
New Opportunities for Load Balancing in Network-Wide
Intrusion Detection Systems

Victor Heorhiadi
UNC Chapel Hill

victor@cs.unc.edu

Michael K. Reiter
UNC Chapel Hill

reiter@cs.unc.edu

Vyas Sekar
Stony Brook University

vyas@cs.stonybrook.edu

ABSTRACT
As traffic volumes and the types of analysis grow, network intru-
sion detection systems (NIDS) face a continuous scaling challenge.
Management realities, however, limit NIDS hardware upgrades to
occur typically once every 3-5 years. Given that traffic patterns can
change dramatically, this leaves a significant scaling challenge in
the interim. This motivates the need for practical solutions that can
help administrators better utilize and augment their existing NIDS
infrastructure. To this end, we design a general architecture for
network-wide NIDS deployment that leverages three scaling op-
portunities: on-path distribution to split responsibilities, replicat-
ing traffic to NIDS clusters, and aggregating intermediate results to
split expensive NIDS processing. The challenge here is to balance
both the compute load across the network and the total communica-
tion cost incurred via replication and aggregation. We implement a
backwards-compatible mechanism to enable existing NIDS infras-
tructure to leverage these benefits. Using emulated and trace-driven
evaluations on several real-world network topologies, we show that
our proposal can substantially reduce the maximum computation
load, provide better resilience under traffic variability, and offer
improved detection coverage.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network monitoring, network management; C.2.0 [Computer-
Communication Networks]: General—Security and protection

General Terms
Algorithms, Management, Security

Keywords
Intrusion Detection, Network Management

1. INTRODUCTION
Network intrusion detection systems play a critical role in keep-

ing network infrastructures safe from attacks. The driving forces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10-13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

for increased deployment include regulatory and policy require-
ments, new application traffic patterns (e.g., cloud, mobile devices),
and the growing complexity of attacks [22,41]. In conjunction with
these forces, the rapid growth in traffic volumes means that NIDS
deployments face a continuous scaling challenge to keep up with
the increasing complexity of processing and volume of traffic.

The traditional response in the NIDS community to address this
scaling challenge has been along three dimensions: better algo-
rithms (e.g., [33]); specialized hardware capabilities such as TCAMs
(e.g., [42]), FPGAs (e.g., [17]), and graphics processors (e.g., [38]);
and parallelism through the use of multi-core or cluster-based solu-
tions (e.g., [37, 39]). These have been invaluable in advancing the
state-of-the-art in NIDS system design. However, there is a signif-
icant delay before these advances are incorporated into production
systems. Furthermore, budget constraints and management chal-
lenges mean that network administrators upgrade their NIDS in-
frastructure over a 3-5 year cycle [32]. Even though administrators
try to provision the hardware to account for projected growth, dis-
ruptive and unforeseen patterns can increase traffic volumes. Thus,
it is critical to complement the existing research in building better
NIDS systems with more immediately deployable solutions.

Past work has shown that distributing responsibilities across in-
trusion detection systems on an end-to-end path can offer signif-
icant benefits for monitoring applications [6, 29]. This provides
a way for administrators to handle higher traffic loads with their
existing NIDS deployment without requiring a forklift upgrade to
deploy new NIDS hardware. Our premise is that these past pro-
posals for distributing monitoring functions do not push the enve-
lope far enough. Consequently, this not only restricts the scaling
opportunities, but also constrains the detection capabilities that a
network-wide deployment can provide on three key dimensions:

• First, these focus on strictly on-path distribution. While such
on-path processing is viable (e.g., [7]), there is an equally com-
pelling trend toward consolidating computing resources using
datacenter deployments within and outside enterprise networks.
These offer natural management and multiplexing benefits that
are ideally suited to the compute-intensive and dynamic nature
of NIDS workloads. Other, concurrent work in research and in
industry is motivated by similar benefits of consolidated cloud
deployments for NIDS-like processing, as well [1, 2, 11, 32].
• Second, this past work assumes that the NIDS analysis occurring

at a network node is self-contained. That is, the NIDS nodes act
as standalone entities and provide equivalent monitoring capabil-
ities without needing to interact with other nodes. This restriction
leads to certain types of aggregated analysis being topologically
constrained. For example, in the case of scan detection, all traffic
needs to be processed at the ingress gateway for each host [29].
• Third, prior work implicitly assumes that each NIDS node can al-

ways provide processing capabilities that are semantically equiv-
alent to running the analysis at manually created chokepoints.
Unfortunately, practical networking realities (e.g., asymmetric
routing) may often violate such requirements; i.e., the forward
and reverse flows in an end-to-end session may not always be
observed at the same location for stateful NIDS processing.
Our vision is a general NIDS architecture that goes beyond on-

path distribution to allow new scaling opportunities via traffic repli-
cation and analysis aggregation. Replication enables us to offload
processing to lightly loaded nodes that might be off-path and ac-
commodate trends for building consolidated compute clusters. Fur-
thermore, replication enables new detection functionality that would
have been previously infeasible. For example, our framework en-
ables stateful NIDS analysis even when the two flows in a session
do not traverse a common node. Aggregation allows us to split an
expensive NIDS task into smaller subtasks that can then be com-
bined to provide equivalent analysis capabilities. This enables more
fine-grained scaling opportunities for NIDS analyses that would
otherwise be topologically constrained (e.g., scan detection).

A key constraint here is to enable these opportunities with min-
imal communication costs. Thus, our goal is to assign processing
responsibilities to balance the tradeoff between the communication
cost imposed by replication and aggregation vs. the reduction in
computation load. Our specific focus in this paper is on passive
monitoring devices such as NIDS and as such replication or aggre-
gation do not affect the latency perceived by end user applications.
We envision a network-wide management module that assigns pro-
cessing, aggregation, and replication responsibilities across the net-
work [12,19]. To systematically capture these tradeoffs, we design
formal linear programming (LP) based optimization frameworks.
In order to execute these management decisions without requiring
modifications to existing NIDS implementations, we interpose a
lightweight shim layer that runs on each NIDS node (or at an up-
stream router to which the NIDS is attached).

We evaluate our architecture and implementation using a combi-
nation of “live” emulation on Emulab [40] and trace-driven simu-
lations on a range of real-world topologies. Our results show that
a replication-enabled NIDS architecture can reduce the maximum
computation load by up to 10×; is significantly more robust to vari-
ability in traffic patterns by reducing the peak load more than 20×;
and can lower the detection miss rate from 90% to zero in some
scenarios where routes may not be symmetric. These benefits are
achieved with little overhead: computing the analysis and repli-
cation responsibilities takes < 1.6 seconds with off-the-shelf LP
solvers, and our shim layer imposes very low overhead.

Contributions and Roadmap: Our contributions are:
• Identifying new replication and aggregation opportunities for NIDS

scaling (Section 2).
• Formal models for balancing compute-communication tradeoffs

in a general NIDS architecture that subsumes existing on-path
distribution models (Section 4, Section 5, Section 6).
• A backwards-compatible architecture (Section 3) and implemen-

tation (Section 7) to realize these benefits.
• Extensive evaluation of the potential benefits over a range of real-

world network topologies (Section 8).
We discuss outstanding issues in Section 9 and related work in

Section 10, before concluding in Section 11.

2. MOTIVATION
In this section, we begin by describing the prior work for on-path

distribution [29]. Then, we discuss three motivating scenarios that

Figure 1: NIDS deployments today are single-vantage-point so-
lutions where the ingress gateway is responsible for monitoring
all traffic.

N1 N3 N2

N5 N4
P3: N1à N5

P1: N1à N3

P2: N1à N4

SignatureOnPath(P1,	 P2,	 P3)	
Scan	 (H1,	 H2)	

H1

H2

SignatureOnPath(P1)	

SignatureOnPath(P2)	 SignatureOnPath(P3)	

SignatureOnPath	 	
(P1,P2,P3)	

Figure 2: NIDS with on-path distribution [29]: Any node on the
path can run Signature detection; Scan detection cannot be
distributed.

argue for a general NIDS architecture that can incorporate traffic
replication and analysis aggregation.

2.1 On-path distribution
Suppose there are two types of NIDS analysis: Signature for

detecting malicious payloads and Scan for flagging hosts that con-
tact many destination addresses. Figure 1 shows how today’s NIDS
deployments operate, wherein all types of analysis occur only at
the gateway node. That is, node N1 runs Scan and Signature
detection for all traffic to/from hosts H1–H2 on paths P1–P3; the
other nodes run the corresponding analysis for the hosts for which
they are the gateway nodes. A natural limitation with this architec-
ture is that if the load exceeds the provisioned capacity on a node,
then that node has to either drop some functionality (e.g., disable
expensive modules) or drop packets.

A natural solution to this problem is to exploit spare resources
elsewhere in the network. For example, nodes N2–N5 may have
some spare compute capacity when N1 is overloaded. Prior work
shows an architecture in which any node on the end-to-end path
of a session can run the analysis if it can perform the analysis in
a self-contained fashion without needing any post-processing [29].
Many NIDS analysis such as Signature detection occur at a per-
session granularity. Thus, the signature detection responsibilities
can be split across the nodes on each end-to-end path by dividing
the sessions across the path as shown in Figure 2. This can re-
duce the load on node N1 by leveraging spare compute resources
on N2–N5. Note, however, that the Scan module cannot be dis-
tributed. Scan detection involves counting the number of unique
destinations a source contacts, which requires a complete view of
all traffic to/from a given host. Thus, the ingress node alone is ca-
pable of running the analysis in a self-contained manner.

2.2 New Opportunities

Relaxing the on-path requirement: Now, the traffic on P1 might

Figure 3: Replicating traffic to a compute cluster. With on-path
alone, the cluster at N3 cannot be used to handle traffic on P2
and P3.

overload all nodes N1–N3 on the path. In this case, it is necessary
to look for spare resources that are off-path. For example, nodes
could locally offload some analysis to one-hop neighbors. Addi-
tionally, administrators may want to exploit compute clusters else-
where in the network. Such consolidated clusters or datacenters
are appealing because they amortize deployment and management
costs.

Consider the scenario in Figure 3. The network has a compute
cluster located at node N3. When the processing load on the paths
P2 and P3 exceed the provisioned capacity of their on-path nodes,
we can potentially replicate traffic from node N2 to node N3 and
run the analysis at the cluster. This assumes that: (1) there is suf-
ficient network bandwidth to replicate this traffic and (2) the logic
to do such replication has low overhead. For (1), we note that the
primary bottleneck for many NIDS deployments is typically the
number of active connections and the complexity of analysis, and
not volume of traffic in bytes [8]. As we will show in Section 7, we
can implement a lightweight shim layer to implement (2).

N3

N2

N5 N4

Flow 1

Flow 2

N1 Combined	
Flow	 1,2	

Figure 4: The analysis needs to combine Flow 1 and Flow 2
(e.g., two directions of a session or two connections in a stepping
stone), but they traverse non-intersecting paths. In this case,
replication is necessary to avoid detection misses.

Figure 5: Aggregating intermediate results lets us distribute
analyses that might be topologically constrained.

Network-wide views: Certain kinds of scenarios and analysis may
need to combine traffic from different nodes. For example, “hot-
potato” like effects may result in non-intersecting routing paths for
the forward and reverse flows within a bidirectional session [36].
Thus, stateful NIDS analysis that needs to observe both sides of a

Network-‐wide	 NIDS	 Op1miza1on	

Traffic	
Pa(erns	

NIDS	 resource	
Footprints	

NIDS	 Hardware	
configura;on	

Rou;ng	
Policies	

How much
to process?

What/How
to offload?

Figure 6: Network-wide framework for assigning NIDS pro-
cessing and replicating responsibilities.

session is impossible. A similar scenario occurs for stepping stone
detection [43], if the two stages in the stepping stone do not en-
counter a common NIDS node. In Figure 4, traffic flows Flow 1
and Flow 2 need to be combined, but no single node can observe
both flows. Thus, we need to replicate this traffic to a common lo-
cation to analyze this traffic. Similarly, certain types of anomaly
detection [3, 16] require a network-wide view that no single node
can provide.

Aggregation for fine-grained splitting: As we saw earlier, prior
work requires each type of NIDS analysis to be self-contained.
Consequently, analyses such as Scan detection are topologically
constrained. Allowing the NIDS to communicate intermediate re-
sults provides further opportunities for distributing the load. Con-
sider the setup in Figure 5. Each node on the path runs a subset
of the Scan analysis. The nodes send their intermediate results to
an aggregation node that eventually generates alerts. (In this exam-
ple, the aggregation happens at the ingress, but that is not strictly
necessary.) A natural constraint here is to ensure that the result gen-
erated after aggregation is semantically equivalent to a centralized
analysis. We defer to Section 6 on how we achieve this in practice.

The above scenarios highlight the need to look beyond pure on-
path opportunities for distributing NIDS responsibilities in a net-
work. In the next section, we begin with a high-level system overview
before delving into the specific formulations for incorporating repli-
cation and aggregation opportunities in subsequent sections.

3. SYSTEM OVERVIEW
Our goal is to optimally assign processing, aggregation, and repli-

cation responsibilities across the network. Optimality here involves
a tradeoff between the compute load on the NIDS elements and the
communication costs incurred. Next, we give an overview of the
key entities and parameters involved in our framework (Figure 6).

In the spirit of many recent efforts, we assume a logically cen-
tralized management module that configures the NIDS elements
(e.g., [12]). This module periodically collects information about
the current traffic patterns and routing policies. Such data feeds are
routinely collected for other network management tasks [9]. Based
on these inputs, the module runs the optimization procedures (de-
scribed later) to assign NIDS responsibilities. The optimization is
run periodically (e.g., every 5 minutes) or triggered by routing or
traffic changes to adapt to network dynamics. Note that the net-
work administrators only need to specify high-level policy objec-
tives (e.g., how much link capacity to allow for replication) and
set up the optimization module to receive the relevant data feeds.
Afterwards, the configuration is completely automated.

We briefly describe the high-level inputs that this network-wide
NIDS controller needs:
1. Traffic and routing patterns: This categorizes the traffic into

different logical classes. Each such class may be identified by
a source and destination prefix-pair and some application level
ports (e.g., HTTP, IRC). Let Tc denote the set of end-to-end
sessions of the traffic class c and let |Tc | denote the volume of
traffic in terms of the number of sessions. We initially assume
that each class has a unique symmetric routing path Pc (P for
Path),1 and then subsequently relax this assumption. We use the
notation Nj ∈ Pc to denote that NIDS node Nj is on the routing
path. Note that some nodes (e.g., a dedicated cluster) could be
completely off-path; i.e., it does not observe traffic on any end-
to-end routing path unless some other node explicitly forwards
traffic to it.

2. Resource footprints: Each class c may be subject to different
types of NIDS analyses. For example, HTTP sessions may be
analyzed by a payload signature engine and through application-
specific rules, while all traffic (itself a class) might be subject to
Scan analysis. We model the cost of running the NIDS for each
class on a specific resource r (e.g., CPU cycles, resident mem-
ory) in terms of the expected per-session resource footprint F r

c ,
in units suitable for that resource (F r for Footprint on r). We
expect these values to be relatively stable and can be obtained
either via NIDS vendors’ datasheets or estimated using offline
benchmarks [8]. Our approach can provide significant benefits
even with approximate estimates of these F r

c values.
3. NIDS hardware: Each NIDS hardware device Nj is character-

ized by its resource capacity Capr
j in units suitable for the re-

source r . In the general case, we assume that hardware capa-
bilities may be different across the network, e.g., because of
upgraded hardware running alongside legacy equipment. N de-
notes the set of all NIDS nodes.

Communication Costs: We model communication costs in one
of two ways. First, in the case of replication, we want to bound the
additional link load imposed by the inter-NIDS communication.
This addresses the concern that network administrators may have
with the additional traffic introduced by replication; this ensures
that we do not overload network links (and thus avoid unnecessary
packet losses). Similar to the notion of a router being on the path,
we use the notation Link l ∈ Pc to denote that the network link l is
on the path Pc . Second, for aggregation, we count the total network
footprint imposed by the inter-NIDS communication, measured in
byte-hops. For example, if NIDS N1 needs to send a 10KB report
to NIDS N2 four hops away, then the total footprint is 10× 4 = 40
KB-hops.

Given this setup, we describe the formal optimization frame-
works in the following sections.

4. NIDS WITH REPLICATION
As we saw in Figure 3, we can reduce the NIDS load by replicat-

ing the traffic to nodes that are off-path if they have spare resources.
In this section, we provide a general framework for combining on-
path distribution with off-path replication. For the discussion, we
assume that the NIDS analyses run at a session-level granularity.
This is typical of most common types of NIDS analyses in use to-
day [24,34]. We also assume that each class has a single symmetric
routing path. (We relax this in Section 5.) Figure 7 shows the LP
formulation for our framework, to which we refer throughout this
section.

1Different classes may share the same routing path; e.g., the classes
corresponding to HTTP and IRC between the same pair of source
and destination prefixes are distinct logical classes but still traverse
the same path.

Minimize LoadCost subject to

LoadCost = max
r,j
{Load r

j } (1)

∀c :
∑

j :Nj∈Pc

(pc,j +
∑

j ′:Nj ′∈Mj

Nj ′ /∈Pc

oc,j ,j ′) = 1 (2)

∀r , j : Load r
j =

∑
c:

Nj∈Pc

F r
c × |Tc | × pc,j

Capr
j

+

∑
j ′,c:

Nj∈Mj ′ ;Nj /∈Pc

F r
c × |Tc | × oc,j ′,j

Capr
j

(3)

∀l : LinkLoad l = BG l +∑
c,j ,j ′:

Link l∈Pj ,j ′ ;Nj ′∈Mj

|Tc | × oc,j ,j ′ × Sizec

LinkCap l

(4)

∀l : LinkLoad l ≤ max{MaxLinkLoad ,BG l} (5)
∀c, j : 0 ≤ pc,j ≤ 1 (6)

∀c, j , j ′ : 0 ≤ oc,j ,j ′ ≤ 1 (7)

Figure 7: LP formulation for replication

For each NIDS node, Nj , we introduce the notion of a mirror set
Mj ⊆ N (M for Mirror) that represents a candidate set of nodes to
which Nj can offload some processing. This allows us to flexibly
capture different replication strategies. In the most general case all
nodes are candidates, i.e., ∀j : Mj = N \{Nj}. In case of a single
datacenter, we set ∀j : Mj = {NDC} where NDC is the datacenter.
We can also consider local offload policies where Mj is the set of
Nj ’s one- or two-hop neighbors. Let Pj ,j ′ denote the routing path
between Nj and the mirror node Nj ′ .

At a high-level, we need to decide if a given NIDS node is go-
ing to process a given session or replicate that traffic to one of its
candidate mirror nodes (or neither). We capture these determina-
tions with two control variables. First, pc,j (p for process) specifies
the fraction of traffic on the path Pc of class c that the node Nj

processes itself. To capture offloading via replication, we have an
additional control variable: oc,j ,j ′ (o for offload) which represents
the fraction of traffic on the path Pc that Nj offloads to its mirror
node Nj ′ . Note that there is no need to replicate traffic to elements
that are already on-path; if Nj ′ ∈ Pc then the variables oc,j ,j ′ will
not appear in the formulation. The bounds in Eq (6) and (7) ensure
that these variables can only take fractional values between zero
and one.

Recall that our goal is to assign processing and offloading re-
sponsibilities across the network to balance the tradeoff between
the computation load and the communication cost. Here, we focus
on the communication cost as a given constraint on the maximum
allowed link load MaxLinkLoad imposed by the replicated traffic.
For example, network administrators typically want to keep links
at around 30–50% utilization in order to absorb sudden bursts of
traffic [10].

Our main constraint is a coverage requirement; we want to en-
sure that for each class, the traffic is processed by some node either
on- or off-path. Eq (2) models this by considering the sum of the
locally processed fractions pc,j and the offloaded fractions oc,j ,j ′
and setting it to 1 for full coverage.

Eq (3) captures the stress on each resource for each node. There

are two sources of load on each node: the traffic it needs to process
locally from on-path responsibilities (as captured by pc,j values)
and the total traffic it processes as a consequence of other nodes
offloading traffic (as captured by oc,j ′,j values) to it. The inversion
in the indices for the o contribution is because the load on Nj is a
function of what other Nj ′s offload to it.

Then, Eq (4) models the link load on the link l imposed by the
traffic between every pair of Nj and its mirror nodes. Because |Tc |
only captures the number of sessions, we introduce an extra multi-
plicative factor Sizec to capture the average size (in bytes) of each
session of class c. We also have an additive term BG l to capture
the current load on the link due to the normal traffic traversing it
before replication (BG for BackGround). These additive terms can
be directly computed given the traffic patterns and routing policy,
and as such we treat them as constant inputs in the formulation.

As discussed earlier, we bound the communication cost in terms
of the maximum link load in Eq (5). The max is needed because the
background load may itself exceed the given constraint MaxLinkLoad ;
in this case, Eq (5) ensures that no new traffic is induced on such
overloaded links.

Here, we focus on a specific load balancing objective to mini-
mize the maximum load across all node-resource pairs. Surveys
show that overload is a common cause of appliance failure espe-
cially for NIDS and is a key cause of concern for network opera-
tors [32]. Our min-max objective will improve the robustness of
the system, allowing for sudden bursts of traffic to be handled if
necessary with little or no penalty. We use standard LP solvers to
obtain the optimal pc,j and oc,j ,j ′ settings which we convert into
per-node processing configurations (see Section 7).

Extensions: Our framework can accommodate more general poli-
cies for capturing the stress on the links and NIDS locations. In-
stead of an upper bound on each LinkLoad l as the max of the two
terms as shown, we can model the aggregate link utilization cost
incurred across all links in terms of a piece-wise linear cost func-
tion that penalizes higher values of the incurred link load [10]. This
provides a more graceful tradeoff rather than a tight upperbound of
MaxLinkLoad on the link load costs. Similarly, instead of cap-
turing LoadCost as the max over all Load r

j , we can model it as
a cost function that penalizes higher values of load or as weighted
combinations of the Load r

j values.

5. SPLIT TRAFFIC ANALYSIS
Next, we focus on the scenario from Figure 4 in which we need

to replicate traffic because the forward and reverse paths are asym-
metric. For simplicity, we focus on the case where there is one
datacenter node, rather than generalized mirror sets. Thus, we use
oc,j instead of oc,j ,j ′ , implicitly fixing a single mirror node NDC

for all Nj .
To model this scenario, we modify how the routing paths for each

class Tc are specified. In the previous section, we assumed that the
forward and reverse paths are symmetric and thus each Tc has a
unique path Pc . In the case where these paths are asymmetric or
non-overlapping, instead of defining a single set of eligible NIDS
nodes Pc , we define three types of nodes:
1. P fwd

c that can observe the “forward” direction;2

2. P rev
c that can observe the “reverse” direction; and

3. Pcommon
c = P fwd

c ∩ P rev
c , which may be empty.

We assume here that these types of nodes can be identified from
the network’s routing policy [31]. Having identified these com-

2We assume a well-defined notion of forward and reverse direc-
tions, say based on the values of the IP addresses.

mon, forward, and reverse nodes, we split the coverage constraint
in Eq (2) into two separate equations:

∀c : cov fwd
c =

∑
j :Nj∈Pcommon

c

pc,j +
∑

j :Nj∈P
fwd
c

ofwd
c,j (8)

∀c : cov rev
c =

∑
j :Nj∈Pcommon

c

pc,j +
∑

j :Nj∈Prev
c

orev
c,j (9)

Now, for stateful analysis, the notion of coverage is meaningful
only if both sides of the session have been monitored. Thus, we
model the effective coverage as the minimum of the forward and
reverse coverage values:

∀c : covc = min{cov fwd
c , cov rev

c , 1} (10)

We make three observations here. First, the locally processed
fraction pc,j only applies for nodes in Pcommon

c . Second, we sep-
arately specify the coverage guarantee for the forward and reverse
directions for each Tc and cap the effective coverage at 1. Third,
we also allow the nodes in Pcommon

c to offload processing to the
datacenter. (Because the nodes in Pcommon

c also appear on P fwd
c

and P rev
c , they have corresponding ofwd

c,j and orev
c,j variables.)

Now, it may not always be possible to ensure complete coverage
for some deployment scenarios. That is, for a particular combina-
tion of forward-reverse paths, and a given constraint on the max-
imum allowable link load, we may not have a feasible solution to
ensure that each covc = 1.3 In this case, we want to minimize de-
tection misses and thus, we introduce a new term in the minimiza-
tion objective to model the fraction of traffic that suffers detection
misses because we cannot monitor both sides of the connection.
That is,

MissRate =

∑
c(1− covc)× |Tc |∑

c |Tc |
(11)

Given the MissRate , we update the objective to be:

Minimize: LoadCost + γMissRate

with γ set to a large value to have a very low miss rate.
In summary, the formulation to handle such split traffic is as fol-

lows. We retain the same structure for the compute load and link
load equations as in Eq (3) and Eq (4) respectively. (There are small
changes to incorporate the notion of ofwd

cj and orev
c,j . We do not

show these for brevity.) We replace the single coverage equation
in Eq (2) with the new coverage models in Eqs (8), (9), and (10).
Rather than force each coverage value to be 1, which could be in-
feasible to achieve, we focus instead on minimizing the effective
miss rate by changing the objective function.

One subtle issue here is that we need to ensure that the nodes on
the forward and reverse path act in a consistent manner. For exam-
ple, we cannot have the forward direction of a session being pro-
cessed locally at Nj and the reverse direction offloaded. We achieve
this consistency by using bidirectional semantics when mapping
the decision variables into actual per-flow actions executed by each
node as described in Section 7.

Extensions: We can extend the model to quantify MissRate in
terms of the class c with the largest fraction of detection misses
(i.e., MissRate = maxc{1−covc}), or consider a general weighted
combination of these coverage values to indicate higher priority for
some traffic.
3Note that this is in contrast to the formulation from Section 4,
where there is always a feasible solution to get full coverage by
simply running the analyses locally, but potentially incurring a
higher LoadCost .

6. NIDS WITH AGGREGATION
Next, we discuss scaling via aggregation. The high-level idea is

to split a NIDS task into multiple sub-tasks that can be distributed
across different locations. Each NIDS node generates intermediate
reports that are sent to an aggregation point to generate the final
analysis result. As a concrete example, we focus on the Scan de-
tection module that counts the number of distinct destination IP
addresses to which a given source has initiated a connection in the
previous measurement epoch. The high-level approach described
here can also be extended to other types of analysis amenable to
such aggregation (e.g., DoS or flood detection).

For clarity, we focus on using aggregation without replication
and assume a single symmetric path for each class. This means that
we just need to assign the local processing responsibilities captured
by the pc,j variables.4

N1

N2 N3

N4 N5

d1

d2

Today: All processing at N1

16 flows: 2 for each si to dj

d3

d4

s1

s2

Split by flows
s1 : 2
s2 : 2

s1 : 2
s2 : 2

s1 : 2
s2 : 2

s1 : 2
s2 : 2

Double counting,
Or need “set” not just counters

s1 d1
s2 d1

Split by destinations per-path
s1 d2
s2 d2

s1 d3
s2 d3

s1 d4
s2 d4

Communication Cost:
2* (2*1) + 2* (2*2) = 12

s1: 2

Split by sources per-path

s2 : 2

Communication Cost:
2* (1*1) + 2* (1*2) = 6

s1: 2 s2 : 2

Figure 8: Different options for splitting the Scan detection re-
sponsibilities

Because the choice of intermediate reports and aggregation points
may vary across different detection tasks, we use a general notion
of network distance between node Nj and the location to which
these reports are sent. This is captured by Dc,j (D for Distance);
the indices indicate that the location may depend on the specific
class c. For example, in Scan detection, we may choose to send
the reports back to the ingress for the host because it is in the best
position to decide if an alert should be raised, e.g., based on past
behavior observed for the hosts.

We do, however, need to be careful in choosing the granularity
at which we distribute the work across nodes. Consider the ex-
ample in Figure 8 where our goal is to count the number of des-
tinations that each source contacts. Suppose there are two sources
s1, s2 contacting four destinations d1−4 as shown and there are two
flows for every src-dst pair. Here, each NIDS runs a per-src Scan
counting module on its assigned subset of the traffic. Then, each
node sends these local per-src counters to the aggregation point,
which outputs the final result of suspicious sources. Now, we could
choose three different strategies to split the monitoring responsibil-
ities:

1. Flow-level: The nodes on a path split the traffic traversing that
path on a per-flow basis, run a local Scan detection module on
the set of observed flows and send intermediate reports back to
the ingress.

4We retain the c subscript for notational consistency; for Scan
detection the classes simply correspond to end-to-end paths rather
than application-level classes.

Minimize LoadCost + β × CommCost subject to

LoadCost = max
r,j
{Load r

j } (12)

CommCost =
∑
c,j

(|Tc | × pc,j)× Recc ×Dc,j (13)

∀c :
∑

j :Nj∈Pc

pc,j = 1 (14)

∀r , j : Load r
j =

∑
c:

Nj∈Pc

F r
c × |Tc | × pc,j

Capr
j

(15)

∀c, j : 0 ≤ pc,j ≤ 1 (16)

Figure 9: LP formulation for aggregation

2. Destination-level: We do a split based on destinations for each
path. In the example, node N2 checks if each source contacted
d1, node N3 for d2, and so on.

3. Source-level: Each node focuses on a subset of the sources on
each path; e.g., N2 and N3 monitor s1 and s2, respectively.

Notice that with a flow-based split, if we only report per-src
counters, then we could end up overestimating the number of des-
tinations if a particular source-destination pair has multiple flows.
In this case, each node must report the full set of 〈src, dst〉 tuples,
thus incurring a larger communication cost. The aggregator then
has to compute the logical union of the sets of destinations reported
for each source. With a destination-based split, we do not have this
double counting problem. The aggregator simply adds up the num-
ber of destinations reported from each node on each path. In the
worst case, however, the number of entries each node reports will
be equal to the number of sources. Thus, the total communication
cost could be 12 units, assuming aggregation is done at N1: each
node sends a 2-row report (one row per src), the report from N2, N4
traverses one hop and those from N3, N5 take two hops. The third
option of splitting based on the sources provides both a correct re-
sult without over-counting and also a lower communication cost of
6 units. Each node sends a report consisting of the number of desti-
nations each source contacts and the aggregator can simply add up
the number of destinations reported across the different paths for
each source.5 Thus, we choose the source-level split strategy since
it offers both correct and communication-minimal operation in the
common case. In general, we envision our NIDS controller speci-
fying this reporting schema to a shim layer running on each node
as we discuss in the next section.

In practice, there are a few natural cases that cover most com-
mon NIDS modules that can benefit from such aggregation (e.g.,
per-src, per-destination). Having chosen a suitable granularity of
intermediate reports, we need as input the per-report size Recc (in
bytes) for class c.6

As in the previous section, we want to balance the tradeoff be-
tween the computation cost and the communication cost. Because
the size of the reports (at most a few MB) is unlikely to impact
the link load adversely, we drop the MaxLinkLoad constraints
in Eqs (4), (5). Instead, we introduce a new communication cost
term CommCost in the objective, with a weight factor β, which is
scaled appropriately to ensure that the load and communication cost
terms are comparable. We have the familiar coverage constraint in
5Assuming that there is a unique and fixed path for a specific
source-destination during this measurement epoch.
6This also depends on how these reports are encoded, e.g., key-
value pairs for a source-split.

Eq (14), and the resource load model in Eq (15). (Because there
is no traffic replication, the “offload” o variables do not appear in
this formulation.) The additional equation required here is to model
the total communication cost CommCost in Eq (13). For each en-
try, this is simply the product of the volume of traffic, the per-unit
record size, and the network distance as shown.

7. IMPLEMENTATION
We start by describing how the management engine translates the

output of the LP optimizations into device configurations. Then,
we describe how we implement these management decisions using
a shim layer that allows us to run off-the-shelf NIDS software.

7.1 Optimization and configurations
We solve the LP formulations described in the previous sections

using off-the-shelf LP solvers such as CPLEX. Given the solution
to the optimization, we run a simple procedure to convert the solu-
tion into a configuration for each shim instance. The main idea is
to map the decision variables—pc,j and oc,j ,j ′ values—into non-
overlapping hash ranges. For each c, we first run a loop over the
pc,j values, mapping each to a hash-range, and extending the range
as we move to the next j . We then run a similar loop for the oc,j ,j ′ .
(The specific order of the NIDS indices does not matter; we only
require some order to ensure the ranges are non-overlapping.) Be-
cause the optimization frameworks ensure that these pc,j and oc,j ,j ′
add up to 1 for each c, we are guaranteed that the union of these
hash ranges covers the entire range.

7.2 Shim layer
To allow network operators to run their existing NIDS software

without needing significant changes, we interpose a lightweight
shim between the network and the NIDS. We implement this us-
ing the Click modular software router [15] with a combination of
default modules and a custom module (255 lines of C++ code). The
shim maintains persistent tunnels with its mirror node(s) to repli-
cate the traffic and uses a virtual TUN/TAP interface to the local
NIDS process. This requires a minor change to the way the NIDS
process is launched so that it reads from the virtual interface rather
than a physical interface. We tested two popular NIDS: Bro [24]
and Snort [34]; both had no difficulties running unmodified on top
of the shim layer.

As a packet arrives, the shim computes a lightweight hash [5]
of the IP 5-tuple (protocol, src/dst IPs and ports). It looks up the
corresponding class (e.g., based on the port numbers and src/dst
IPs) to infer the assigned hash range (from the above configuration)
and decides whether to send this packet to the local NIDS process,
replicate it to a mirror node, or neither. One subtle issue here is that
we need to ensure that this hash is bidirectional to ensure that both
directions are consistently “pinned” or offloaded to the same node.
For example, we can achieve this by converting the IP 5-tuple into
a canonical form such that the source IP is always less than the
destination IP before computing the hash [37]. For aggregation,
the hash is over the appropriate field used for splitting the task, i.e.,
per-source or per-destination depending on the analysis.

7.3 Aggregation
Aggregation requires two components: (1) a new shim module at

each NIDS node that periodically sends reports; and (2) an aggrega-
tor to post-process these reports. As discussed earlier, the choice of
reporting schema and where the aggregation runs may vary across
different NIDS tasks. In the specific case of Scan detection, we
want to report sources that contact > k destinations and send these
reports to the gateway nodes for each host. Now, the measured

value at an individual NIDS may not exceed k, but the aggregate
might. Thus, we apply the threshold k only at the aggregator and
configure each individual NIDS to have a reporting threshold of
k = 0, to retain the same detection semantics as running the scan
detector at the gateway node for each host.

8. EVALUATION
We use real network topologies from educational backbones (In-

ternet2, Geant), inferred PoP-level topologies from Rocketfuel [35],
and a multi-site Enterprise topology [30]. For each topology, we
construct a traffic matrix for every pair of ingress-egress PoPs using
a gravity model based on city populations [27], with shortest-path
routing based on hop counts. For brevity, we consider a single ag-
gregate traffic class and do not partition traffic based on application
port numbers.

8.1 System evaluation

Computation time: Table 1 shows the time to compute the op-
timal solution for different PoP-level topologies using an off-the-
shelf LP solver (CPLEX). This result shows that the time to re-
compute optimal solutions is well within the timescales of network
reconfigurations (typically on the order of few minutes).

Topology # PoPs Time (s)
Replication Aggregation

Internet2 11 0.05 0.02
Geant 22 0.10 0.02

Enterprise 23 0.10 0.01
TiNet (AS3257) 41 0.29 0.02
Telstra (AS1221) 44 0.40 0.03
Sprint (AS1239) 52 1.30 0.05
Level3 (AS3356) 63 1.19 0.04
NTT (AS2914) 70 1.59 0.11

Table 1: Time to compute the optimal solution for the replica-
tion and aggregation formulations.

Shim overhead: The hash computations and lookups impose little
overhead over the processing and packet capture that a NIDS has
to run natively. In our microbenchmarks, the shim implementation
does not introduce any (additional) packet drops up to an offered
load of 1 Gbps for a single-threaded Bro or Snort process running
on a Intel Core i5 2.5GHz machine.

Live emulation in Emulab: To investigate the benefits of off-
path replication, we evaluate our system with an emulated Inter-
net2 topology with 11 nodes using Emulab [40]. We implemented
an offline traffic generator using Scapy [28] that takes as input
the topology, traffic matrix, and template traces, and that gener-
ates a traffic trace according to these. We used real full-payload
packet traces as the “seed” templates [18]. To faithfully emulate
the ordering of packets within a logical session, we introduced a
stateful “supernode” that is logically connected to every network
ingress. This supernode injects packets within each session in or-
der and at the appropriate ingress using the BitTwist tool [4].
Each NIDS node runs on a Pentium III 850 Mhz node with 512
MB of RAM7 running Snort (version 2.9.1) using the default con-
figuration of rules and signatures.

Figure 10 shows the total number of CPU instructions used by
the Snort process, measured using the PAPI performance instru-
7The choice of low-end nodes was to ensure repeatability as it is
hard to obtain a large number of high-end nodes for extended peri-
ods of time on Emulab.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 DC

To
ta

l C
P

U
 in

st
ru

ct
io

ns
 x

10
8

Node ID

Path, no replicate
Path, replicate

Figure 10: Maximum absolute CPU usage of each NIDS node
in our Emulab experiment

mentation library [23]), on each NIDS node for the emulated In-
ternet2 topology with 11 nodes. The result shows the configu-
rations for two NIDS architectures: Path, No replicate [29] and
Path, Replicate which represents our framework from Section 4.
For our setup, we ran the formulation with a single data center
(DC) with 8× the capacity of the other NIDS nodes and assum-
ing MaxLinkLoad = 0.4. (We did not explicitly instantiate a 8×
capacity.) Figure 10 confirms that replication provides 2× reduc-
tion in resource usage on the maximally loaded node (excepting
the DC). This result is identical to that obtained using trace-driven
simulations, as will be shown in Figure 13, allowing us to conclude
that sensitivity analysis performed in Section 8.2 is representative
of live performance.

8.2 Replication: Sensitivity analysis
Due to the difficulty of scaling our Emulab setup for larger topolo-

gies and further sensitivity analysis, we use trace-driven analysis
for these evaluations.

Setup: To model the total traffic volume, we start with a base-
line of 8 million sessions for the Internet2 network with 11 PoPs,
and then scale the total volume for other topologies linearly pro-
portional to the number of PoPs. We model the link capacities
LinkCap l as follows. We compute the traffic volume traversing
the maximum congested link (assuming the above shortest path
routes). Then, we set the link capacity of each to be 3× this traffic
load on the most congested link. As such, maxl{BG l} = 0.3;
this reflects typical link utilization levels in networks today [10].
To model the node capacities Capr

j , we simulate the Ingress-only
deployment and find the maximum resource requirement across the
network, and provision each node with this inferred capacity. Thus,
by construction the Ingress deployment has a maximum compute
load of one. We model a single data center with α× the capacity of
the other NIDS nodes.

In this discussion, we examine the effects of varying the location
and capacity of the data center node (Capr

DC), the maximum al-
lowed link load with replication (MaxLinkLoad), alternative local
replication architectures, and the impact of traffic variability.

Choice of datacenter location: The first parameter of interest is
the placement of the datacenter. Here, we fix the datacenter ca-
pacity to be 10× the single NIDS capacity, but choose different
locations based on four natural strategies: (1) the PoP from which
most traffic originates, (2) the PoP that observes the most traffic,
including traffic for which this is a transit PoP, (3) the PoP which
lies on the most end-to-end shortest paths, and (4) the PoP which
has the smallest average distance to every other PoP (the medoid).

We find that for most topologies the gap between the different
placement strategies is very small and that placing the datacenter at
the PoP that observes the most traffic works best across all topolo-
gies. (Not shown; please see our extended report [13].) Thus for
the rest of the evaluation, we choose this placement strategy.

Effect of increasing allowed link load: Next, we fix the place-
ment of the datacenter as described above and its capacity to 10×,
and study the impact of increasing MaxLinkLoad in Figure 11. For
most topologies, we see diminishing returns beyond MaxLinkLoad
= 0.4, since at that value, the compute load on the datacenter is
close to the load on the maximum NIDS node as well. This result
suggests that network administrators need not be concerned about
the additional load induced by the replication traffic since we can
achieve near-optimal benefits at 40% link utilization.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 c
om

pu
te

 lo
ad

Maximum allowed link load

Abilene
Geant
TiNet

Telstra
Sprint

Level3
NTT

Enterprise

Figure 11: Varying MaxLinkLoad with datacenter capacity =
10×.

Increasing the data center capacity: A natural question then is
how much to provision the datacenter. To address this, we stud-
ied the impact of varying the datacenter capacity. Most topologies
show a natural diminishing property as we increase the capacity,
with the “knee” of the curve occurring earlier with lower link load.
This is expected; with lower MaxLinkLoad , there are fewer oppor-
tunities for replicating traffic to the datacenter and thus increasing
the datacenter capacity beyond 8–10× does not really help (not
shown).

Visualizing maximum loads: To better understand the previous
effects, we visualize a high-level summary of how the optimization
allocates the compute and offload responsibilities throughout the
network. We consider four configurations here: MaxLinkLoad ∈
{0.1, 0.4} and a datacenter capacity Capr

DC of 2× and 10×. Fig-
ure 12 shows the difference between the compute load on the dat-
acenter node (DCLoad) and the maximum compute load on non-
datacenter NIDS nodes (MaxNIDSLoad) for the different topolo-
gies. We see that at low link load and high data center capacity
(MaxLinkLoad = 0.1 and Capr

DC of 10×), the datacenter is un-
derutilized. With larger link loads or lower link capacity, we find
that the load stress on the datacenter is the same as the maximum
load across the network (i.e., the gap is zero).

Comparison to alternatives: Using the previous results as guide-
lines, we pick a configuration with the datacenter capacity fixed at
10× the single NIDS capacity and with MaxLinkLoad = 0.4.
Figure 13 compares this configuration (labeled Path, Replicate)
against two alternatives: (1) today’s Ingress-only deployment where
NIDS functions run at the ingress of a path; and (2) Path, No Repli-
cate, strict on-path NIDS distribution [29]. One concern is that our
datacenter setup has more aggregate capacity. Thus, we also con-
sider a Path, Augmented approach where each of the |N | NIDS

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

Internet2
Geant

TiNet TelstraSprint Level3NTT Enterprise

D
C

Lo
ad

 -
M

ax
N

ID
S

Lo
ad

MaxLinkLoad = 0.1, DC = 2x
MaxLinkLoad = 0.1, DC = 10x
MaxLinkLoad = 0.4, DC = 2x
MaxLinkLoad = 0.4, DC = 10x

Figure 12: Comparing the compute load on the datacenter vs.
maximum load on interior NIDS nodes.

nodes gets a 1
|N| share of the 10× additional resources. The fact

that we can consider these alternative designs within our framework
further confirms the generality of our approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

Internet
Geant

TiNet TelstraSprintLevel3NTT Enterprise

M
ax

im
um

 c
om

pu
te

 lo
ad

Ingress
Path,No Replicate

Path,Augmented
Path,Replicate

Figure 13: Maximum compute load across topologies with dif-
ferent NIDS architectures.

Recall that the current deployments of Ingress-only have a max-
imum compute load of one by construction. The result shows that
Path, Replicate has the best overall performance; it can reduce
the maximum compute load by 10× compared to today’s deploy-
ments and up to 3× compared to the proposed on-path distribution
schemes.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

Internet2
Geant

TiNet TelstraSprint Level3NTT Enterpise

M
ax

im
um

 c
om

pu
te

 lo
ad

Path, no replicate
One-hop
Two-hop

Figure 14: Local one- and two-hop replication.

Local offload: The above results consider a setup where the net-
work administrator has added a new datacenter. Alternatively, they
can use the existing NIDS infrastructure with local replication strate-
gies. Specifically, we consider the mirror sets (Mj s) consisting of
1-hop or 2-hop neighbors in addition to the existing on-path distri-
bution. Figure 14 compares the maximum compute load vs. a pure
on-path distribution again setting MaxLinkLoad = 0.4. Across all

topologies, allowing replication within a one-hop radius provides
up to 5× reduction in the maximum load. We also see that going
to two hops does not add significant value beyond one-hop offload.
This suggests a replication-enhanced NIDS architecture can offer
significant benefits even without needing to augment the network
with additional compute resources.

Performance under traffic variability: The results so far con-
sider a static traffic matrix. Next, we evaluate the effect of traffic
variability. To obtain realistic temporal variability patterns, we use
traffic matrices for Internet2 [14]. From this, we compute empirical
CDFs of how each element in a traffic matrix varies (e.g., probabil-
ity that the volume is between 0.6× and 0.8× the mean). Then,
using these empirical distributions we generate 100 time-varying
traffic matrices using the gravity model for the mean volume.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Internet2
Geant

TiNet TelstraSprintLevel3NTT Enterprise
M

ax
im

um
 c

om
pu

te
 lo

ad

Ingress
Path, No Replicate

DC Only
DC + One-hop

Figure 15: Comparison between NIDS architectures in the
presence of traffic variability.

Figure 15 summarizes the distribution of the peak load across
these 100 runs using a box-and-whiskers plot showing the mini-
mum, 25th %ile, median, 75th %ile, and the maximum observed
load. We consider four NIDS architectures: Ingress; Path, No
replicate; Path, replicate with a datacenter node 10× capacity (la-
beled DC Only); and Path, replicate with the flexibility to offload
responsibilities to either a datacenter and within a 1-hop radius
(labeled DC + One-hop). We find that the replication-enabled
NIDS architectures outperform the non-replication strategies sig-
nificantly, with the median values roughly mirroring our earlier
results. The worst-case performance of the no-replication archi-
tectures can be quite poor, e.g., much larger than 1. (Ideally, we
want the maximum compute load to be less than 1.) We also ana-
lyzed how the augmentation strategy from Figure 13 performs; the
worst-case load with the Path, Augmented case is 4×more than the
replication enabled architecture (not shown).

8.3 Replication with routing asymmetry
In this section, we evaluate how replication is effective for sce-

narios where the forward and reverse flows may not traverse the
same route as we saw in Section 2.

We emulate routing asymmetry as follows. For each ingress-
egress pair, we assume the forward traffic traverses the expected
shortest path from the ingress to the egress; i.e., P fwd

c is the shortest-
path route. However, we set the reverse path P rev

c such that the ex-
pected overlap (over all ingress-egress pairs) between the forward
and reverse paths reaches a target overlap ratio θ. Here, we measure
the overlap between two paths P1 and P2 in terms of the Jaccard
similarity index: P1∩P2

P1∪P2
, which is maximum (= 1) when they are

identical and lowest (= 0) if there is no overlap. For each end-to-
end path, we precompute its overlap metric with every other path.
Then, given a value of θ′ (drawn from a Gaussian distribution with
mean = θ and standard deviation = θ

5
), we find a path from this pre-

computed set that is closest to this target value.8 For each target θ,
we generate 50 random configurations. For each configuration, we
run the extended formulation from Section 5 for the Ingress-only
architecture, the Path, no replicate architecture, and our proposed
framework with a datacenter. We report the median across the 50
runs for two metrics: the detection miss rate — the total fraction of
traffic that could not be analyzed effectively by any NIDS node —
and the compute load as in the previous evaluations.

Figure 16 shows the median miss rate as a function of the over-
lap factor for the different configurations. We see that the miss
rate with an Ingress-only setup is greater than 85% even for high
values of the overlap metric. The MaxLoad curve in Figure 17 is
interesting because Ingress is lower than the other configurations.
The reason is that there is little useful work being done here —
It ignores more than 90% of the traffic! Another curious feature
is that MaxLoad for the replication architecture first increases and
then decreases. In this setup with low overlap, the datacenter is
the most loaded node. At low θ, however, the MaxLinkLoad con-
straint limits the amount of traffic that can be offloaded and thus the
datacenter load is low.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

s
ra

te

Expected overlap factor

Ingress
Path, No Replicate

Path, Replicate

Figure 16: Detection miss rate vs. degree of overlap

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

im
um

 c
om

pu
te

 lo
ad

Expected overlap factor

Ingress
Path, No Replicate

Path, Replicate

Figure 17: Maximum load vs. degree of overlap

8.4 NIDS with aggregation
In this section, we highlight the benefits of aggregation using the

framework from Section 6. As discussed earlier, we focus on Scan
detection.

8The exact details of how these paths are chosen or the distribution
of the θ values are not the key focus of this evaluation. We just
need some mechanism to generate paths with a target overlap ratio.

Figure 18 shows how varying β trades off the communication
cost (CommCost) and compute cost (LoadCost) in the resulting
solution, for the different topologies. Because different topologies
differ in size and structure, we normalize the x- and y-axes using the
maximum observed LoadCost and CommCost respectively over
the range of β for each topology. As such, the point closest to the
origin can be viewed as the best choice of β for the corresponding
topology. This figure shows that for many topologies, there are
choices of β that yield relatively low CommCost and LoadCost
simultaneously, e.g., both being less than 40% of their maximums.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Normalized maximum compute load

Internet2
Geant
TiNet

Telstra
Sprint

Level3
NTT

Enterprise

Figure 18: Tradeoff between the compute load and communi-
cation cost with aggregation as we vary β

 1
 2
 3
 4
 5
 6
 7
 8
 9

Internet2
Geant

TiNet TelstraSprintLevel3NTT Enterprise

M
ax

/A
ve

ra
ge

 c
om

pu
te

 lo
ad No Aggregation

With Aggregation

Figure 19: Ratio between maximum and average compute load
with and without aggregation.

To illustrate the load balancing benefits of aggregation, Figure 19
shows the ratio of the compute load of the most loaded node to
the average compute load. Here, for each topology, we pick the
value of β that yields the point closest to the origin in Figure 18. A
higher number represents a larger variance or imbalance in the load.
Figure 19 compares this ratio to the same ratio when no aggregation
is used. As we can see, aggregation reduces the load imbalance
substantially (up to 2.7×) for many topologies.

8.5 Summary of key results
Our main results are:

• The optimization step and shim impose low overhead.
• Administrators need not worry about optimal choice of data cen-

ter location, capacity, or the maximum link load. Our approach
provides benefits over a range of practical and intuitive choices.
• Replication reduced the maximum compute load by up to 10×

when we add a NIDS cluster or up to 5× with one-hop offload.

• In the presence of traffic dynamics, replication provided up to an
order of magnitude reduction in maximum load.
• Replication reduced the detection miss rate from 90% to zero in

the presence of partially overlapping routes.
• Aggregation reduced the load imbalance by up to 2.7×.

9. DISCUSSION
Consistent configurations: One concern with distribution is en-
suring consistency when configurations are recomputed. We could
use standard techniques from the distributed systems literature (e.g.,
two-phase commit [21]). We can also use simpler domain-specific
solutions; e.g., whenever new configurations are pushed out, the
NIDS nodes continue to honor both the previous and new configu-
rations during the transient period. This may potentially duplicate
some work, but ensures correctness of operation.

Shim for higher line-rates: Our current shim implementation im-
poses close to zero overhead for a single-threaded NIDS running on
a single core machine for traffic up to 1 Gbps. We plan to extend our
implementation using recent advances in packet capture [25, 26].

Robustness to dynamics: A sudden, significant shift in traffic pat-
terns (adversarial or otherwise) could render the current distribution
strategies ineffective. One approach to counter this is to allow for
some “slack” (e.g., using the 80-th percentile values instead of the
mean) in the input traffic matrices to tolerate such sudden bursts.

Extending to NIPS and active monitoring: Our approach can be
generally applied to any passive traffic monitoring system without
affecting the forwarding paths or latency of traffic. Our framework
can also be extended to the case of intrusion prevention systems
(NIPS), though unlike NIDS, NIPS are on the critical forwarding
path which raises two additional issues that we need to handle.
These arise from the fact that we are not actually replicating traffic
in this case; rather, we are rerouting it. First, we can no longer treat
the BG l as a constant in the formulation. Second, we need to en-
sure that the latency penalty for legitimate traffic due to rerouting
is low.

Combining aggregation and replication: As future work we plan
to explore if a unified formulation that combines both opportunities
offers further improvements. For example, we might be able to
use replication to reduce the communication cost of aggregation.
One challenge is that the analyses benefiting from aggregation may
need to split the traffic at a different granularity (e.g., per source)
vs. those exploiting replication (e.g., stateful signature matching on
a per-session basis). Thus, we need a more careful shim design to
avoid duplicating the effort in packet capture across different nodes
in order to combine these ideas.

10. RELATED WORK
Scaling NIDS hardware: NIDS involve computationally inten-
sive tasks (e.g., string and regular-expression matching). There are
many proposals for better algorithms for such tasks (e.g., [33]), us-
ing specialized hardware such as TCAMs (e.g., [20, 42]), FPGAs
(e.g., [17]), or GPUs (e.g., [38]). The dependence on specialized
hardware increases deployment costs. To address this cost chal-
lenge, there are ongoing efforts to build scalable NIDS on com-
modity hardware to exploit data-level parallelism in NIDS work-
loads (e.g., [37,39]). These efforts focus on scaling single-vantage-
point implementations and are thus complementary to our work.
Our framework allows administrators to optimally use their exist-
ing hardware or selectively add NIDS clusters.

NIDS management: Our use of centralized optimization to assign
NIDS responsibilities follows in the spirit of our prior work [29].
The approach we propose here extends our prior work in three key
ways. First, we generalize on-path distribution to include repli-
cation and aggregation. Second, this previous framework cannot
handle the types of split-traffic analysis with asymmetric routes as
we showed in Figure 16. Third, on a practical note, this past ap-
proach requires source-level changes to the NIDS software. In con-
trast, our implementation allows administrators to run off-the-shelf
NIDS software.

Offloading NIDS: A recent proposal makes a case for outsourc-
ing all network processing functionality including NIDS to cloud
providers [32]. While this may work for small businesses and en-
terprises, larger enterprises and ISPs would likely retain in-house
infrastructure due to security and policy considerations. Further-
more, this proposal does not focus on computation-communication
tradeoffs. Our approach can also incorporate a cloud datacenter and
can offer ways to augment existing infrastructure instead of getting
rid of it altogether.

Distributed NIDS: Prior work makes the case for network-wide
visibility and distributed views in detecting anomalous behaviors
(e.g., [16]). These focus primarily on algorithms for combining
observations from multiple vantage points. Furthermore, specific
attacks (e.g., DDoS attacks, stepping stones) and network scenar-
ios (e.g., asymmetric routing as in Section 2) inherently require an
aggregate view. Our focus is not on the algorithms for combin-
ing observations; rather, we build a framework for enabling such
aggregated analysis.

11. CONCLUSIONS
While there are many advances in building better NIDS hard-

ware, there is a substantial window before networks can benefit
from these in practice. Our work complements existing research in
scaling NIDS hardware with techniques to better utilize and aug-
ment existing NIDS deployments. To this end, we proposed a gen-
eral NIDS architecture to leverage three opportunities: offloading
processing to other nodes on a packet’s routing path, traffic repli-
cation to off-path nodes (e.g., to NIDS clusters), and aggregation
to split expensive NIDS tasks. We implemented a lightweight shim
that allows networks to realize these benefits with little to no modi-
fication to existing NIDS software. Our results on many real-world
topologies show that this architecture reduces the maximum com-
pute load significantly, provides better resilience under traffic vari-
ability, and offers improved detection coverage for scenarios need-
ing network-wide views.

Acknowledgements
We are grateful to Geoff Voelker for commenting on drafts of this
paper and to Chad Spensky for initial discussions on this research.
This work was supported in part by NSF grants 0831245 and 1040626,
and by grant number N00014-10-1-0155 from the Office of Naval
Research.

12. REFERENCES
[1] Powering virtual network services. http://embrane.com.
[2] ZScaler Cloud Security. http://www.zscaler.com.
[3] Allman, M., Kreibich, C., Paxson, V., Sommer, R., and

Weaver, N. Principles for developing comprehensive network
visibility. In Proc. HOTSEC’08, 2008.

[4] Bittwist. http://bittwist.sourceforge.net.
[5] Bob hash. http://burtleburtle.net/bob/hash/doobs.html.

[6] Cantieni, G. R., Iannaccone, G., Barakat, C., Diot, C., and
Thiran, P. Reformulating the monitor placement problem:
optimal network-wide sampling. In Proc. CoNEXT ’06,
2006.

[7] Cisco blade servers. http:
//www.cisco.com/en/US/products/ps10280/index.html.

[8] Dreger, H., Feldmann, A., Paxson, V., and Sommer, R.
Predicting the resource consumption of network intrusion
detection systems. In Proc. SIGMETRICS ’08, 2008.

[9] Feldmann, A., Greenberg, A., Lund, C., Reingold, N.,
Rexford, J., and True, F. Deriving traffic demands for
operational IP networks: methodology and experience.
IEEE/ACM Trans. Netw., 9(3):265–280, June 2001.

[10] Fortz, B., Rexford, J., and Thorup, M. Traffic engineering
with traditional IP routing protocols. Communications
Magazine, IEEE, 40(10):118 – 124, Oct 2002.

[11] Gibb, G., Zeng, H., and McKeown, N. Outsourcing network
functionality. In Proc. HotSDN, 2012.

[12] Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A.,
Rexford, J., Xie, G., Yan, H., Zhan, J., and Zhang, H. A clean
slate 4D approach to network control and management.
SIGCOMM Comput. Commun. Rev., 35(5):41–54, Oct. 2005.

[13] Heorhiadi, V., Reiter, M. K., and Sekar, V. Balancing
computation-communication tradeoffs in scaling
network-wide intrusion detection systems. Technical Report
TR12-001, UNC Chapel Hill, 2012.

[14] Internet2 trafficx matrices. http:
//www.cs.utexas.edu/~yzhang/research/AbileneTM.

[15] Kohler, E., Morris, R., Chen, B., Jannotti, J., and
Kaashoek, M. F. The click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[16] Lakhina, A., Crovella, M., and Diot, C. Diagnosing
network-wide traffic anomalies. In Proc. SIGCOMM ’04,
2004.

[17] Lee, J., Hwang, S. H., Park, N., Lee, S.-W., Jun, S., and
Kim, Y. S. A high performance NIDS using FPGA-based
regular expression matching. In Proc. SAC ’07, 2007.

[18] M57 packet traces.
https://domex.nps.edu/corp/scenarios/2009-m57/net/.

[19] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,
Peterson, L., Rexford, J., Shenker, S., and Turner, J.
OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[20] Meiners, C. R., Patel, J., Norige, E., Torng, E., and
Liu, A. X. Fast regular expression matching using small
TCAMs for network intrusion detection and prevention
systems. In Proc. USENIX Security’10, 2010.

[21] Mohan, C. and Lindsay, B. Efficient commit protocols for
the tree of processes model of distributed transactions.
SIGOPS Oper. Syst. Rev., 19(2):40–52, Apr. 1985.

[22] Network security spending to soar in the next 5 year.
http://www.v3.co.uk/v3-uk/news/1998293/
network-security-spending-soar.

[23] PAPI: Performance application programming interface.
http://icl.cs.utk.edu/papi/.

[24] Paxson, V. Bro: a system for detecting network intruders in
real-time. In Proc. Usenix Security’98, 1998.

[25] Pfq homepage. http://netserv.iet.unipi.it/software/pfq/.
[26] Pf_ring. http://www.ntop.org/products/pf_ring/.
[27] Roughan, M. Simplifying the synthesis of internet traffic

matrices. SIGCOMM Comput. Commun. Rev., 35(5):93–96,
Oct. 2005.

[28] Scapy packet manipulation toolkit.
http://www.secdev.org/projects/scapy/.

[29] Sekar, V., Krishnaswamy, R., Gupta, A., and Reiter, M. K.
Network-wide deployment of intrusion detection and
prevention systems. In Proc. CoNEXT ’10, 2010.

[30] Sekar, V., Ratnasamy, S., Reiter, M. K., Egi, N., and Shi, G.
The middlebox manifesto: enabling innovation in middlebox
deployment. In Proc. HotNets ’11, 2011.

[31] Shaikh, A. and Greenberg, A. Ospf monitoring: architecture,
design and deployment experience. In Proc. NSDI’04, 2004.

[32] Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A.,
Ratnasamy, S., and Sekar, V. Making middleboxes someone
else’s problem: Network processing as a cloud service. In
Proc. SIGCOMM, 2012.

[33] Smith, R., Estan, C., and Jha, S. XFA: Faster signature
matching with extended automata. In Proc. IEEE S&P’08,
2008.

[34] Snort. http://www.snort.org.
[35] Spring, N., Mahajan, R., Wetherall, D., and Anderson, T.

Measuring isp topologies with rocketfuel. IEEE/ACM Trans.
Netw., 12(1):2–16, Feb. 2004.

[36] Teixeira, R., Shaikh, A., Griffin, T., and Rexford, J.
Dynamics of hot-potato routing in IP networks. In Proc.
SIGMETRICS ’04/Performance ’04, 2004.

[37] Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., and
Tierney, B. The NIDS cluster: scalable, stateful network
intrusion detection on commodity hardware. In Proc.
RAID’07, 2007.

[38] Vasiliadis, G., Polychronakis, M., Antonatos, S.,
Markatos, E. P., and Ioannidis, S. Regular expression
matching on graphics hardware for intrusion detection. In
Proc. RAID ’09, 2009.

[39] Vasiliadis, G., Polychronakis, M., and Ioannidis, S. MIDeA:
a multi-parallel intrusion detection architecture. In Proc.
CCS ’11, 2011.

[40] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C., and Joglekar, A. An
integrated experimental environment for distributed systems
and networks. SIGOPS Oper. Syst. Rev., 36(SI):255–270,
Dec. 2002.

[41] World intrusion detection and prevention markets.
http://www-935.ibm.com/services/us/iss/pdf/esr_
intrusion-detection-and-prevention-systems-markets.
pdf.

[42] Yu, F., Lakshman, T. V., Motoyama, M. A., and Katz, R. H.
SSA: a power and memory efficient scheme to multi-match
packet classification. In Proc. ANCS ’05, 2005.

[43] Zhang, Y. and Paxson, V. Detecting stepping stones. In Proc.
Usenix Security’00, 2000.

