected by the micro-hypervisor) shared
between the vSwitch and each middlebox. Furthermore, the
digital signatures can be trusted, as the secret keys are kept in
isolated memory only accessible by the micro-hypervisor’s
mediation, stopping an attacker from forging signed packets.

7 Preliminary Implementation
Our initial results are promising towards realizing our vision.
We used the uberXMHF [63] open-source micro-hypervisor
that supports both x86 and ARM platforms. For our prototype,
we used the Raspberry Pi 3 platform running uberXMHF,
Raspbian Jessie (Linux 4.4.y) and Open Virtual Switch and
Snort on the gateway (additional details in Appendix A).
A preliminary policy protection extension to the micro-
hypervisor (§5) resulted in a latency increase of only 1.1 ms
(13%) for the controller to process a state change. Similarly,
a proof of concept packet signing extension (§6) created a
latency increase of 4 ms (17%) for HTTP GET requests to an
IoT device. Such latency increases compare favorably with
existing hardware-centric approaches (e.g., systems relying
on SGX) that reduce performance by up to 30% [52, 66].

8 Related Work
Trusted Computing: We leverage prior works on trusted
computing to create a practical architecture for trusting edge
IoT security gateways (e.g., [24, 72, 73]). Hypervisors have
been used to provide security primitives such as isolation,
mediation, and attestation [28, 30, 41, 57, 63, 64]. A primary
use of TPMs is providing remote attestation [6], leading to
multiple software implementations [42, 63]. Secure routing
proposals have used signatures to verify packet paths [27, 32].
SDN Security: Researchers have focused on mediating con-
troller applications, adding permissions [20,47,49,67], and by
ensuring consistency of routing rules [19,38]. Our work looks
to support these controllers and provide the ability to pro-
vide increased trust in their operations. Others have looked
to ensure consistency between the control and data planes
with respect to packet routing, creating tools for identifying
forwarding anomalies [1, 10, 15, 16, 21–23, 40, 55, 56, 74, 75]
and SDN-specific attacks [14,26,44,69]. Unfortunately, none
of these provide runtime protections against our threat model.

9 Conclusions
In this paper, we described our overarching vision for enabling
a trusted IoT security gateway architecture that is practical
and deployable on today’s edge networks. We argued that a
micro-hypervisor based approach provides robust trust prop-
erties while remaining performant and preserving platform
generality. Our preliminary implementation on a Raspberry
Pi 3 has provided encouraging results with acceptable opera-
tional latency. We are currently working on a full end-to-end
implementation and evaluation of our security architecture.



10 Discussion Topics
Desired Feedback and Discussion Type: We envision this
paper generating discussion about “bolt-on” security architec-
tures and recent activity within industry towards employing
such an approach for securing edge networks. On this theme,
we anticipate discussion about adversary capabilities that a
security gateway will need to defend against as well as the
trust properties it must provide. Are the necessary founda-
tional security properties described in our approach sufficient?
Are there some security properties that could be traded for
increased performance?
Controversial Points:
• With the push towards end-to-end encryption, are security

gateways practical if they cannot decrypt network data?
Would our trusted gateway architecture enable adoption of
recent proposals where middleboxes intercept and decrypt
TLS packets (e.g., TLS-RaR [68], mbTLS [33])?

• Providing isolated, device-specific middleboxes for each
IoT device creates a scalability challenge. Is the isolation
worth the increased resource utilization and system com-
plexity? Are there scenarios where this is not going to work
and cannot be deployed?

• While users want secure IoT devices, would users go to the
trouble of deploying/managing a security gateway? Is it too
complex for home users? Can it be integrated with existing
enterprise network security practices?

• While micro-hypervisors have been demonstrated on a va-
riety of platforms, does our architecture provide sufficient
coverage for edge security gateway platforms? Could it be
deployed on existing, off-the-shelf home routers?

Open Issues:
• How many IoT devices and gateways can our architecture

support? What types of security policies would the con-
troller implement? What are the scalability bottlenecks?

• How does our architecture provide security protections to
devices sending/receiving encrypted data? Is there a limita-
tion on the types of edge devices the gateway could protect?

• While the architecture is general enough to support a spec-
trum of users from home to enterprise, what actions are
needed for it to be usable?

• What actions are required by the end-users? How do they
mitigate false positives or overly protective policies?

• Many IoT security gateways protect IP-based protocols.
How can gateways be extended to support other protocols
used by IoT devices (e.g., BLE, Zigbee)?

Circumstances When the Idea Might Fall Apart:
• If the security gateway hardware and/or the micro-

hypervisor is compromised by the attacker, it undermines
the root-of-trust our approach relies on for providing isola-
tion, mediation, and attestation.

• If an adversary modifies a packet’s path (e.g., WiFi spoof-
ing), they could prevent packets from reaching the gateway.

• If the edge device requires extremely low latency, it might
be infeasible to integrate and protect via our approach.
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A Additional Implementation Details
A high-level overview of the software stack of our premilinary
implementation is shown in Figure 3 where the hypervisor
extension is depicted as a green rectangle (labelled ‘Packet
Signing’). The blue ovals represent hypercalls to the hypervi-
sor extension, added to the commodity software to perform
a hypervisor protected operation (e.g., creating/verifying a
digital signature for a packet).
Virtual Trusted Platform Module (vTPM): Our architec-
ture looks to leverage a hypervisor-enabled vTPM in order
to provide periodic, remote attestation. A key motivation in
the development of Trusted Platform Modules (TPM) was to
provide the ability to remotely attest the health of a system’s
boot sequence [6, 11] We leverage a subset of the features
provided by the TPM standard [5] to provide our trust prop-
erties, specifically PCR extend and PCR quote. In addition
to a vTPM not requiring additional hardware, it provides two
key benefits over a physical TPM, increased storage and in-
creased performance. The measurement storage (i.e., PCRs)
on a vTPM is based upon the platform’s memory region pro-
tected by the micro-hypervisor, allowing for a large number

Figure 3: High-level view of our architecture’s stack on
a proof of concept data plane implementation, where the
‘Packet Signing’ rectangle is a hypervisor extension and
the arrows are hypercalls to the hypervisor extension.

of separate measurements (e.g., >200 PCRs on a single 4 KB
page). Furthermore, these measurements are not limited by
the data rate of a system bus (e.g., SPI on a Raspberry Pi 3),
reducing access latency by over 20x. A challenge for software-
based TPMs is preserving secrets across reboots. Our vTPM
can leverage existing platform non-volatile memory in order
to preserve secrets across boots (e.g., the Raspberry Pi 3 has a
boot NVRAM that can act as a long-term secure storage [61]).

Qualitative Comparison to Trusted Hardware: As an al-
ternative to our approach, others have looked to trusted hard-
ware. On cloud data planes, hardware enclaves have been
used to protect middleboxes (some bolstered by programming
language guarantees) [37, 59, 65]. These approaches require
specific hardware (e.g., SGX), subjecting running applica-
tions to memory size limitations and requiring the middle-
boxes be reimplemented in advanced programming languages
to achieve mediation. This contrasts with our vision that is
broadly deployable on multiple hardware platforms running
commodity software potentially without modification.
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