EZ-PC: Program Committee Selection Made Easy

Vyas Sekar, Carnegie Mellon University

ABSTRACT

Selecting a technical program committee (PC) for a confer-
ence or a workshop can be a somewhat intimidating and time
consuming process. PC selection needs to balance several
potential considerations; e.g., industry vs. academic partic-
ipation, inclusion of under-represented communities, ensur-
ing “coverage” over topic areas, among others. The goal
of this short paper is to document our experience of build-
ing an open source tool called EZ-PC. In a nutshell, EZ-
PC helps formulate some of these considerations as a simple
constraint satisfaction problem to help PC chairs systematize
this selection process. We report on some of the features we
have incorporated and experiences in building and using the
tool.

1 Introduction

Perhaps the most important and critical step that program
co-chairs for a conference do is putting together a technical
program is selecting a high quality program committee (PC).
The goal of the PC as many of us know is to review submis-
sions, provide expert reviews, and ultimately converge on
the best possible technical program for the given conference
or journal.

Selecting a PC entails balancing a wide range of require-
ments and practical constraints, including:

e Area coverage: Given the growing breadth of many of our
technical fields and the emergence of sub-areas of inter-
est, most technical conferences sponsored by ACM/IEEE
have a wide diversity of topics. A critical concern for the
technical program chairs is to ensure that there is suf-
ficient representation from different areas in which the
community works on. A lack of expertise in a particu-
lar sub-area is especially worrisome in terms of the ability
to judge the novelty and correctness of the submissions.
Furthermore, this also means that the chairs may have to
seek several more out-of-band reviews from experts, who
may not have a panoptic view of the overall quality of the
submissions in rating the given submission.

e Ensuring representation from diverse groups: PC chairs
on the advice of the steering committee often strive to en-
courage participation from diverse and under-represented
communities. This is especially important to broaden the
participation and give such communities the exposure to
gaining valuable experience in organizing top-quality con-
ferences. For instance, these representation considera-
tions may include geographical (e.g., avoid a US-centric

PC) and seniority factors (e.g., ensure there is a good mix
of senior, mid-career, and junior members of the commu-

nity).

o Avoiding over-representation from specific groups: An equally

important concern is over-representation from specific sub-
groups. For instance, it is useful to avoid having too many

members from the same institution as it may make it hard

to find expert reviews when considering institutional con-

flicts. Similarly, it may also be useful to ensure that spe-

cific sub areas (E.g., hot topics) are not over-represented

to avoid inducing a systematic bias in the program com-

position.

e PC Size: Depending on the expected number of submis-
sions and the intended workload, one also needs to keep
the PC size manageable. A small PC may make for more
engaged discussions and better “calibration” of the PC
members to the rest of the submission pool, but risk PC fa-
tigue and overload. A large PC on the other hand may help
distribute the load and may make it easier to meet some of
the coverage constraints described above, but risks weaker
discussions.

Based on our conversations with former PC chairs of vari-
ous conferences, PC chairs attempt to manually address these
aforementioned considerations. While the scale is not en-
tirely unreasonable to handle manually (e.g., even the largest
PCs for single track conferences we know of have ~ 70
members), it is quite tedious and cumbersome and invari-
ably introduces one or more potential blind spots in terms of
the coverage and representation concerns.

To simplify the job of PC chairs in balancing these con-
siderations, we developed a simple toolkit called EZ-PC'
that helps to systematically formulate these factors and helps
automate the process of selecting the PC. We do not claim
that EZ-PC is especially novel or technically interesting; it
is simply a useful tool to codify the typical considerations
that PC chairs face and helps automate (to the extent possi-
ble) the PC selection process. Essentially, EZ-PC expresses
these constraints as a simple integer linear program and uses
off-the-shelf solvers to find feasible solutions.

In the rest of this short paper, we describe the design of
EZ-PC and our experiences in using it to automate the PC
selection process. We also describe some of iterative refine-
ment of the tool that we needed to introduce during the pro-
cess. For instance, a practical logistical constraint is in the

!wordplay intended!

availability of potential PC members and their responses in-
dicating the availability. Even optimistically assuming a re-
sponse rate of ~ 75%, this means that the PC selection pro-
cess will invariably proceed in multiple rounds as the chairs
learn of the availability of the candidates. Thus, not only do
we need to capture the above considerations, but also ensure
that these are satisfied over this iterative process, so we in-
troduced new features to the tool to express these availability
constraints as well.

2 EZ-PC Formulation

In this section, we describe how we formally specify the var-
ious considerations in PC selection outlined in the previous
section. To this end, we describe the specific Integer Linear
Program (ILP) that EZ-PC uses.

Inputs: We begin by describing the inputs into the EZ-PC
constrained optimization problem and then describe how use
these inputs to generate the ILP formulation.

e Features of Interest: Recall that there were different con-
siderations that need to be “covered”; e.g., Areas of inter-
est, Geographical constraints, Underrepresented commu-
nities, Seniority etc. We model each of these as a binary
feature; let F denote the set of all binary features and let
f € F refer to a specific feature from this set. Note that
these features need not be independent and/or orthogonal
and in fact will not be so by design; i.e., the geographical
and area characteristics of a given candidate will inher-
ently have some overlap.

e Candidate List: We assume that the PC chairs have pre-
pared (manually or otherwise), a set of candidate PC mem-
bers C. Let ¢ € C refer to a specific PC candidate. Now,
each c¢’s information with regards to the various features
of interest needs to be populated; we use the binary in-
dicator constants I, s to indicate if the candidate ¢ has
the binary feature f “on”. For instance, if the feature is a
specific sub-area (E.g., TCP) and the candidate is an ex-
pert in this topic then this indicator constant will be set to
1. Similarly, we do the same for geographical properties
(e.g., Asia vs. EU vs. US) and whether the candidate is
from a specific under-represented group.

We introduce the decision variables select, € {0,1}
to capture the decision process if a particular candidate ¢
needs to be selected.

e Coverage requirements: As discussed earlier, for each
feature of interest, we have two kinds of constraints on
the “coverage”. First, for each type of feature we have
a minimum coverage level MinCoverage; denoting the
minimum number of PC members who satisfy this partic-
ular feature; e.g., we may want at least 5 junior members
of the community and at least 4 people from Asia on the
PC. Second, we also noted that we wanted to avoid over-
representation from specific groups; to this end, we intro-
duce an optional upper bound on the coverage as well de-
noted as MaxCoverage, which denotes the maximum

Minimize: PCSize, subject to

PCSize = Z select, (1)

ceC
MinPCSize < PCSize < MaxPCSize (2)

VfeF: ZIC’f x select. > MinCoverage; (3)

ceC

Vf e F: ZIC’f x select, < MaxCoverage; (4)
ceC

Vgeg: Z select. < GroupUpper, (5)

ceg
Ve € Responses : select, = Awvailability, (6)
Ve @ select, € {0,1} (7)

Figure 1: ILP for the PC selection problem

number of PC members satisfying this feature.

e Group constraints: One observation we made as we for-
mulated the problem was that some organizations (e.g.,
large research labs or large research universities) may in-
variably have a large representation on the PC. To this
end, we introduce the notion of group constraints that al-
low us to specify an upper bound on the number of mem-
bers from a specific group. We have a set of groups g €
G and for each group, we have an upper bound on the
number of candidates from that group that can simultane-
ously be on the PC GroupUpper . In some sense, we
could have also modeled these as features and used the
MaxCoverage constraints to capture these group con-
straints as well. Since these types of groups were limited
in number, it was more convenient to express these sepa-
rately rather than as a separate feature per-group.

e Minimum PC size: Recall that to balance the reviewing
workload, we also want to have a minimum PC size de-
pending on the number of expected submissions and the
expected number of reviews per paper. Let MinPCSize
denote this minimum PC size. Similarly, we want to make
sure the PC is not too large; let MazPCSize denote the
maximum possible PC size we want to have.

e Candidate constraints: As we roll out invitations and can-
didates indicate their availability or unavailability, we may
need to iteratively refine the PC selection process and up-
date the selection based on these candidate constraints. To
this end, we also have to maintain an updated record of
the availability of the different candidates as they respond.
Let Responses denote the set of candidates who have al-
ready provided responses and let Availability . denote the
expressed availability (or lack) as a binary indicator.

ILP Formulation: Given these inputs, next we describe
how we formulate PC selection as a simple ILP as shown in
Figure 1. We introduce a simple objective function, which is
to minimize the total PC size subject to several constraints

modeling the coverage, group, and availability considera-
tions. This objective was to ensure that the constraint pro-
gram prefers a smaller PC subject to the other constraints,
including the minimum PC size.

Our constraints naturally map to the considerations we
raised earlier. Eq (1) models the PC size as the sum of the
decision variables and Eq (2) models the upper and lower
bounds on our PC size. (The PCSize is a convenient tem-
porary variable for clarity; we can write the entire formula-
tion in terms of the select decision variables alone.) Eq (3)
and (4) model the coverage requirements per feature of in-
terest in terms of the indicators and the decision variables.
(Note that the I values in the equations are constants rather
than variables, which makes our problem a simple integer
linear program.) Then, Eq (5) ensures that for each of our
groups, we have a cap on the number of simultaneous candi-
dates chosen from that group. Finally, to capture the iterative
process, we introduce the availability constraints for the can-
didates who have previously responded (i.e., in Responses)
in Eq (6). This ensures that the subsequent runs of the ILP
will honor the previous selection and unavailability rather
than creating a solution from scratch that may violate some
of these constraints. In general, in the first round of invita-
tions, the set of Responses will be empty and these con-
straints can be ignored; here, we show the general formula-
tion. Finally, we have the binary constraints on the individ-
ual decision variables.

3 Implementation and Workflow

In this section, we briefly describe the implementation of the
EZ-PC toolkit. EZ-PC is very simple Per1-based toolkit
that takes as input a few simple text files and uses glpsol [1]
as the underlying ILP solver. EZ-PC has few dependencies
with external libraries, and the only requirement is to have a
working version of glpsol. (We used Perl v5.16.3 built for
darwin-thread-multi-2level and glpsol v4.48 installed through
MacPorts [2].)

To use EZ-PC, the PC chairs need to populate four key
text files with the following formats:

1. Candidates’ Features: This is a simple CSV (comma sep-
arated values) file, with the number of columns equal to
the number of features plus one column for the name. The
first column specifies the candidate name, and the remain-
ing columns with a binary indicator (1 or 0) indicating
whether the candidate satisfies the feature. (The first row
has the feature names.) For instance,?

Name, Areal, Area2,Areal
Alice,1,0,1

Bob,0,1,1

Eve, 0,0,1

“There is a current quirk that names cannot have special characters
in the formulation file.

2. Feature Constraints: Another simple CSV file specify-
ing the names of features and their MinCoverage and
MaxCoverage constraints, one per line, with the first
column being the feature name and the remaining being
the min-max values. If there are features without any con-
straints, these need not appear in the file. A simple way to
avoid the MaxCoverage is to set it to the MazPCSize.
Note that the names of the features in this file should
match the first row of the Candidates file above. For in-
stance, to specify a minimum of three members covering
Areal and Area2, we would have:

Areal, 3,50
Area2, 3,50

3. Availability Constraints: A two-column CSV marking a
0 for a candidate who has already declined and 1 for a
candidate who has already accepted. In the first round of
PC invitations, this file will typically be empty. For in-
stance, to specify that Alice has already agreed and Bob
has already declined, we would have:

Alice, 1
Bob, 0

4. Group Constraints: A space-separated file, with the first
column giving a name for the group, the second column
giving the comma-separated list of group members and
the third column giving the GroupUpper value for this
group. Each group can be arbitrarily large and there are
no constraints that the groups may be overlapping. For
instance, if Alice, Bob, and Eve are from the same orga-
nization XYZ and we do not want more than 2 of them to
be simultaneously selected, we specify

XYZ Alice,Bob,Eve 2

There are two basic Perl files: one to generate the ILP
formulation and the solution and the other to parse the so-
lution output by the ILP to extract the list of selected candi-
dates from the solution output.

Scalability: We have encountered almost no scalability prob-
lems in using EZ-PC so far. For a set of 87 candidate PC
members with 23 features, and having a minimum of 45 PC
members to be selected, the run time was less than 0.5 sec-
onds on a Macbook Pro with a 2.4 GHz Intel Core i5 pro-
cessor and 8GB of RAM. We have tried with other configu-
rations and the run time was consistently less than 1 second,
so we anticipate that scalability will not be a problem for
the typical PC size/features for common networking confer-
ences.

4 Conclusions

EZ-PC certainly made our life easier in terms of ensuring
various types of coverage constraints and PC balancing re-

quirements. EZ-PC is very much in an “alpha-minus” stage
with little to no documentation and several quirks reflect-
ing the need to get working code as our needs demanded.
The latest version of EZ-PC can be downloaded at: http:
//users.ece.cmu.edu/~vsekar/ezpc.html

EZ-PC is far from perfect and our wishlist for features
is quite numerous. First, we acknowledge that there are
non-trivial quirks in data processing (e.g., conversion from
spreadsheet into EZ-PC-compatible text files) that should be
easy to address. Second, one thing EZ-PC does not do is tell
us why/how the problem might be infeasible when it is. For
instance, when we have PC members who cover a lot of ar-
eas, then the MaxCoverage constraint often gets violated
and in this case we had to manually increase the value to
accommodate this. Having some way to the PC chairs un-
derstand the ILP output and infeasibility scenarios would be
a useful addition. Third, EZ-PC has no user interface what-
soever; it is simply two scripts running from the command
line. While this has served our purpose, we acknowledge
it might be useful to integrate EZ-PC into other programs;
e.g., spreadsheets for PC selection. Finally, the process of
generating EZ-PC inputs is manual; one way to automate
it is to scrape public resources like Google scholar and/or
DBLP and recent conference proceedings to identify candi-
dates and their areas of expertise rather than have the PC
chairs input these manually.

Acknowledgments

The author would like to thank Dejan Kostic and the ACM
CoNext steering committee for their inputs that motivated
the need for and informed the design of EZ-PC. EZ-PC also
benefited from early conversations with Petros Maniatis.

Please send comments or suggestions on improving the
EZ-PC tool to vsekar@andrew.cmu. edu.

5 References

[1] Gnu Ip solver. .
[2] Gnu Ip solver. .

