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Abstract—Flow monitoring is used for a wide range of network
management applications. Many such applications require that
the monitoring infrastructure provide high flow coverage and
support fine-grained network-wide objectives. Coordinated Sam-
pling (cSamp) is a recent proposal that improves the monitoring
capabilities of ISPs to address these demands.

In this paper, we address a key deployment impediment
for cSamp-like solutions–the need for routers to determine
the Origin-Destination (OD) pair of each packet. In practice,
however, this information is not available without expensive
changes. We present a new framework called cSamp-T, in which
each router uses only local information, instead of the OD-pair
identifiers. Leveraging results from the theory of maximizing sub-
modular set functions, cSamp-T provides near-ideal performance
in maximizing the total flow coverage in the network. Further,
with a small amount of targeted upgrades to a few routers,
cSamp-T nearly optimally maximizes the minimum fractional
coverage across all OD-pairs. We demonstrate these results on a
range of real topologies.

I. INTRODUCTION

Flow monitoring supports critical network management

tasks in ISPs such as anomaly detection [1], identifying

unwanted application traffic [2], understanding traffic struc-

ture [3], botnet analysis [4], and forensic analysis [5], in

addition to traditional traffic engineering and accounting [6].

These applications require that monitoring infrastructures pro-

vide high flow coverage (number of flows logged) and the

ability to achieve network-wide flow measurement goals.

Our previous work presented a system called cSamp [7]

to address these requirements. cSamp delivers the optimal

possible flow coverage and can achieve fine-grained network-

wide flow coverage goals. It avoids redundant monitoring

to efficiently use the available capacity and naturally load

balances responsibilities to avoid monitoring hotspots.

The key to these benefits is that cSamp coordinates the

sampling actions across routers. To achieve this coordination,

cSamp assumes that each router can determine the Origin-

Destination (OD) pair (i.e., the ingress and egress router) for

each packet it sees. However, due to practical issues such as

multi-exit peers and prefix-aggregation, interior routers cannot

identify the OD-pair given just the source and destination IP

addresses. Thus, cSamp requires: (i) upgrades to border routers

to compute the OD-pair identifiers and (ii) modifications

to packet headers to carry OD-pair identifiers. These are

expensive changes that present significant deployment barriers

for ISPs. Thus, while cSamp has the potential to substantially

improve flow monitoring, it lacks a practical deployment path.

In this paper, we address the challenge of providing flow

monitoring capabilities comparable to cSamp, without relying

on OD-pair identifiers. We present cSamp-T,1 an approach

in which each router makes sampling decisions using only

locally available information. These local decisions are based

on packet headers and local routing tables rather than the

global OD-pair identifiers. Since cSamp-T does not rely on

OD-pairs, it is more immediately deployable than cSamp.

However, in this new framework, computing optimal sam-

pling strategies to maximize network-wide objectives such

as the total flow coverage (i.e., the number of unique flows

logged) and the minimum fractional coverage across all OD-

pairs is NP-hard [8]. Our key challenge is to develop efficient

techniques for computing sampling strategies to (approxi-

mately) optimize these objectives.

To maximize the total flow coverage, we use the insight

that the objective function is submodular. We obtain near-

optimal performance by extending results from the theory of

optimizing submodular functions subject to budget constraints

[9, 10]. Specifically, we implement efficient greedy algorithms

with good theoretical approximation guarantees and near-ideal

performance in practice. Our evaluations on several real ISP

topologies show that cSamp-T achieves more than 85% of the

optimal total flow coverage provided by cSamp.

The minimum fractional coverage objective — the mini-

mum across all OD-pairs of the fraction of flows logged per

OD-pair — is not submodular. The greedy algorithm performs

poorly in theory [11] and practice in this case. We present two

strategies to improve the performance: (a) augmenting targeted

routers with more resources and (b) incrementally upgrading

border routers with the capability to add OD-pair identifiers

to packet headers. We show that only a few such upgrades are

necessary; augmenting the total memory budget by 20% or

upgrading 6% of the ingresses suffices to achieve more than

80% of the ideal cSamp performance.

By relaxing the dependence on OD-pair identifiers, cSamp-

T makes the benefits of solutions like cSamp immediately

available to ISPs. It also provides an incremental deployment

path and provides near-ideal performance even with limited

deployment. We also believe that the algorithms and heuristics

we develop (e.g., extending results from the theory of submod-

ular set maximization, intelligent resource provisioning, hybrid

cSamp and cSamp-T deployment) can be more broadly applied

to other network management problems (e.g., [12]).

1cSamp-T denotes cSamp minus Tags for OD-pairs



II. BACKGROUND AND MOTIVATION

In this section, we provide a brief overview of cSamp and

also explain a key challenge that makes it impractical for ISPs

to deploy cSamp-like solutions today.

A. Why cSamp?

Flow monitoring is crucial for several network management

functions including several anomaly detection and security

applications (e.g., [1–5, 13]), and this set of applications

continues to grow. Synthesizing arguments from previous

work [14–20], we identify four key requirements:

• Provide high flow coverage, i.e., log as many flows as

possible, to support security applications which need a fine-

grained understanding of “who-talked-to-whom”.

• Work efficiently within (heterogeneous) router resource

constraints and minimize redundant reports.

• Satisfy network-wide flow monitoring goals where a net-

work operator can specify some subsets of traffic as more

important than others or require guaranteed minimum cov-

erage for all ingress-egress pairs.

• Support a broad spectrum of monitoring applications.

Based on the insights from previous work, these lead to

three natural design choices in cSamp [7]: (1) avoiding the

bias of packet sampling against small flows by using flow

sampling [14]; (2) coordinating routers to avoid redundant

sampling and use router resources efficiently [19]; and (3) a

network-wide optimization framework for assigning monitor-

ing responsibilities to meet the ISP’s objectives [18].

B. Overview of cSamp

cSamp assigns sampling responsibilities to routers in a

coordinated manner to optimize network-wide flow monitoring

goals. Network operators typically express such goals in terms

of Origin-Destination (OD) pairs, identified by the ingress and

egress routers. Thus, the objectives are expressed as functions

of the fraction of flows logged (i.e., the coverage) for each

OD-pair.

cSamp assigns sampling responsibilities in terms of hash-

ranges per OD-pair per router. These configurations are called

sampling manifests. The manifest for a router is a set of entries

of the form 〈OD , [start , end ]〉, where [start , end ] ⊆ [0, 1]
denotes a hash range, and OD is a specific OD-pair. Each

router’s sampling algorithm is as follows. For each packet, the

router determines the OD-pair (assuming that this is feasible).

Next, it computes a HASH of the flow 5-tuple 〈srcIP, dstIP,

srcport, dstport, proto〉, which returns a value in [0, 1], and

checks if the hash value lies in the range assigned to it for

the OD-pair. If the packet is selected, the router updates the

packet and byte counters for this flow.

The key idea is that all routers are configured with the same

hash function but are assigned non-overlapping hash ranges

for each OD-pair. This ensures that the sets of flows sampled

by different routers do not overlap. Next, we discuss how

the sampling manifests are generated using a network-wide

optimization framework.

Optimization Framework: The inputs to the optimization are

the flow-level traffic matrix (number of flows per OD-pair),

router-level path(s) for each OD-pair, the resource constraints

of routers, and the ISP’s flow monitoring objective expressed

as a function of the fractional flow coverage per OD-pair.

Each OD-Pair OD i (i = 1, . . . ,M ) is characterized by its

router-level path Pi and the approximate number Ti of distinct

IP-level flows on that path in a measurement interval (e.g.,

five minutes).2 Each router Rj (j = 1, . . . ,N ) is constrained

by the available SRAM for keeping per-flow counters [21];

Lj denotes the number of flows Rj can record in a given

measurement interval.

dij denotes the fraction of flows of OD i that router Rj logs.

(If Rj does not lie on path Pi, then the variable dij will not

appear in the formulation.) For i = 1, . . . ,M , let Ci denote

the fraction of flows on OD i that is logged.

The specific goal in cSamp [7] has two parts. First, we find

the largest possible minimum fractional coverage per OD-pair

mini{Ci} subject to the resource constraints. Next, we use

this as θ in Eq 3 in the linear program shown below and

maximize the total flow coverage
∑

i(Ti×Ci). This provides

good network-wide visibility by maximizing the minimum

fractional coverage and high flow coverage by maximizing

the total number of flows logged.

Maximize
∑

i(Ti × Ci), subject to

∀j,
∑

i:Rj∈Pi
(dij × Ti) ≤ Lj

∀i, Ci =
∑

j:Rj∈Pi
dij

∀i, θ ≤ Ci ≤ 1

∀i, ∀j, dij ≥ 0

(1)

(2)

(3)

The solution d∗ = {d∗ij} to this two-step procedure is

then translated into sampling manifests specifying the flow

monitoring responsibility for each router.

C. Assumptions in cSamp

There are three main assumptions: (i) the presence of a

centralized optimization module with access to routing and

traffic matrices, (ii) routers implement hash-based flow sam-

pling, and (iii) routers can obtain OD-pair information from

packet headers.

The first two assumptions are feasible within current op-

erational realities. First, centralization is viable if the con-

figurations are generated reasonably quickly (within 5-10

minutes). Recent trends show that ISPs favor centralized

management [22, 23] and that routing and traffic information

are already available [24, 25].3 Second, the hash functions

required for flow sampling are simple and amenable to fast

hardware implementations [20, 26]. Flow sampling requires

2We assume that each OD-pair has a single routing path. It is easy to extend
the framework to accommodate multi-path routing or route changes [7].

3One possible concern is that ISPs only have packet- or byte-level traffic
matrices. cSamp does not need exact flow-level matrices; approximate esti-
mates suffice and the optimization is robust to estimation errors. Further, this is
only needed for bootstrapping cSamp’s operation. The flow reports generated
by cSamp can be used to generate flow-level matrices subsequently.



lookups for each packet and is feasible if the flow counters

are in fast SRAM [21, 27].

The assumption that routers can obtain OD-pair identifiers

is crucial to cSamp. Specifically, Eq 2 assumes that the hash-

ranges assigned to different routers for a given OD-pair are

non-overlapping. In fact, this step is critical to model the

optimization problem as a linear program (which can be solved

efficiently) since it allows us to express the coverage for an

OD-pair as the sum across routers on its path. If routers cannot

obtain OD-pair information, this would no longer hold. As we

discuss next, this assumption is not practical for ISPs today.

D. Challenges in OD-pair identification

A router needs to determine the OD-pair (i.e., the ingress

and egress routers) for a packet based on the source and

destination IP addresses and its routing table. The feasibility

of doing this depends on whether the ISP uses IP-based or

MPLS-based forwarding. While IP forwarding is destination-

based, MPLS can also take into account source information.

However, we are unaware of deployments configured in this

way [28]. As such, here we restrict our attention to destination-

based MPLS forwarding, which we believe to be the norm.

Information to Routing/Forwarding
Resolve IP (dest-based) MPLS (dest-based)

Ingress Difficult Difficult
Egress With some ambiguity Possible

TABLE I
FEASIBILITY OF RESOLVING INGRESS AND EGRESS INFORMATION USING

PACKET HEADERS AND LOCAL ROUTING TABLES.

Table I summarizes the feasibility of resolving the ingress

and egress in these two scenarios. In both cases, resolving the

ingress is nearly impossible. For example, for traffic entering

from a multi-exit peer (i.e., a neighboring AS to which an ISP

is connected at multiple peering points), source IP address and

routing information cannot determine the ingress on which

the packet entered. With MPLS, the egress can be resolved

exactly; with IP the egress can be resolved within some ambi-

guity. Further, in IP forwarding, ingress and egress resolution

may be additionally difficult due to prefix aggregation.

Due to the above challenges, cSamp assumes that ingress

routers explicitly add OD-pair identifiers to packet headers.

However, this leads to a practical deployment bottleneck. It

requires additional processing on ingress routers to resolve

and add the egress information and requires modifications to

packet headers to carry OD-pair identifiers.

III. PROBLEM STATEMENT

The above challenges in OD-pair identification bring us to

the motivating question for this work:

Can we provide the flow coverage benefits of cSamp without

requiring OD-pair identifiers?

That is, we want each router to make sampling decisions

using only locally available information instead of OD-pair

identifiers, but still get performance comparable to cSamp.

Here, local refers to information that a router can immedi-

ately obtain from packet headers and its local routing and

forwarding state. We refer to this new approach as cSamp-T.

Fig. 1. Example showing sampling decisions made using local information
in cSamp-T and contrasting it with cSamp. Each router’s cSamp-T sampling
decision depends only on the previous and next hop for each packet.

As an example, consider the network in Figure 1 with 2

ingresses and egresses and 4 OD-pairs P1–P4 . The top half

shows a cSamp configuration. Each router’s responsibilities

are hash ranges per OD-pair and for each OD-pair the ranges

on the routers on its path are non-overlapping.

The bottom half shows a scenario where routers cannot

obtain OD-pairs. Suppose each router is assigned a hash

range per router 3-tuple specified by the previous hop, cur-

rent router, and the next hop. The router uses this range

to decide whether or not to sample the flow/packet. Note

that a router can determine the 3-tuple using only local

information: the interface the packet arrived on, the destination

IP, and its forwarding table. The coverage of an OD-pair

is obtained by “stitching” together the coverage provided

by each router on the path. That is, the coverage for OD-

pair OD i is the union:
⋃

Rj∈Pi
Coverage(Rj ,Pi), where

Coverage(Rj ,Pi) is the hash range corresponding to the 3-

tuple comprising Rj and its previous/next hops for Pi. For

example, the coverage for path P1 which passes through

R1, R2, and R3 is Coverage(R1, P1)∪Coverage(R2, P1)∪
Coverage(R3, P1) = [0, 0.2]∪ [0.1, 0.2]∪ [0.1, 0.3] = [0, 0.3].

The example highlights two differences between cSamp-T

and cSamp. First, the sampling responsibilities are specified

using local information rather than global OD-pair identifiers.

Second, the coverage for each OD-pair is no longer the sum

across the routers on the path; it is the union of the ranges

assigned to the routers.

Now, how do we assign sampling responsibilities in cSamp-

T to maximize network-wide flow coverage objectives while

respecting each router’s resource constraints? The following

sections present a formal framework to address this.

A. Problem Formulation

We retain two assumptions from cSamp: (a) a centralized

module for assigning responsibilities with access to routing

and traffic matrices and (b) routers implement hash-based flow

sampling using SRAM counters and SRAM size constrains the

number of flows a router can log. As discussed earlier, both

are feasible. Next, we discuss how a centralized module can

assign sampling responsibilities without OD-pair identifiers.

We introduce the notion of a SamplingSpec to capture the

granularity at which a router makes sampling decisions. For
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Fig. 2. Example illustrating SamplingSpecs and SamplingAtoms

the current discussion, the SamplingSpecs are router three-

tuples 〈Rj1 ,Rj2 ,Rj3〉 that appear contiguously on a network

path; i.e., Rj1 and Rj3 are neighbors of Rj2 . Let ak denote a

generic SamplingSpec.

ak ∈ Pi denotes that the SamplingSpec ak lies on the

path Pi for OD i.
4 For example, if the path Pi uses routers

· · · ,Rj1 ,Rj2 ,Rj3 , · · · in that order, then the SamplingSpec

a = 〈Rj1 ,Rj2 ,Rj3〉 ∈ Pi. This is a natural extension

of the notion that a router Rj lies on a path Pi. We use

tk =
∑

i:ak∈Pi
Ti to denote the total traffic that traverses

ak. SamplingSpecs are mapped to routers in a many-to-one

fashion; we denote the set of SamplingSpecs mapped to Rj by

Rj .specs. That is, Rj can be assigned sampling responsibilities

corresponding to ak ∈ Rj.specs. In the 3-tuple case, if

ak = 〈Rj1 ,Rj2 ,Rj3〉, then ak ∈ Rj2 .specs.

If Rj.specs ∋ ak, then Rj can log some of the traffic on

paths Pi ∋ ak. But what fraction should it log? We formalize

this using SamplingAtoms. Suppose the traffic traversing ak

is mapped to the unit interval [0, 1] by hashing and that the

interval [0, 1] is divided into 1
δ

equal-sized intervals hl = [(l−
1)δ, lδ], of length δ. A SamplingAtom is a pair 〈ak, hl〉. If

a SamplingAtom, gkl = 〈ak, hl〉, ak ∈ Rj.specs, is assigned,

then router Rj logs flows that traverse ak such that the hash

of the flow falls in hl. We use h(gkl) as a synonym for hl.

EXAMPLE: Figure 2 illustrates these definitions with an

example, where δ = 0.25. R3 has three SamplingSpecs

in the forward direction (and three similar SamplingSpecs

in the reverse direction): 〈R1 ,R3 ,R4 〉, 〈R1 ,R3 ,R2 〉 and

〈R2 ,R3 ,R4 〉. R3 is assigned three SamplingAtoms, two for

〈R1 ,R3 ,R4 〉, one for 〈R2 ,R3 ,R4 〉, and none for 〈R1 , R3 ,

R2 〉. Consider paths of the form {..,R1 ,R3 ,R4 , ..}. (There

may be many such paths.) R3 will log all flows along these

paths whose hashes fall either in the range [0, 0.25] or [0.75, 1],
and flows on paths of the form {..,R2 ,R3 ,R4 , ..} such that

the hash of the flow falls in the range [0, 0.25].

Measures of Goodness: Given a set of assigned Samplin-

gAtoms, {ĝkl}, we can compute the fractional coverage for

each OD i. The coverage due to one particular SamplingSpec

ak ∈ Pi is ∪l h(ĝkl) ⊆ [0, 1], and hence

coverage Ci =
∣∣⋃

ak∈Pi

⋃
l h(ĝkl)

∣∣ (4)

Here, given an interval S ⊆ [0, 1], |S| denotes the fraction

of the unit interval covered by S. Note that the coverage

for a path is the union of the assigned hash-ranges across

4Since this notion of on-path-ness is quite general, our approach works
even in the case of multi-path routing.

Notation Explanation

M Number of OD-pairs
N Number of routers

OD i OD-pair i
Ci Fraction of flows on OD-pair i covered
Rj Router j
Lj Available resources on Rj

Load j Total monitoring load on Rj

SamplingSpec Info. used for making sampling decisions
ak SamplingSpec k

Rj .specs Set of SamplingSpecs on Rj

tk Total traffic traversing SamplingSpec ak

SamplingAtom SamplingSpec along with a specific hash range
gkl SamplingAtom l on ak

cgkl An assigned/selected SamplingAtom
h(gkl) Hash-range ⊆ [0, 1] for SamplingAtom gkl

TABLE II
NOTATION IN THE PROBLEM STATEMENT

its constituent SamplingSpecs — if the same hash-range is

assigned to several SamplingSpecs along a path, then the same

set of flows gets sampled and we do not get any extra coverage.

The monitoring load on a router is given by adding, over

all SamplingSpecs ak ∈ Rj.specs, the portion of the traffic

through ak that Rj logs:

Load j =
∑

ak∈Rj .specs
tk × |

⋃
l h(ĝkl)| (5)

Given the Cis, the specific functions we are interested in

optimizing are the total traffic coverage ftot =
∑

i TiCi, and

the minimum fractional coverage fmin = mini Ci. Formally,

our goal is to obtain a set of assigned SamplingAtoms {ĝkl}
to maximize ftot or fmin , while operating within the router

constraints (i.e., Load j ≤ Lj for all j). We choose these

specific objective functions because of their use in cSamp [7];

our framework can accommodate a wider range of objective

functions expressed as combinations of the Ci values.

The maximization problem: We can rewrite the above max-

imization problem as follows. Consider a ground set V which

contains as its elements all possible SamplingAtoms: i.e., V =
{〈ak, hl〉 for all possible SamplingSpecs ak and all 1

δ
hash-

ranges hl}. Suppose a subset S ⊆ V of these SamplingAtoms

are chosen and assigned to their corresponding routers. These

give us the fractional coverages defined by Eq 4 and router

loads given by Eq 5. Now, ftot or fmin can be viewed as

functions from subsets of V to the reals. The problem is to

select an optimal S∗ ⊆ V , i.e., that maximizes ftot or fmin ,

subject to Load j ≤ Lj .

B. Exact Solutions are Hard

Finding an optimal S∗ to maximize ftot or fmin subject to

the load constraints on routers is NP-hard. (We prove hardness

via a reduction from 3-SAT; we omit the proof for brevity

and refer readers to our technical report [8]). Moreover, it is

infeasible for practical system sizes. For example, consider the

problem as an integer linear programming formulation using

{0, 1} indicator variables for each gkl to denote whether it is

assigned or not. Even on the Internet2 topology with just 11

routers, the commercial solver CPLEX did not converge after

a day. Because of the intractability of solving the problem

exactly, we use approximation algorithms. However, as we



will see, the performance of our algorithms is comparable to

the ideal performance of cSamp.

IV. SUBMODULARITY AND ALGORITHMS

In this section, we show that there are practical approx-

imation algorithms to obtain the sampling strategies. The

key insight is that the coverage functions have a natural

submodularity property which allows us to extend results from

the theory of maximizing submodular set functions.

A. Submodularity

Definition: A function F : 2V → ℜ, mapping subsets of a

ground set V to the reals, is submodular if for all sets S ⊆
S′ ⊆ V , and for all elements s ∈ V ,

F (S ∪ {s})− F (S) ≥ F (S′ ∪ {s})− F (S′)

i.e., the marginal benefit obtained from adding s to a larger

set is smaller [9]. This captures the intuitive property of di-

minishing returns. A function F is monotone (nondecreasing)

if ∀S ⊆ S′, F (S) ≤ F (S′).

Submodular set maximization: The goal is to pick a subset

S ⊂ V maximizing F (S) subject to a budget constraint of the

form c(S) ≤ B; i.e., given costs c(s) for all s ∈ V , the total

cost c(S) :=
∑

s∈S c(s) of elements picked in set S cannot

exceed the budget B. This general problem is NP-hard [9], but

good approximation guarantees are known. In particular, the

algorithm in Figure 3 greedily picks feasible elements that give

the greatest marginal benefit or give the maximum marginal

benefit per unit element-cost. The better of these two settings

gives a constant factor (1− e−1) approximation [29].

B. Application to cSamp-T

It is easy to check the coverages Ci viewed as functions

from 2V → ℜ where V = SamplingAtoms are monotone sub-

modular, and hence so is their weighted sum ftot =
∑

i TiCi.

Each Ci is monotone because adding a SamplingAtom gkl to

a set can only increase its value. To see why it is submodular,

consider adding a SamplingAtom gkl = 〈ak, hl〉 to sets A and

B, where A ⊆ B. If we look at the impact on some Ci such

that ak ∈ Pi,
5 three cases arise: (i) hl is covered in both A

and B, (ii) hl is not covered in both A and B, and (iii) hl

is covered in B, but not A. (Since A ⊆ B, the fourth case

cannot occur.) In all cases, the marginal benefit of adding gkl

to A is at least as high as that of B.

Budget constraints in cSamp-T: The budget constraints in

cSamp-T come from the bounds on router load. To model

router load, we need a knapsack constraint Load j ≤ Lj for

each router Rj . A naive approach is to consider the cSamp-

T problem as a submodular set maximization problem with

multiple knapsack constraints. This naive approach yields a

O(N ) approximation, where N is the number of routers.

This is clearly undesirable, especially for large networks.

However, these budget constraints have a special structure.

5If ak /∈ Pi, then gkl does not contribute to Ci.

SUBMODULARGREEDY(F,V , cbflag , B)

// F : 2V → ℜ submodular, B is total budget

// if cbflag is true use benefit/cost instead of benefit

1 S ← ∅
2 while (∃s ∈ V \ S : c(S ∪ {s}) ≤ B) do

3 for s ∈ V \ S do

4 norm ← ((cbflag = true) ? c(s) : 1)

5 ψs ←
F (S∪{s})−F (S)

norm

6 s∗ ← argmaxs∈V\Sψs

7 S ← S ∪ {s∗}
8 return 〈S, F (S)〉

Fig. 3. Basic greedy algorithm

GREEDYMAXMIN(F1, . . . , FM , ǫ,V , B, γ)

// Maximize mini{Fi}
// ∀i, Fi : 2V → [0, 1] is submodular

1 τlower ← 0; τupper ← 1
2 while (τupper − τlower > ǫ) do

3 τcurrent ←
τupper+τlower

2
// Define the modified objective function

4 ∀i, F̂i ←min(Fi, τcurrent); F̂ ←
∑

i F̂i

// Run greedy without budget constraints

5 Bused ← SUBMODULARGREEDY(F̂ ,V , true,∞)
6 if MAXUSAGE(Bused , B) > γ
7 then τupper ← τcurrent

8 else τlower ← τcurrent

9 Return τlower

Fig. 4. Maximizing the minimum of a set of submodular functions with
resource augmentation

Specifically, since each SamplingAtom contributes to the load

on exactly one router, this results in a collection of non-

overlapping knapsack constraints. We call the resulting prob-

lem submodular function maximization subject to partition-

knapsack constraints – each partition corresponds to a different

router and the load constraint on each router is a knapsack

constraint. A simple extension of Figure 3 gives a constant-

factor ( e−1
3e−1 ) approximation.6 (We omit the proof due to space

constraints and refer readers to our technical report [8].)

Maximizing ftot : To match the theoretical guarantees [29], we

run two instances of the greedy algorithm—with and without

the benefit-cost flag set to true, and return the solution with

better performance.

Maximizing fmin : To maximize fmin , we need to go from

one submodular function F to many submodular functions

F1, F2, . . . , FM corresponding to the fractional coverages

C1, . . . ,CM . The problem is now to pick S ⊆ V to maximize

Fmin(S) = mini Fi(S), the minimum across these different

functions. This new function Fmin is not submodular. In

fact, obtaining any non-trivial approximation guarantee for this

max-min problem is NP-hard [11]. However, we can maximize

Fmin if we are allowed to exceed the budget constraint by

6Note that these are worst-case approximation guarantees; the greedy
algorithms for submodular maximization perform much better in practice.



some factor [11]. Formally, if S∗ is an optimal set satisfying

the budget constraints, the algorithm in Figure 4 finds a set S
with Fmin(S) ≥ Fmin(S∗) − ǫ, but exceeds the budget con-

straints by a factor of γ, where γ = O
(
log(1

ǫ

∑
v∈V Fi(v))

)
.

The key idea is that the modified objective function F̂τ =∑M

i=1 min(Fi, τ) is submodular. For any τ , F̂τ has the prop-

erty that its maximum value is M × τ and at this maximum

value ∀i, Fi ≥ τ . Running the greedy algorithm assuming no

resource constraints always gives a set such that the actual

resource usage at router Rj is at most γ × Load j . This holds

for all τ , and in particular, for the optimal τ∗ = Fmin(S∗).
Since τ∗ is unknown, we use binary search over τ .

Router algorithm: Given a solution to the problem of max-

imizing ftot or fmin , each router is assigned a set of non-

contiguous hash ranges for each SamplingSpec. For each

packet, the router determines the SamplingSpec using the

packet header and other local information (e.g., routing table,

which interface does the packet arrive on and leave from). It

selects the packet if the hash of the flow 5-tuple falls in one

of the hash ranges assigned for this SamplingSpec.

C. Practical Issues

Reducing computation time: The computation time of the

algorithm in Figure 3 can be reduced using the insight that

for each element s ∈ V , the marginal benefit ψs obtained

by picking s decreases monotonically across iterations of the

greedy algorithm. Thus, we can use lazy evaluation [10]. The

intuition behind lazy evaluation is that not all ψs values need

to be recomputed in Step 5 of Figure 3; only those likely to

affect the choice of s∗ in Step 6 need to be computed. Section

VI-B shows that this reduces the computation time by more

than an order of magnitude.

For very large topologies (>200 nodes), we use two addi-

tional optimizations: (1) In each greedy iteration, we evaluate

the next k best choices in parallel (using the OpenMP library).

(2) We use the cSamp solution for the minimum fractional

coverage as the starting upper bound and avoid unnecessary

iterations for the binary search in Figure 4.

Generalizing SamplingSpecs: We assumed that the Sam-

plingSpecs are defined in terms of router three-tuples. Note,

however, that our algorithms are generic and do not depend

on SamplingSpecs being router three-tuples. Thus, we can

generalize our results to any definition of SamplingSpecs – the

SamplingSpecs can be made coarser (e.g., ignore previous and

next hop information), or more fine-grained (e.g., add egress

information if available).

Effects of Discretization: Section III defined a discretization

interval δ such that gkl = 〈ak, [(l − 1)δ, lδ]〉, l ∈ {1, . . . , 1
δ
}.

There are two practical issues here. First, we can make the

width δ arbitrarily small; there is a tradeoff between potentially

better coverage vs. the time to compute the solution. In our

evaluations, we fix δ = 0.02 since we find that it works well

in practice. Second, instead of 1
δ

disjoint intervals, we can

also consider the 1
δ

2
hash-ranges of the form [mδ, (m+ n)δ]

to make assignments as contiguous as possible. This increases

the computation time without giving any coverage benefits. We

avoid this overhead and instead run a simple merge procedure

(Section VI-C) to compress the sampling manifests.

V. HEURISTIC EXTENSIONS

While the theoretical guarantee for ftot is encouraging,

the result for fmin requires fairly high resource augmentation

factors (γ) to get non-trivial guarantees.

In this section, we describe two practical extensions to

improve the performance for fmin .

1. Targeted provisioning to use fewer additional resources.

2. Incremental deployment where some ingress routers are

upgraded to add OD-pair identifiers.

We present these in the specific context of the fmin ob-

jective. However, these techniques can be applied to other

network-wide objectives as well.

A. Intelligent Provisioning

The theoretical bound in Section IV assumes that each

router is given γ× more resources. However, it is expensive

to add γ× more SRAM to all routers. Instead, we selectively

augment a few routers and still get the same performance. The

insight here is that it suffices to upgrade a small number of

heavily loaded routers.

We consider the following provisioning problem. The oper-

ator gives a memory budget Budget to be distributed across

routers, determined by the ISP’s monetary constraints and

router SRAM cost. Each router Rj has a lower bound LB j

for the default memory configuration and an upper bound UB j

for the maximum feasible amount [30]. Our goal is to decide

the allocation of resources to routers (the Ljs) that will boost

the fmin objective.

However, it is difficult to model the coverage Ci that the

greedy algorithm gives for each OD-pair under a given set of

constraints. Thus, we make a simplifying assumption that the

hash ranges across the different SamplingSpecs on a given

path are non-overlapping. That is, if uk denotes the size of

the hash range assigned for ak, we express Ci as the sum

of the uks (Eq 9). Under this assumption, the provisioning

problem can be expressed as the linear program shown below.

While this is less desirable than modeling the Cis exactly,

this is a reasonable approach to generate general provisioning

guidelines. As we will see in Section VI-D, this heuristic

works well in practice.

Maximize mini Ci, subject to

∀j,
∑

k:ak∈Rj .specs
uk × tk ≤ Lj

∑
j Lj ≤ Budget

∀j, LB j ≤ Lj ≤ UB j

∀i, Ci =
∑

k:ak∈Pi
uk

∀k, uk ≥ 0; ∀i, Ci ≤ 1

(6)

(7)

(8)

(9)

(10)



Given the optimal memory allocations after solving the LP,

we run the greedy algorithm in Figure 4 with γ = 1 to ensure

that we operate within the resource constraints.

B. Partial OD-pair identification

Next, we consider a scenario in which the network operator

can upgrade some border routers. This can be achieved using

a software update to the router or by adding a middlebox that

processes each packet, modifies the header, and forwards it to

the router. These upgraded nodes have the ability to determine

and add OD-pair identifiers to packet headers. We assume that

all routers run both cSamp and cSamp-T sampling algorithms.

That is, a router logs a flow if its hash falls in a hash-range

corresponding either to the OD-pair or the SamplingSpec.

Let Pe be the set of enabled OD-pairs whose packets carry

OD-pair identifiers and let P be the set of all OD-pairs. As in

Figure 4, we find the maximum minimum fractional coverage

using binary search over the parameter τ . The key difference

in the new algorithm is that each iteration of the binary search

has two steps. In the first step, we solve a cSamp-style linear

program over the enabled OD-pairs. In the second step, we

define the capped functions Ĉi(τ) = mini(Ci, τ) for the non-

enabled OD-pairs and use the greedy algorithm to maximize

F̂ =
∑

i Ĉi.

Minimize
∑

j

Lj , subject to

∀j,
∑

i∈Pe :Rj∈Pi

(dij × Ti) ≤ Lj

∀i ∈ Pe , Ci =
∑

j:Rj∈Pi

dij

∀i ∈ Pe , θ ≤ Ci ≤ 1

∀i ∈ Pe , ∀j, dij ≥ 0

(11)

(12)

(13)

(14)

In each iteration, for the current value τcurrent , the first step

solves the LP shown above. The input to the LP is the set of

enabled OD-pairs Pe and the target coverage θ = τcurrent .

The LP minimizes the total resources used across the routers

while ensuring that each OD i ∈ Pe has Ci ≥ θ = τcurrent .

Solving the LP returns the resources allotted to each router or

an infeasible status if there is no feasible solution.

If the LP is infeasible, we proceed to the next iteration of the

binary search. If the LP is feasible, we obtain the new resource

constraints per router by subtracting the resources used in the

LP stage from the original resource limits. Next, we run the

greedy algorithm with these reduced resources and the modi-

fied objective F̂ specified over the non-enabled OD-pairs. By

construction, the maximum value of F̂ is (M−|Pe |)×τcurrent

where M is the number of OD-pairs and |Pe | is the number of

enabled OD-pairs. F̂ reaches this value if and only if each non-

enabled OD-pair in P \Pe has fractional coverage ≥ τcurrent .

If the greedy algorithm achieves this value, then τcurrent is

feasible and we try a higher value in the next iteration; else

we try a lower value in the next iteration.

Topology (AS#) PoPs OD-pairs Flows Packets

×106 ×106

NTT (2914) 70 4900 51 204
Level3 (3356) 63 3969 46 196
Sprint (1239) 52 2704 37 148
Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218

GÉANT 22 484 16 64
Internet2 11 121 8 32

TABLE III
PARAMETERS FOR THE EXPERIMENTS
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Fig. 5. Total flow coverage

VI. EVALUATION

Setup: We use PoP-level topologies of educational backbones

and tier-1 ISPs [31] to evaluate the performance of cSamp-T

with each PoP as a node in the network (Table III). We use

shortest-path routes for each OD-pair and model the traffic

matrix using a gravity model based on city populations [19].

We assume that each node can log L = 400, 000 flow records.7

For cSamp-T, we discretize the hash-range with δ = 0.02.

A. Coverage and Overlap

Total flow coverage: We consider three granularities of

SamplingSpecs: router, router 3-tuple, and router 3-tuple aug-

mented with egress information. The first two SamplingSpecs

can always be inferred from local information but there may be

some ambiguity in resolving the egress (Table I). We use the

tuple+egress as a hypothetical solution to emulate the effect

of MPLS-based forwarding. We also compare these to cSamp

and maximal (uncoordinated) flow sampling.8

Figure 5 shows that using 3-tuple SamplingSpecs provides

significant improvement (25-30%) over the router-only case.

cSamp-T (3-tuple+egress) is closer to cSamp, but the gap

between the 3-tuple and egress-added cases is small. We also

verified that the performance of the greedy algorithm is close

to the theoretical upper bound for cSamp-T. (Not shown;

please see the extended report [8] for additional results).

The theoretical guarantee for total flow coverage depends

on running two instances of the greedy algorithm: with and

without the cost-benefit flag. We found that both configurations

have similar performance and that the instance with the cost-

benefit flag cbflag = false is slightly better.

7Assuming 12 bytes per flow record [7], this requires 400, 000 × 12 =
4.8 MB of SRAM per PoP, which is within the 8 MB technology limit per
linecard suggested by Varghese [30].

8In maximal flow sampling, each router’s flow sampling rate is min(1, l
t
),

where l is the number of flows it can log and t is the number of flows it
observes.
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Fig. 6. Normalized min. fractional coverage with resource augmentation

Minimum fractional coverage: Section IV showed that it is

infeasible to maximize fmin without resource augmentation.

Thus, we evaluate the performance as a function of the

resource augmentation factor γ, where each router’s SRAM is

γ × 400, 000. We normalize the minimum fractional coverage

by the optimal value achieved by cSamp at γ = 1. That is, if

cSamp-T has value 0.2 at γ = 3 and cSamp has value 0.4 at

γ = 1, the y-value corresponding to γ = 3 is 0.2
0.4 = 0.5.

Figure 6 shows the result for the router and tuple gran-

ularities. The tuple+egress was almost identical to the tuple

case; we do not show this for brevity. With γ ≥ 4, cSamp-T

achieves ≥ 50% of cSamp for all topologies. We see that the

difference between the router and tuple formulations is more

pronounced in the minimum fractional coverage result. With

router-level SamplingSpecs, even at γ = 5, four out of the

seven topologies only reach 40% of cSamp’s performance. For

the same γ = 5, using 3-tuple SamplingSpecs, five out seven

topologies achieve ≥ 90% of cSamp’s performance. Also, the

γ at which cSamp-T has good performance is much better

than the theoretical bound in Section IV. Section VI-D shows

that targeted provisioning reduces this even further.

We see that 3-tuple SamplingSpecs perform much better

than router SamplingSpecs, and are very close to the tu-

ple+egress case. Thus, we focus on 3-tuples for the rest of

the evaluation.

Duplicated flow reports: A secondary objective in cSamp

is to avoid duplicate flow reports to reduce the overhead in

processing duplicated measurements. Maximal uncoordinated

sampling can have ≥ 30% duplicate reports (expressed as a

fraction of the number of unique flows logged). Compared

to the uncoordinated case, cSamp-T with 3-tuples has 3×
fewer duplicated flow reports (not shown). Relative to cSamp

which has no duplicate reports, this is not ideal. However,

this is unavoidable since cSamp-T operates at a much coarser

granularity.

B. Algorithm Running Time

In order to be responsive to traffic dynamics, we want

the time to compute sampling manifests to be within a

few minutes. (Configurations are typically recomputed across

epochs spanning several minutes.) Table IV shows the time to

greedy solution on a 4-CPU (Intel Xeon 3.20GHz) machine.

Lazy evaluation provides more than an order of magnitude

reduction compared to the naive algorithm. The reduction is

more significant for the minimum fractional coverage since

Topology Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy

NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6
Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7

GÉANT 3.06 0.28 542 7.6
Internet2 0.22 0.05 38.4 1.9

TABLE IV
TIME TO COMPUTE SAMPLING MANIFESTS: VANILLA GREEDY VS. LAZY

EVALUATION (WITH A SINGLE THREAD) FOR POP-LEVEL TOPOLOGIES

Topology # Routers Total Cov. (sec) Min. Frac. (sec)

NTT 350 345.9 994.7
Level3 315 224.1 540.2
Sprint 260 174.0 554.6
Telstra 220 180.7 267.6
Tiscali 205 77.0 327.4

TABLE V
COMPUTE TIMES FOR ROUTER-LEVEL TOPOLOGIES (4 THREADS)

it involves multiple calls to the greedy subroutine. With this

reduction, cSamp-T scales to larger PoP-Level topologies.

Next, we evaluate how the algorithms scale to very large

router-level topologies. We generate router-level topologies

by treating each PoP as a “core” router and adding 4 edge

routers to each such core router. As described earlier, we use

two extra optimizations: parallel execution and tighter upper

bounds for the binary search. Table V show that even for

very large topologies, the compute times are within reasonable

bounds. This can be further reduced by increasing the degree

of parallelization.

C. Size of sampling manifests

Compared to cSamp, cSamp-T increases the size of the

sampling manifests because the hash-ranges assigned for each

SamplingSpec need not be contiguous. We use a simple

compression procedure to merge hash ranges after the greedy

algorithm. This looks for maximally contiguous hash ranges in

the original sampling manifest and merges them into a single

hash range. Table VI shows that this compression procedure

reduces the manifests roughly 10×. Also, the total bandwidth

overhead after compression is only 25KB in the worst case.

D. Intelligent Provisioning

As a specific scenario, we set LB j = L = 400, 000 for

all j in the formulation from Section V-A. We specify the

total SRAM budget as Budget = γ × N × L, where N is

the number of PoPs, and the technology limit as β × L. We

vary the parameters γ and β. Figure 7 shows the minimum

fractional coverage normalized w.r.t cSamp for two topologies,

Level3 and Telstra. We choose these because the greedy

algorithm performs poorly compared to cSamp in Figure 6. An

interesting result is that the curve levels off as a function of

γ; i.e., increasing the total budget does not add much benefit.

However, increasing the upper bound β provides significant

improvement. In fact, even with a moderate total increase

γ = 1.2, we see that the performance is within 80% of cSamp.

Since β is more crucial than γ, for the remaining topologies

we fix γ = 1.5 and analyze the normalized minimum fractional



Topology Total (KB) Max. per PoP (KB)
Naive Merged Naive Merged

NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6

GÉANT 45.5 6.5 5.6 0.6
Internet2 14.5 5.0 4.5 0.7

TABLE VI
SIZE OF THE SAMPLING MANIFESTS IN CSAMP-T IN KILOBYTES OF TEXT

CONFIGURATION FILES

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Total resource augmentation

N
o

rm
a

liz
e

d
 m

in
im

u
m

 c
o

v
e

ra
g

e

 

 

beta = 2
beta = 3
beta = 4
beta = 5
beta = 8

(a) Level3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Total resource augmentation

N
o

rm
a

liz
e

d
 m

in
im

u
m

 c
o

v
e

ra
g

e

 

 

beta = 2
beta = 3
beta = 4
beta = 5
beta = 8

(b) Telstra

Fig. 7. Understanding the impact of total resource augmentation (γ) and
technology upper bound (β) in the resource allocation formulation.

coverage as a function of β in Figure 8. With β = 5, all topolo-

gies achieve ≥ 60% of cSamp’s performance. Contrasting this

with Figure 6, the main difference is that we do not require

all PoPs to be augmented with 5× more resources – the total

resource budget is ≤ 1.5×.

E. Partial OD-pair identification

We try three strategies for selecting the enabled OD-pairs

Pe by upgrading the top-k PoPs that (a) observe the maximum

amount of traffic, (b) lie on most number of routing paths,

or (c) originate the most traffic. Here, upgrading implies that

we enable OD-pair identifiers on all OD-pairs having one of

these top-k PoPs as origins. For each k, we run the two-step

procedure from Section V-B for all values in 1, . . . , k and pick

the configuration with the highest fmin .

Figure 9 shows the normalized minimum fractional cover-

age for the Level3 and Telstra topologies as a function of k
(number of top-k PoPs). First, we observe that upgrading just

a few PoPs (< 6%) significantly improves the performance.

Second, enabling identifiers on nodes that observe the most

traffic performs much better than the other two strategies.

F. Hybrid Coverage Objective

cSamp maximizes a hybrid objective: maximizing the to-

tal flow coverage subject to getting the highest minimum

fractional coverage per OD-pair. In cSamp-T, we considered

these two objectives separately. A natural question is if we

can also maximize this hybrid objective. It is easy to extend

the algorithm in Figure 4 to do this. We run the greedy

algorithm to optimize the capped minimum fractional objective

(F̂ ) and then switch the objective function to optimize the total

coverage if τcurrent is feasible.

To evaluate this hybrid approach, we consider the configu-

ration obtained after targeted provisioning with γ = 1.5 and
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Fig. 8. Intelligent allocation with varying β at γ=1.5
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Fig. 9. Min. fractional coverage with partial OD-pair identification. This can
be viewed as incremental deployment of cSamp via cSamp-T.

β = 5. Table VII compares the total coverage obtained with

three strategies: maximizing the minimum fractional coverage,

maximizing the total flow coverage, and the above two-step

procedure. Maximizing the fractional coverage alone does not

work well. This is because the greedy algorithm terminates

when it achieves the target fractional coverage, even if it can

increase the total coverage. Also, the total coverage obtained

by the hybrid approach is very close to the greedy algorithm

for maximizing the total coverage alone. While it is hard to

provide theoretical guarantees in this case, Table VII shows

that the two-step optimization works well in practice.

VII. DISCUSSION

More fine-grained local information: We can bring the

performance of cSamp-T even closer to cSamp by providing

more hints to routers. One possible approach is to distribute IP-

prefix to ingress-egress maps [32], to enable more fine-grained

sampling decisions.

Sensitivity of router upgrades: The formulations in Section

V for router upgrades, as presented, assume static routing

and traffic configurations. Evaluating the sensitivity of the

upgrades and designing upgrade strategies robust to dynamics

are topics of future work. One strategy is to leverage the

fact that real-world routing and traffic matrices have some

dominant patterns that are largely invariant to dynamics. Thus,

we can use these invariants as inputs to the formulations.

VIII. OTHER RELATED WORK

The closest related work is cSamp [7], which we discussed

in Section II. Here, we discuss other related work.

Sampling: Most related work focuses on the single-router case

to work around limitations of packet sampling. This includes

work on adaptive sampling [33], inverting sampled measure-

ments [6, 14], and data streaming algorithms (e.g., [15, 21]).

cSamp and cSamp-T depart from these approaches by taking

a network-wide coordinated approach for flow monitoring.



Topology Greedy-Minfrac Greedy-Total
NoHybrid Hybrid

NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63

GÉANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

TABLE VII
COMPARING THE HYBRID MAXIMIZATION TO THE GREEDY ALGORITHM

FOR MAXIMIZING THE TOTAL FLOW COVERAGE

Greedy algorithms for monitor placement: Prior work has

applied greedy algorithms for monitor placement to cover

all routing paths using as few monitors as possible [16, 17].

The authors show that this is NP-hard and propose greedy

algorithms. These formulations can be extended to incorporate

packet sampling [17, 18]. However, these do not satisfy flow

coverage objectives, and by relying on packet sampling, they

can result in a large amount of redundant flow measurements.

cSamp-T provides more fine-grained flow coverage objectives

and reduces duplicated flow reports.

Sensor network monitoring: There has been recent work

applying the theory of maximizing submodular functions in

sensor networks [34, 35]. The problem of placing sensors

robust to adversarial objectives [11] is conceptually similar

to maximizing the minimum fractional coverage.

IX. CONCLUSIONS

cSamp is a recent proposal to meet the demand for fine-

grained flow monitoring capabilities in ISPs. However, ISPs

cannot realize the benefits of cSamp in practice because of

its reliance on OD-pair identifiers. In its current form, this

would require changes to packet headers, impose additional

overhead at ingress routers, and may require ISPs to overhaul

their routing infrastructures.

We presented cSamp-T, a framework that provides benefits

comparable to cSamp, in which the sampling decisions at

routers are based only on local information, and do not rely on

global OD-pair identifiers. However, obtaining exact solutions

to maximize the total flow coverage (ftot ) and minimum

fractional coverage (fmin ) in this framework is NP-hard.

We achieve near-optimal performance for ftot by leverag-

ing its submodularity. For fmin , getting good performance

without resource augmentation is provably hard. However,

targeted provisioning achieves near-ideal performance with

low overhead. Alternatively, upgrading a small number of

border routers to provide OD-pair information also yields good

performance. cSamp-T thus makes the benefits of a coor-

dinated network-wide monitoring solution like cSamp more

immediately available to ISPs. It also provides an incremental

deployment path for ISPs to transition to cSamp.
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