
Improving Fairness, Efficiency, and Stability in
HTTP-based Adaptive Video Streaming with FESTIVE

Junchen Jiang
CMU

junchenj@cs.cmu.edu

Vyas Sekar
Stony Brook University

vyas@cs.stonybrook.edu

Hui Zhang
CMU/Conviva Inc.

hzhang@cs.cmu.edu

ABSTRACT
Many commercial video players rely on bitrate adaptation logic to
adapt the bitrate in response to changing network conditions. Past
measurement studies have identified issues with today’s commer-
cial players with respect to three key metrics—efficiency, fairness,
and stability—when multiple bitrate-adaptive players share a bot-
tleneck link. Unfortunately, our current understanding of why these
effects occur and how they can be mitigated is quite limited.

In this paper, we present a principled understanding of bitrate
adaptation and analyze several commercial players through the lens
of an abstract player model. Through this framework, we iden-
tify the root causes of several undesirable interactions that arise
as a consequence of overlaying the video bitrate adaptation over
HTTP. Building on these insights, we develop a suite of techniques
that can systematically guide the tradeoffs between stability, fair-
ness and efficiency and thus lead to a general framework for robust
video adaptation. We pick one concrete instance from this design
space and show that it significantly outperforms today’s commer-
cial players on all three key metrics across a range of experimental
scenarios.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications ; C.4 [Performance of Systems]:
[measurement techniques]

General Terms
Design, Performance, Measurement

Keywords
Video, HTTP, DASH, Adaptation

1. INTRODUCTION
Video traffic is becoming the dominant share of Internet traf-

fic today [5]. This growth in video is accompanied, and in large
part driven, by a key technology trend: the shift from customized
connection-oriented video transport protocols (e.g., RTMP [10])
to HTTP-based adaptive streaming protocols (e.g., [1, 11, 13, 41]).
With an HTTP-based adaptive streaming protocol, a video player
can dynamically (at the granularity of seconds) adjust the video

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10-13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$10.00.

bitrate based on the available network bandwidth. As video traf-
fic is expected to dominate Internet traffic [5], the design of ro-
bust adaptive HTTP streaming algorithms is important not only for
the performance of video applications, but also the performance
of the Internet as a whole. Drawing an analogy to the early days
of the Internet, a robust TCP was critical to prevent “congestion
collapse” [29]; we are potentially at a similar juncture today with
respect to HTTP streaming protocols.

Building on this high-level analogy, it is evident that the design
of a robust adaptive video algorithm must look beyond a single-
player view to account for the interactions across multiple adaptive
streaming players [14, 15, 22] that compete at bottleneck links. In
this respect, there are three (potentially conflicting) goals that a ro-
bust adaptive video algorithm must strive to achieve:

• Fairness: Multiple competing players sharing a bottleneck link
should be able to converge to an equitable allocation of the net-
work resources.
• Efficiency: A group of players must choose the highest feasible

set of bitrates to maximize the user experience.
• Stability: A player should avoid needless bitrate switches as

this can adversely affect the user experience.

Recent measurements show that two widely used commercial so-
lutions fail to achieve one or more of these properties when two
players compete at a bottleneck link [14, 27]. We extend these
experiments (Section 2) and confirm that the problems manifest
across many state-of-art HTTP adaptive streaming protocols: Smooth-
Streaming [12], Netflix [8], Adobe OSMF [2], and Akamai HD [3].
Furthermore, these problems worsen as the number of competing
players increases.

While such measurements are valuable in identifying the short-
comings of today’s players, our understanding of the root causes
of these problems is limited. To this end, we systematically study
these problems through the lens of an abstract video player that
needs to implement three key components (see Section 2): (1)
scheduling a specific video “chunk” to be downloaded, (2) select-
ing the bitrate for each chunk, and (3) estimating the bandwidth.
At a high-level, the aforementioned problems arise as a result of
overlaying the adaptation logic on top of several layers that may
hide the true network state. Consequently, the feedback signal that
the player receives from the network is not a true reflection of the
network state. Furthermore, this feedback can also be biased by the
decisions the player makes as well. Specifically, we observe that
periodic chunk scheduling used in conjunction with stateless bi-
trate selection used by players today can lead to undesirable feed-
back loops with bandwidth estimation and cause unnecessary bi-
trate switches and unfairness in the choice of bitrates.

We leverage measurement-driven insights to design robust mech-
anisms for the three player components to overcome these biases.
Our specific recommendations are (Section 3): (1) randomized chunk
scheduling to avoid synchronization biases in sampling the network

state, (2) a stateful bitrate selection that compensates for the biased
interaction between bitrate and estimated bandwidth, (3) a delayed
update approach to tradeoff stability and efficiency, and (4) a band-
width estimator that uses the harmonic mean of download speed
over recent chunks to be robust to outliers. Taken together, these
approaches define a family of adaptation algorithms that vary in the
tradeoff across fairness, efficiency, and stability. For example, we
can consider player designs that choose the randomized schedul-
ing with the stateful bitrate selection, without implementing the
delayed update or the new bandwidth estimator.

As a concrete instance, we also show how to pick a sweet spot in
this tradeoff space called the FESTIVE algorithm.1 We implement
FESTIVE using the Open Source Media Framework and show that
our proposed logic is easy to implement and incurs low overhead.
We evaluate FESTIVE against several real and emulated commer-
cial players across a range of scenarios that vary the overall band-
width and number of users. Compared to the closest alternative,
FESTIVE improves fairness by 40%, stability by 50% and efficiency
by at least 10%. Furthermore, FESTIVE is robust to the number of
players sharing a bottleneck, increase in bandwidth variability, and
the available set of bitrates.

In summary, this paper makes the following contributions:

• We systematically explore the design space of adaptive video
algorithms with the goals of fairness, stability, and efficiency.
• We identify the main factors in bitrate selection and chunk schedul-

ing employed in state-of-art players today that lead to undesir-
able feedback loops and instability.
• We design robust mechanisms for chunk scheduling, bandwidth

estimation, and bitrate selection that inform the design of a suite
of adaptation algorithms that vary in the tradeoff between sta-
bility, fairness and efficiency.
• We identify one concrete design from this family of algorithms

as a reasonable point in this tradeoff space and show that it out-
performs state-of-art players under most of the considered sce-
narios.

2. BACKGROUND AND MOTIVATION
We begin with a high-level overview of how HTTP-based adap-

tive video streaming works and point out key differences w.r.t TCP-
level control logic. Then, we formally define metrics to capture
the three key requirements of fairness, efficiency, and stability, and
evaluate how well today’s state-of-art video players perform.

2.1 HTTP Adaptive Video Streaming
Early Internet video technologies (e.g., Apple QuickTime [4],

Adobe Flash RTMP [10]) were based on connection-oriented video
transport protocols. As shown in Figure 1(a), these protocols have
a session abstraction between the client and the server, that both
maintain per-session state and use a (proprietary) stateful control
protocol to manage the data delivery. The new generation of Inter-
net video technologies such as Microsoft SmoothStreaming [12],
Apple’s HLS [41], and Adobe’s HDS [1], however, are HTTP-
based adaptive streaming protocols.

In HTTP adaptive streaming, a video is encoded at multiple dis-
crete bitrates. Each bitrate stream is broken into multiple 2-10
seconds segments or “chunks”. The ith chunk from one bitrate
stream is aligned in the video time line to the ith chunk from an-
other bitrate stream so that a video player can smoothly switch
to a different bitrate at each chunk boundary. As shown in Fig-
ure 1(b), HTTP-based adaptive streaming protocols differ from the
1The name FESTIVE refers to a Fair, Efficient, and Stable
adapTIVE algorithm.

TCP/UDP

Streaming
Player

Streaming control protocol

Streaming control protocol

Proprietary data transport
TCP/UDP

Streaming
Server

(a) Connection-oriented streaming

HTTP	 Adap)ve	
Player	

Web browser Web server

HTTP

TCP

…

HTTP

TCP

…
A1	 A1	 A2	

B1	 B2	

B2	

B1	

Cache

Client

Web server

…
…

A1	 A2	

B1	 B2	

Load	
balancer	

HTTP	 GET	 B2	

The 2nd chunk encoded
in bitrate B

(b) HTTP adaptive streaming

Figure 1: Difference between connection-oriented and HTTP
adaptive streaming protocol.

traditional connection-oriented video transport protocols in several
important aspects. First, clients use the standard HTTP protocol
which provides more ubiquitous reach as this traffic can traverse
NATs and firewalls [42]. Second, the servers are commodity Web
servers or caches; this use of existing CDN and server technol-
ogy has been a key driver for rapid growth and low costs. Third,
the use of HTTP implies caches deployed by enterprise and ser-
vice providers automatically improve the performance and reduce
network load. Finally, a client fetches each chunk independently
and maintains the playback session state while servers do not need
to keep any state. This makes it possible for the client to receive
chunks from multiple servers: enabling load-balancing and fault
tolerance on both CDN side (across multiple servers) and client
side (across multiple CDNs) [35, 36].

The client-side video player usually implements the adaptive logic
in a constrained sandbox environment such as Flash or Silverlight.
The adaptive part arises because the player uses the throughput ob-
served for each chunk and the chunk size to estimate the available
network bandwidth. These estimates are used to choose a suitable
bitrate for the next chunk to be downloaded. The player tries to
maintain an adequate video playback buffer to minimize rebuffer-
ing which can adversely impact user engagement [21].

2.2 Desired properties
We are specifically interested in a multi-player setting when mul-

tiple video players share a bottleneck link [14, 15, 27]. To formally
define the metrics, we consider a setting with N players sharing
a bottleneck link with bandwidth W , with each player x playing
bitrate bx,t at time t.

• Inefficiency: The inefficiency at time t is |
∑

x bx,t−W |
W

. A value
close to zero implies that the players in aggregate are using
as high an average bitrate as possible to improve user experi-
ence [21].
• Unfairness: Now, some players could see a low bitrate while

other players may see high quality. Akhshabi et al., use the
difference between bitrates in a two-player setting to compute
the unfairness [14]. We generalize this to multiple players as√

1− JainFair , where JainFair is the Jain fairness index [43]
of bx,t over all player x, because we want to quantify unfair-
ness. A lower value of the metric implies a more fair allocation.
• Instability: Studies suggest users are likely to be sensitive to

frequent and significant bitrate switches [18, 39]. We define

the instability metric as
∑k−1

d=0
|bx,t−d−bx,t−d−1|·w(d)∑k

d=1
bx,t−d·w(d)

, which is

 0

 0.1

 0.2

 0.3

 0.4

SS Netfl
ix

Akam
ai

Adobe

(a) Unfairness

 0

 0.1

 0.2

 0.3

 0.4

 0.5

SS Netfl
ix

Akam
ai

Adobe

(b) Inefficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

SS Netfl
ix

Akam
ai

Adobe

(c) Instability

Figure 2: Performance of today’s commercial players (SS
stands for SmoothStreaming).

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 100 200 300 400 500 600 700

B
it
ra

te
 (

b
p

s
)

time (Second)

Player I
Player II

Player III

Figure 3: Visualizing unfairness and instability in Smooth-
Streaming

the weighted sum of all switch steps observed within the last
k = 20 seconds divided by the weighted sum of bitrates in the
last k = 20 seconds. We use the weight function w(d) = k−d
to add linear penalty to more recent bitrate switch.

At first glance, these requirements for video adaptation seem
analogous to traditional TCP. There are, however, key architec-
tural differences between HTTP video adaptive streaming and TCP.
First, the two control algorithms operate at different levels in the
protocol stack. For example, video players can only access coarse
information as they run in an application-level sandbox. Second,
TCP is a connection-oriented protocol with control logic imple-
mented at the sender-side while video adaptation is a connection-
less protocol with receiver-side control. Third, the granularity of
data and time are very different. TCP operates at the packet level
(∼1KB), has multiple packets in transit, and the control loop acts
on the timescale of milliseconds. Video adaptation operates at the
chunk level (∼ hundreds of kilobytes), has only one chunk in tran-
sit, and the control loop runs at the timescale of seconds (i.e., chunk
fetch delay). Last, due to the video-specific requirement that the
buffer cannot be empty, the control actions are very different; a
TCP sender delays packet transmission under congestion whereas
the receiver in a video adaptation algorithm requests a lower bitrate
chunk. Taken together, these factors mean that the rich literature
and experience in designing TCP is not directly applicable here.

2.3 Performance of today’s solutions
Given these formal metrics, we analyze the performance of exist-

ing commercial solutions—SmoothStreaming [11], Akamai HD [3],
Netflix [8], and Adobe OSMF [2]. In doing so, we generalize
the measurements from previous work that study 1 or 2 of these
players in isolation and demonstrate that these problems are more
widespread.

We consider a setup with three players sharing a bottleneck link
with a stable bandwidth of 3 Mbps with default player settings.
Each player runs in a separate Windows machine running on a
2.8 Ghz desktop and accesses the respective demo website. Fig-
ure 2 shows the unfairness, inefficiency, and instability. We see
that the Akamai and Adobe players are very unstable, while all of
them are quite unfair. To give some context for what this unfair-

players BW (bps) Unfairness Inefficiency Instability
5 5M 0.140 0.184 0.0537
11 11M 0.180 0.230 0.0648
19 19M 0.235 0.343 0.0909

Table 1: The performance of SmoothStreaming worsens as the
number of players increases. We see similar trends with other
players too (not shown for brevity).

ness index means, Figure 3 shows a time series of the bitrates of
the three SmoothStreaming players which visually confirms that
the allocation is quite unfair even for the best player in the above
result. (In this case, the optimal allocation would be for all players
to pick the same bitrate at all times.) Furthermore, Table 1 shows
that the problems become worse as the number of players compet-
ing for the bottleneck link increases. Here, with a N player setup,
we assume a stable bottleneck ofN×1 Mbps. For brevity, we only
show the result SmoothStreaming because this was the best overall
player across all three metrics in our earlier experiment.

2.4 Design Space
Next, we describe the broader design space of how we can po-

tentially address the above problems along three key dimensions:

• What level in the protocol stack?
Video players can only access coarse information as they run in
an application-level sandbox. To address this concern, we can
re-architect the transport layer for video players; e.g., a new
TCP variant or running it atop UDP and avoiding unnecessary
interactions with the lower layer control loop. Alternatively,
we can consider joint design of the video and transport layers.
While this might be a better clean-slate solution, it does face
deployment concerns—it may not be possible to upgrade the
users’ OS and new transport mechanisms may not work with
middleboxes such as NATs and firewalls.
• Where in the network?

There are three natural options: client-side, server-side, and in-
network. For instance, TCP relies largely on sender-side con-
trol while video adaptation is a connectionless protocol with
receiver-side control. Server-side solutions increase the require-
ments of CDN deployments beyond today’s commodity web
server designs. In-network solutions such as fair queuing or
rate limiting in routers may offer more optimal solutions, but
require a significant overhaul of the network infrastructure. Ul-
timately, the receiver is in the best situation to infer network
bottlenecks and also take into account other user-side consider-
ations (e.g., CPU load, bandwidth quotas) and thus we believe
this is a pragmatic choice going forward.
• Coordinated vs. Decentralized?

At one extreme, we can envision a logically centralized video
controller that can have a global view of network conditions to
assign bitrates to each user [36]. At the other extreme, we have
purely decentralized solutions where the adaptation is purely
receiver-driven. While this controller may be effective for coarse-
grained decisions (e.g., choosing the CDN and bitrate at the
start of a session), there are obvious challenges with respect to
scale, visibility into client-side effects, and responsiveness for
realizing such a controller in practice.

In this paper, we focus on a specific point in this design space—
application-layer, receiver-driven, and decentralized adaptation. We
cannot claim that this is the only or the ideal point in this space.
Rather, we pick this point as a pragmatic choice with a view toward
a solution that is immediately deployable and that is backwards-
compatible with today’s video delivery ecosystem.

Player

Throughput

Scheduler
Adaptation

B/W Estimation

time

Video	 Buffer	 Chunks

Bitrate1

…..

BitrateN

Requests

Figure 4: General framework of HTTP adaptive video stream-
ing. The server supports multiple bitrate encodings, each a sep-
arate logically chunked file. The player issues GET requests for
each chunk at a specific bitrate and adapts the bitrate based on
the observed throughput.

3. DESIGN
As the previous section showed, today’s state-of-art players do

not satisfy the goals of fairness, efficiency, and stability. In this sec-
tion, we describe how we design a adaptive streaming player that
satisfies these properties. As the high-level model from Figure 4
shows, an adaptive streaming player involves three components:
1. Schedule when the next chunk will be downloaded.
2. Select a suitable bitrate for the next chunk.
3. Estimate the network bandwidth.

In designing each component, we make a conscious decision to
be compatible with today’s deployments and end-host stacks and
do not require modifications to end-hosts’ operating system stacks
or CDN servers. For each component, we use measurement-driven
insights to analyze problems with today’s players to arrive at a suit-
able design. We validate each component in Section 6.2 and their
interaction in Section 6.3.

B
w

 (M
bp

s)

Player A
Bitrate: 1.5Mbps
Est. bw: 1.6Mbps
Player B
Bitrate: 0.6Mbps
Est. bw: 1.1Mbps

2
1
0.6

2
1
0.6

2
1
0.6

Player C
Bitrate: 0.6Mbps
Est. bw: 1.1Mbps

time time
(a) Periodic request (b) Discrete download

0

0

0

2
1

2
1

2
1

0

0

0

Chunk 1 Chunk 2 Chunk 1 Chunk 2 Chunk 3

0 1 2 3 4 5

Player A
Bitrate: 1 Mbps
Est. bw: 2 Mbps
Player B
Bitrate: 1 Mbps
Est. bw: 1 Mbps
Player C
Bitrate: 1 Mbps
Est. bw: 1 Mbps

Figure 5: Two sources of bias with today’s players: periodic
request intervals lead to start-time biases and higher bitrates
can cause players to estimate higher bandwidths.

3.1 Chunk Scheduling
The feedback that a player gets from the network is the observed

throughput for each chunk. However, the discrete nature of the
chunk download implies that the throughput a player observes is
coupled to the time when the player “occupies” the link. This is in
contrast to a long-running TCP flow that will observe its true share.
Thus, we need a careful chunk scheduling approach to avoid biases
in observing the network state.

We begin by considering two strawman options: (1) download
the next chunk immediately after the previous chunk has been down-
loaded and (2) download chunks periodically so that the player
buffer is sufficiently full. For example, SmoothStreaming uses the
periodic strategy [14]. However, there are subtle issues with both
approaches that we highlight next.

Immediate download: This greedily builds up the player buffer to
avoid future buffering events. This approach, however, can be sub-
optimal for the following reasons. First, greedily downloading at
the highest bitrate may needlessly increase the server’s bandwidth
costs, especially if users leave prematurely [23]. Second, greedily
downloading low bitrate chunks may preclude the option of switch-
ing to a higher quality in case the network conditions improve. Fur-
thermore, in the case of live content, future chunks may not even
be available and thus this is not a viable option. While this greedy
download option might be useful in the initial ramp-up phase for a
player, the above reasons make it unsuitable in the steady state.

Periodic download: The periodic request strategy tries to main-
tain a constant playback buffer to minimize rebuffering [14]. This
target buffer size is usually a fixed number of chunks; e.g., Smooth-
Streaming uses a 2-second chunk and a target playback buffer of
30 seconds (i.e., 15 chunks) [15]. This approach works as follows.
Let tstart

i be the time when the ith chunk is requested, tend
i be the

time that it is downloaded, and ∆ denote the length of each chunk
(in seconds). Suppose buffer i is length of the playback buffer (in
seconds) at tend

i and targetbuf is the target buffer size (e.g., 30s).
Then, the time to request the next chunk tstart

i+1 can be written as:2

tstart
i+1 =

{
tend
i , if buffer i < targetbuf

tend
i + buffer i − targetbuf , otherwise.

(1)

While this avoids wasting network bandwidth and prematurely
committing to low quality, it suffers a different issue – players may
see a biased view of the network state. Specifically, with the pe-
riodic download, the players’ initial conditions may cause it to get
stuck in suboptimal allocations. Figure 5(a) illustrates this prob-
lem. Suppose the players use a fixed request period of 2 seconds
and the total bandwidth is 2 Mbps. Players A and B always request
the next chunk at even seconds (i.e., 0,2,4,. . .), while player C re-
quests it at odd seconds (i.e., 1,3,5,. . .). The throughput observed
by A and B will be 1 Mbps (half the bandwidth) whereas C esti-
mates it to be 2 Mbps (whole bandwidth). In other words, the initial
conditions can lead to unfairness in bandwidth allocation.

Randomized scheduling: In order to avoid this bias induced by
the initial conditions, we introduce a randomized scheduler that ex-
tends the periodic strategy. As before, we want to maintain a rea-
sonable playback buffer. Instead of requiring a constant targetbuf ,
however, we treat it as an expected value. Specifically, for each
chunk i we choose a target buffer size randbuf i uniformly at ran-
dom from the range (targetbuf − δ, targetbuf + δ]. Specifically,
we choose δ = ∆ which is driven by the analysis from Section 4.
Then, the time to request the next chunk is:

tstart
i+1 =

{
tend
i , if buffer i < randbuf i
tend
i + buffer i − randbuf i, otherwise.

(2)

At steady state, the chunks will be downloaded roughly period-
ically, but with some jitter as we randomize the target buffer size.
We show via analysis in Section 4 and measurements in Section 6,
that this strategy ensures that the time to request each chunk, and
consequently the estimated bandwidth, is independent of the time
at which a player arrives.

3.2 Bitrate Selection
Having chosen a chunk scheduling strategy that ensures that each

player is not biased by its start time, we move to bitrate selection.

2We can prove that this downloads one chunk every ∆ seconds at
steady state; we do not show this for brevity.

Our high-level goal here is to ensure that the players will eventually
converge to a fair allocation irrespective of their current bitrates.
Bias with stateless selection: A natural strategy is to choose the
highest available bitrate lower than the estimated bandwidth. We
refer to this as stateless approaches as it only considers the esti-
mated bandwidth without considering the current bitrate or whether
it is ramping up or ramping down its bitrate. For example, if the
available bitrates are 400, 600, and 800 Kbps and the estimated
bandwidth is 750 Kbps, the player chooses 600 Kbps.

While this stateless approach seems appealing, it can result in
an unfair allocation of a bottleneck link. To understand why this
happens, let us look at an example in Figure 5(b) with three players
A, B and C sharing a bottleneck link with an available bandwidth
of 2Mbps, using the randomized scheduler. There are three bitrates
available: 600, 1200, and 1500Kbps. Suppose Player A is currently
using a bitrate of 1500 Kbps and Player B and C are currently us-
ing bitrate 600 Kbps. As shown in Figure 5(b), because Player A
uses a higher bitrate, its “wire occupancy” is higher than Player B
and C. This implies that there are points in time where Player A is
occupying the bottleneck link alone and thus Player A’s estimated
bandwidth will be higher than Player B and C. In other words, the
process of discretely downloading individual chunks naturally in-
troduces a bias: players currently using a higher bitrate observe
a higher bandwidth. We formally derive the relationship between
estimated bandwidth and bitrates in Section 4.

Round Bitrates (Kbps) → Estimated bw. (Kbps)
(network feedbacks)

1 [350,350,1520] → [730,730,1356]
2 [470,470,1130] → [717,717,1146]
3 [470,470,1130] → [717,717,1146]
...

Table 2: Example of unfairness with stateless bitrate selection.
The bitrate levels are {350,470,730,845,1130,1520}Kbps and the
total bandwidth is 2Mbps.

Because there are only a discrete set of available bitrates (e.g., 4-
5 encodings), players sharing a bottleneck link can often converge
to an equilibrium state that is inherently unfair; e.g., in Figure 5(b),
Player B and C will never increase their bitrate. This scenario is
not merely hypothetical. For example, Table 2 shows an actual run
using our setup (described in detail in Section 6), where the players
converge to an equilibrium state that is inherently unfair.

Current Bitrate

R
at

e
of

 D
ec

re
as

e

Current Bitrate

R
at

e
of

 In
cr

ea
se

Figure 6: Intuition behind stateful selection: we want play-
ers with lower bitrate to ramp up aggressively or players with
higher bitrate to ramp down aggressively.
Our approach: At a high-level, we need to compensate for the
above bias so that the players can converge to a fair allocation irre-
spective of their current bitrates. We can achieve this in one of two
ways as shown in Figure 6: (1) the rate of decrease is a monoton-
ically increasing function of the bitrate or (2) the rate of increase
is a monotonically decreasing function of the bitrate. Intuitively,
we are making the player stateful by accounting for its current bi-
trate.3 Our current design chooses option (2) and we simply keep
3We can show that this approach is sufficient; we do not claim that
this is necessary.

the rate of decrease a constant function. In the example in Table 2,
this approach causes the players starting at 350 Kbps to ramp up
their bitrates more aggressively so that they will observe the true
network state after 2-3 switches.

This stateful strategy can be realized either by allowing multi-
level bitrate switches (e.g., from 350 to 1130 and skipping interme-
diate levels) or by altering the rate of switching the bitrates (e.g.,
once per chunk at 350 but once every 5 chunks at 1130). While
we do not conclusively know if users are more sensitive to multi-
level switches or the number of switches [18], recent work suggests
that changing quality levels gradually is preferable [39]. Thus, we
choose a gradual switching strategy where the player only switches
to the next highest level and uses a lower rate of upward switches
at higher bitrates. We discuss our specific approach in Section 3.5.
We do note that the property achieved by a stateful approach is
agnostic to how specific players implement the mechanism from
Figure 6.

3.3 Delayed Update
While the previous discussion provides guidelines for choosing

the bitrate to converge to a fair allocation, it does not consider the
issue of stability—switching too frequently is likely to annoy users
(e.g., [18]) and thus in this section, we focus on balancing these
two potentially conflicting goals: efficiency and fairness on one
hand vs. stability on the other.

To this end, we introduce a notion of delayed update. We treat
the bitrate from the previous section only as a reference bitrate and
defer the actual switch based on a measured tradeoff between effi-
ciency/fairness and stability. Specifically, we compute how close to
the efficient or stable allocation the current (bcur) and the reference
bitrate computed from the previous discussion (bref) are.

The efficiency cost for bitrate b is:

scoreefficiency(b) =

∣∣∣∣ b

min(w, bref)
− 1

∣∣∣∣
Here, w is the estimated bandwidth and bref is the reference bi-
trate from the previous section. Intuitively, the score is the best and
equal to zero when b = bref . (The “min” in the denominator cor-
rects for the fact that the reference bitrate may be underutilizing or
overutilizing the bottleneck link.)

The stability cost for a given bitrate b is a function of the number
of bitrate switches the player has undergone recently. Let n denote
the number of bitrate switches in the last k = 20 seconds. Then the
stability metric is,

scorestability(b) =

{
2n + 1 if b = bref

2n if b = bcur

The reason to model the stability score using an exponential
function of n is that scorestability(bref) − scorestability(bcur) is
monotonically increasing with n, which adds more penalty of adding
a new switch if there have already been many switches in recent
history.4

The combined score is simply the weighted average:

scorestability(b) + α× scoreefficiency(b)

The player computes this combined score for both the current
and reference bitrates, and picks the bitrate with the lower com-
bined score. The factor α here provides a tunable knob to control
the tradeoff between efficiency and fairness on one hand and sta-
bility on the other. We provide empirical guidelines on selecting a
suitable value for α in Section 6.2.
4It is not necessary to model the stability score via an exponential
function; this scheme has proven sufficient in our experiments.

The FESTIVE Player

Throughput

Randomized
Scheduler

Stateful, Delayed
Bitrate Update

Harmonic B/W
Estimation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

time

Chunks

Use harmonic mean
over last 20 chunks

Choose randomized
target buffer size

1.  Compute reference rate
Increase/decrease rate as
a function of bitrate
2. Cost-tradeoff between
current and reference rate

Requests

Figure 7: Overview of the FESTIVE adaptive video player.

3.4 Bandwidth Estimation
As we saw in the previous discussion, the throughput observed

by a player for each chunk is not a reliable estimate of the available
capacity. We suggest two guidelines to build a more robust band-
width estimator. First, instead of using the instantaneous through-
put, we use a smoothed value computed over the last several chunks.
In our current prototype, we use the last 20 samples.5 Second, we
want this smoothing to be robust to outliers. For example, using
the arithmetic mean is biased by outliers if one chunk sees a very
high or low throughput. To this end, we use the harmonic mean
over the last 20 samples. The reason for using this approach is two-
fold. First, the harmonic mean is more appropriate when we want
to compute the average of rates which is the case with throughput
estimation. Second, it is also more robust to larger outliers [7].
This is especially relevant in the context of our randomized sched-
uler. With a randomized scheduler, if there are fewer competitors
for a certain chunk, the estimated throughput will be larger. In
such cases, the harmonic mean minimizes the impact of outliers.
(If there are more competitors, then each player is more likely to
observe a bandwidth close to its fair share.)

3.5 The FESTIVE algorithm
We now proceed to put the different design components together

to describe the FESTIVE (Fair, Efficient, Stable, adaptIVE) algo-
rithm. Figure 7 shows a high-level overview of FESTIVE. FESTIVE
retains the same external-facing interface as today’s HTTP video
streaming players. That is, FESTIVE selects the bitrate for each
chunk and decides when to schedule the request and the input to
FESTIVE is the throughput observed per-chunk.

In describing FESTIVE, we focus on the steady-state behavior.
The ramp up behavior of FESTIVE can be identical to today’s play-
ers; e.g., aggressively download chunks (potentially at a low bi-
trate) to start playing the video as soon as possible. As discussed in
the previous sections, FESTIVE has three key components:

1. The harmonic bandwidth estimator computes the harmonic mean
of the last k = 20 throughput estimates. This provides reliable
bandwidth estimates on which future bitrate update decisions
can be made. In the initial phase before we have a sufficient
number of samples, FESTIVE does not employ any rate switches
because its bandwidth estimate will be unreliable.

2. The stateful and delayed bitrate update module receives through-
put estimates from the bandwidth estimator and computes a ref-
erence bitrate. As a specific implementation of Figure 6, we use
a gradual switching strategy; i.e., each switch is only to the next
higher/lower level. Here, we increase the reference bitrate at bi-
trate level k only after k chunks, but decrease the bitrate level
after every chunk if a decrease is necessary. This ensures that

5We do not claim this is new; commercial players likely already
implement some smoothing.

the bitrates eventually converge to a fair allocation despite the
biased bitrate-to-bandwidth relationship. To decide if we need
to decrease, we compare the current bitrate with p = 0.85× the
estimated bandwidth. The parameter p helps tolerate the buffer
fluctuation caused by variability in chunk sizes [15]. For the
delayed update, we use a value of the tradeoff factor α = 12
(see Section 6.2).

3. The randomized scheduler works as shown in Eq (2). It sched-
ules the next chunk to be downloaded immediately if its play-
back buffer is less than the target buffer size. Otherwise, the
next chunk is scheduled with a random delay by selecting a
randomized target buffer size. This ensures there are no start
time biases.

4. ANALYSIS OF FESTIVE
In this section, we show that:

• The randomized scheduler ensures that the request time of a
player is independent of its start time.
• The stateful bitrate selection ensures that bitrates will eventu-

ally converge to a fair allocation.

Together, these ensure that the network state observed by compet-
ing players will not be biased by their arrival time or by the initial
bitrates of other players.

Notation: We use i, k to denote chunk indices, j for a specific
epoch, and x, y, z to denote players. Let n be the number of players
and m be the number of chunks and let the bottleneck bandwidth
be W . We use ∆ to denote the length (in time) of each chunk.

Model: Our focus here is on the steady state behavior and not the
initial ramp up phase. To make the analysis tractable, we make four
simplifying assumptions. First, we assume the bottleneck band-
width is stable. Second, this bandwidth is not saturated by the
summation of bitrate, and each player’s bitrate is less than its al-
located bandwidth. As a result, for each chunk, a player will com-
plete the download before the deadline, so the buffer i > randbuf i
will hold for most chunks. Third, if n players are simultaneously
downloading over a bottleneck of bandwidth W , we assume that
each player will get a bandwidth share of W

n
. Last, we consider

an epoch-based model, where players synchronously choose a new
bitrate at the start of each epoch and estimate the bandwidth at the
end of each epoch.6

4.1 Randomized scheduler
The goal of the randomized scheduler is to ensure the request

time is independent of a player’s start time. Formally, we want to
show that:

Theorem 1. If a player uses randbuf i drawn uniformly at ran-
dom between (targetbuf − ∆, targetbuf + ∆] and buffer i >
randbuf i for each chunk i (i = 1, . . . ,m), then the probability
distribution of chunk request times does not depend on the start
time tstart

0 .

PROOF. The buffer length at time tend
i−1, when chunk i − 1 has

been downloaded is buffer i−1 = (i−1)∆− (tend
i−1− tstart

0) where
(i−1)∆ is the length of content downloaded so far and tend

i−1−tstart
0

is the amount of video played. If buffer i−1 > randbuf i−1, then
by Eq (2), the time to request the next chunk:

tstart
i = tend

i−1 + buffer i−1 − randbuf i−1 =

tend
i−1 + (i− 1)∆− (tend

i−1 − tstart
0)− randbuf i−1

= tstart
0 + (i− 1)∆− randbuf i−1

6Each epoch can consist of multiple chunks.

δ=∆

δ=∆/4

δ=0

ti-1
start

ti
start

ti+1
start

pdf

pdf

pdf

Figure 8: Intuition for Theorem 1.

Because each randbuf i−1 is a uniform random variable in the
range (targetbuf −∆, targetbuf + ∆], this means that for a given
i, tstart

i is a uniform random variable in the range (tstart
0 + (i −

1)∆ − targetbuf −∆, tstart
0 + (i − 1)∆ − targetbuf + ∆]. Let

T denote a random variable representing the request time. Then
T = t can occur for exactly two intervals i∗ and i∗ + 1, with
i∗ = 1

∆
(t + targetbuf − tstart0) as shown in Figure 8. Thus,

f(T = t) = f(tstart
i∗ = t or tstart

i∗+1 = t) = 2 ∗ 1
2∆

= 1
∆

which is
independent of tstart

0 .
Notice that for other δ 6= ∆, if randbuf i is at random in range

(targetbuf − δ, targetbuf + δ], then the same argument of Theo-
rem 1 does not hold. For example, if δ = 1

r
∆ where r > 2, then the

ranges of tstart
i for different i will not overlap (see Figure 8). Con-

sequently, for any t, there will be at most one tstart
i whose range

covers t. That is, f(T = t) will be 1
2δ

for exactly one k such that
tstart
0 +k∆−targetbuf −δ < t ≤ tstart

0 +k∆−targetbuf +δ and
0 otherwise. In other words, the request time distribution depends
on the start time tstart

0 . The periodic scheduler is an extreme case
with r →∞.

4.2 Stateful bitrate selection
We begin by deriving the relationship between estimated band-

width and bitrate in Lemma 1 which shows that a player with higher
bitrate will see relatively higher bandwidth.

Lemma 1. For two players, x and y, let wx and wy be the
harmonic mean of the throughput seen by them and bx, by be their
bitrates. Then, wx

wy
= bx+W

by+W
.

PROOF. Since we are using the randomized scheduler, each player
will join the link randomly. Let nix be the number of competi-
tors when player x downloads chunk i, then the bandwidth alloca-
tion of chunk i is W

nix+1
. Thus, the download time for chunk i is

dix = bx∆(nix+1)
W

where bx∆ is the chunk size. The total down-
load time is

∑m
i=1 dix, and the fraction of time when player x is

downloading is:

qx =
1

m∆

m∑
i=1

dix =
1

m∆

m∑
i=1

bx∆(nix + 1)

W

=
bx
W

m∑
i=1

(1 + nix)

m
=
bx
W
Nx

whereNx = 1+E(nix) is the expected number of competitors for
x. When each chunk length is small, the probability that player i
is competing for the bandwidth is simply the fraction of time spent
downloading = qx. Thus, we have Nx = 1 + E(nix) = 1 +∑
z 6=x qz .7 Thus, we have

qxW

bx
+ qx = 1 +

∑
z

qz =
qyW

by
+ qy ⇒

bx +W

by +W
=

bx
qx
by
qy

7This is by linearity of expectation.

Now, the harmonic mean of bandwidth is simply:

wx =
m∑m

i=1
1
wix

=
W

1
m

∑m
i=1(1 + nix)

=
W

Nx
=
bx
qx

Thus, we have bx+W
by+W

= wx
wy

Notice that wx is a harmonic mean, rather than expectation, of
the bandwidth the player sees, which is consistent with how band-
width is estimated in FESTIVE.

Based on this, we have the following theorem which proves bi-
trate convergence. Recall from Section 3.5 that if bitrate bx > pwx
where wx is the harmonic mean of bandwidth of the epoch and p is
a real value parameter, then the player x will decrease bitrate in the
next epoch (i.e., stateless decrease). Otherwise, it will increase in a
rate which depends on the bitrate level (i.e., stateful increase).

Theorem 2. Let ljx and ljy be the bitrate levels of players x and
y in j th epoch with ljy − ljx ≥ 2. Then the gap will eventually
converge to be at most one level, i.e., ∃j′ > j, where |lj

′
x −lj

′
y | ≤ 1.

PROOF. Given ljy− ljx ≥ 2, we show that ljy− ljx monotonically
decreases as a function of j until |ljy − ljx| = 1. Let bjx, bjy denote
the bitrates and wjx, wjy be the bandwidth in epoch j. By Lemma 1,
there is no p for which pwx < bjx and bjy < pwy . (Otherwise,
wj

x

w
j
y
<

bjx

b
j
y
<

bjx+W

b
j
y+W

, which contradicts Lemma 1.) Therefore,

there are only three cases for the estimated bandwidths wjx, wjy ,
(i) pwjx > bjx, pw

j
y < bjy , (ii) pwjx < bjx, pw

j
y < bjy , and (iii)

pwjx > bjx, pw
j
y > bjy . For (i), bjy will decrease, and bjx will not

decrease, therefore, lj+1
y − lj+1

x ≤ ljy − ljx − 1. For (iii), before
switching to (i) or (ii), x will increase earlier than y according to
the stateful bitrate update (Figure 6), so ljy − ljx will decrease. For
(ii), since the two players cannot always decrease bitrate in (ii), so
eventually, they will enter (iii) or (i). As a result, in each epoch,
ljx − ljy cannot increase and it will not always remain constant.

5. OSMF-BASED IMPLEMENTATION
We have implemented our FESTIVE algorithm in an open source

Flash video player. The implementation builds on the Open Source
Media Framework (OSMF) codebase (v2.0) and is written in Ac-
tionScript [9]. OSMF is an open-source framework developed by
Adobe which provides most of the basic functionalities of a com-
mercial video player.

OSMF provides a well-defined API for different player func-
tions. There are two specific “hooks” that we leverage to imple-
ment the FESTIVE logic: (1) the function play2(streamName)
that can be used to specify a target bitrate (via its URL prefix
streamName), and (2) the function bufferTime(t) that can
be used to specify target buffer length of t. One challenge, how-
ever, is that the function play2 as currently implemented may not
always change bitrate for downloading the next chunk. Thus, we
extended play2 by adding check points at the boundary of each
chunk. At these points, our additional code receives the throughput
of last chunk, and decides the target buffer length and the bitrate
of the next chunk. We implement the specific FESTIVE logic in a
separate class and set the bitrate (via extended play2) and target
buffer length (via bufferTime). The additional code is ≈ 500
lines, a small fraction compared to the full OSMF codebase (125K
lines of code). We have run several microbenchmarks over a range
of bitrates and confirmed that our FESTIVE code adds little or no
CPU overhead to the existing player logic for downloading, buffer-
ing, decoding, and rendering (not shown for brevity).

6. EVALUATION
We divide our evaluation into four high-level sections:

1. We compare the performance of FESTIVE against (emulated)
commercial players (Section 6.1).

2. We validate each component—randomized chunk scheduling,
stateful and delayed bitrate selection, and harmonic bandwidth
estimation (Section 6.2).

3. We evaluate how critical each component is to the overall per-
formance of FESTIVE (Section 6.3).

4. Finally, we evaluate the robustness of FESTIVE as a function of
bandwidth variability, number of players, and the set of avail-
able bitrates (Section 6.4).

Evaluation setup: We use our OSMF-based implementation and
real commercial players wherever possible. However, it is difficult
to run controlled experiments with the real commercial players due
to the lack of access to their code and the difficulty in automating
experiments with multiple players on different machines. Our goal
is to evaluate the underlying adaptation logic of different adaptive
players. However, the proprietary nature of the client/server code
for these players makes it difficult to do a head-to-head compar-
ison. Specifically, using the commercial players conflates exter-
nal effects: network (e.g., wide-area bottlenecks) and server-side
(e.g., CDN load) effects, issues w.r.t video encoding/decoding, and
player plug-in performance.

Thus, in order to do a fair comparison, we augment these real
player experiments with a custom emulation framework. Here, we
heuristically create emulated clones that closely mimic each com-
mercial player. In each case, we verified over a range of settings
that our emulated clone is a conservative approximation of the
commercial player; i.e., the unfairness, inefficiency, and instabil-
ity with the emulated clone are lower bounds for the actual player.
Our heuristic approach works as follows. We start with a basic
algorithm that uses the periodic scheduler and the harmonic band-
width estimation algorithms. Based on trace-driven analysis, we
observed that most commercial players appear to employ a state-
less bitrate selection algorithm that can be modeled as a linear func-
tion of the throughput estimated for the previous chunk(s). We use
linear regression to find the best fit for each commercial player sep-
arately. For example, the SmoothStreaming player appears to pick
the highest available bitrate below 0.85× the estimated bandwidth
8. We do not claim that these are the exact algorithms; our goal is
to use these as conservative approximations of the players to do a
fair comparison with FESTIVE.

We implemented a flexible framework that allows us to evalu-
ate different algorithms for chunk scheduling, bitrate selection, and
bandwidth estimation. Our setup consists of client players, video
servers, and a bottleneck link. Both client and server side mech-
anisms are implemented as Java modules (about 1000 lines each)
that run on different machines within a local network. The client
player decides the bitrate for the next chunk and when to issue the
request. Once the video server receives the request which explic-
itly encodes the bitrate, it generates a file with size dependent on
the bitrate. The client downloads this chunk over a regular TCP
socket. All traffic between clients and servers goes through the bot-
tleneck which uses Dummynet [46] to control the total bandwidth
and delay. Unless specified otherwise, we emulate a ten-minute
long video with eight bitrate levels from 350Kbps to 2750Kbps
and using 2 second chunks. (This is based on the parameters we
observe in the demo website [11]). We use chunk sizes of an en-

8Based on linear regression between selected bitrate and bandwidth
estimated by update function bwnext = 0.9bwprev + 0.1bwcur

coded video for each bitrate by analyzing real traces of commercial
players from [11].

 0

 0.1

 0.2

 0.3

 0.4

FESTIVE

OSMF

U
n

fa
ir
n

e
s
s

 0

 0.1

 0.2

FESTIVE

OSMF

In
e

ff
ic

ie
n

c
y

 0

 0.1

 0.2

FESTIVE

OSMF

In
s
ta

b
ili

ty

Figure 9: Comparison between real OSMF player and OSMF
player using FESTIVE.

6.1 Comparison with Commercial Players
OSMF implementation: First, we use our real implementation
atop the OSMF framework and compare it to the current OSMF
adaptation logic using the video at [6]. Here, we consider a setup
with three players that share a bottleneck link of 3 Mbps. Fig-
ure 9 shows the unfairness, inefficiency, and instability of FESTIVE
vs. the OSMF logic. We observe that our implementation outper-
forms OSMF on two of three metrics. Our inefficiency, however, is
slightly higher. We speculate that this is because our FESTIVE pa-
rameters are customized for the chunk sizes and bitrate levels seen
in the SmoothStreaming demo as we discussed in Section 5.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

FESTIVE

emu-Akamai

Akamai

 0
 0.1
 0.2
 0.3
 0.4
 0.5

FESTIVE

emu-Akamai

Akamai

 0
 0.1
 0.2
 0.3
 0.4
 0.5

FESTIVE

emu-Akamai

Akamai

 0
 0.1
 0.2
 0.3
 0.4
 0.5

FESTIVE

emu-Adobe

Adobe

 0
 0.2
 0.4
 0.6
 0.8

 1

FESTIVE

emu-Adobe

Adobe

 0
 0.2
 0.4
 0.6
 0.8

 1

FESTIVE

emu-Adobe

Adobe

 0

 0.1

 0.2

 0.3

FESTIVE

emu-Netflix

Netflix

 0

 0.1

 0.2

FESTIVE

emu-Netflix

Netflix

 0

 0.05

 0.1

FESTIVE

emu-Netflix

Netflix

 0

 0.1

 0.2

FESTIVE

emu-SS

local-SS

SS

Unfairness

 0

 0.1

 0.2

 0.3

FESTIVE

emu-SS

local-SS

SS

Inefficiency

 0

 0.02

 0.04

FESTIVE

emu-SS

local-SS

SS

Instability

Figure 10: Comparison between FESTIVE, emulated commer-
cial players, and the actual commercial players with 3 play-
ers sharing a bottleneck link of 3 Mbps. Here, SS stands for
SmoothStreaming; “emu-X” stands for our conservative emu-
lation of the “X” commercial player; and local-SS is running a
local SmoothStreaming server.
Other players: As we discussed, the chunk lengths and bitrate
levels vary across commercial players. Thus, in each result we
use the corresponding bitrate levels and chunk lengths observed
in the players’ (demo) websites to compare FESTIVE, the emu-
lated player, and real player. Our goal here is to compare FES-
TIVE to each commercial player independently; it is not meaning-
ful to draw any conclusions across players (e.g., is SmoothStream-
ing better than Netflix?) since the parameters such as chunk sizes
and bitrate levels across the demo sites vary significantly. Figure 10
compares the performance of FESTIVE to the emulated commercial
players, with the median value over 15 runs. In each case, a lower
value of the performance metric is better. For reference, we also

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

prediction error (=(predict-real)/real)

Harmonic
Arithmetic

Median
EWMA

Figure 11: Prediction error in bandwidth estimation.

show the performance of the commercial players with an equiva-
lent three player setup (using respective demo sites). For Smooth-
Streaming, we also have access to the server implementation. Thus,
we also evaluate a local setup with the real players and server. For
each commercial player, we confirm that the emulated version is
a conservative approximation. We see that FESTIVE outperforms
the next best solution, SmoothStreaming, by at least 2× in all three
metrics. We also observed that FESTIVE provides higher benefits
as we increase the number of players (not shown). For example,
our stability of 19 players (with 19Mbps bottleneck bandwidth) is
still about 2× higher than SmoothStreaming, but the gap between
SmoothStreaming and us is 4× larger than that of 3 players.

6.2 Component-wise Validation
Next, we examine whether each component achieves the prop-

erties outlined in Section 3. As a baseline point of reference, we
use the emulated SmoothStreaming player and evaluate the effect
of incrementally adding each component.

Bandwidth estimator: We begin by comparing the accuracy of
four bandwidth estimation strategies: arithmetic mean, median,
EWMA,9 and harmonic mean. Each method computes the esti-
mated bandwidth using the observed throughput of the k = 20
previous chunks. For this analysis, we extract the observed chunk
throughputs from the real SmoothStreaming setup from Section 2
with 19 competing players and emulate each estimation algorithm.
We report the CDF of the prediction error |PredictedBW−ActualBW |

ActualBW
in Figure 11. The result shows that the harmonic mean outper-
forms the other methods. (The large prediction errors in the tail
appear because the observed bandwidth for each chunk depends on
the number of competing players that chunk sees which is highly
variable.) We also manually confirmed that the harmonic mean is
effective when a new observed throughput is an outlier. Thus, for
the rest of this section, we consider the baseline algorithm with a
harmonic bandwidth estimator.

Chunk scheduling: Here, the baseline player uses stateless bitrate
selection, instant update, harmonic bandwidth estimation, and the
periodic chunk scheduling discussed in Section 3. We consider a
modified baseline that uses the randomized scheduling instead but
retains the other components. Figure 12 shows the perceived band-
width for the three players over time for one run. (The results are
consistent across runs, we do not show them for brevity.) We can
visually confirm that the periodic scheduler leads to large bias in
the estimated bandwidth, while the randomized scheduler ensures
a more equitable bandwidth share. The result also shows the differ-
ence between maximum and minimum bitrate to confirm that this
bias in observed bandwidth also translates into unfairness in bitrate
selection.

Stateful bitrate selection: The goal of the stateful bitrate selection
approach is to ensure that different players will eventually converge

9Using the update function bwnext = 0.9bwprev + 0.1bwcur

 0

 200000

 400000

 600000

 800000

 1e+06

 0 100 200 300 400 500 600m
a
x
-m

in
 b

it
ra

te
 (

b
p
s
)

time(s)

Periodic
Randomized

 800000

 1.6e+06

 2.4e+06

 3.2e+06

 0 100 200 300 400 500 600 700s
m

o
o
th

e
d
 b

/w
 (

b
p
s
)

time(s)

Randomized scheduling
Player I
Player II
Player III

 800000

 1.6e+06

 2.4e+06

 3.2e+06

 0 100 200 300 400 500 600 700s
m

o
o
th

e
d
 b

/w
 (

b
p
s
)

time(s)

Period scheduling
Player I
Player II
Player III

Figure 12: Randomized scheduling avoids start-time biases and
ensures a fair allocation of bandwidth

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Unfairness index

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5
Inefficiency index

Periodic scheduler (baseline)
Randomized scheduler w/o stateful selection
Randomized scheduler w. stateful selection

Figure 13: Stateful bitrate selection improves fairness with
minimal impact on efficiency.

to a fair allocation. To validate this, we consider ten players shar-
ing a bottleneck link of 10 Mbps. Each player picks a start time
uniformly at random in the interval of [0, 30] seconds.

Figure 13 compares the efficiency and fairness achieved by three
player settings: (1) fixed scheduler with stateless selection (base-
line), (2) randomized scheduler with stateless selection, and (3)
randomized scheduler with stateful selection. (We disable delayed
update and use harmonic mean estimator for all three.) We see
that stateful selection works well in conjunction with randomized
scheduling and further improves the fairness. One concern with
stateful bitrate selection is that players may increase/decrease bi-
trate synchronously and lead to over/under utilization (low effi-
ciency). The result also shows that the efficiency is almost unaf-
fected and may even be better than the stateless approach. The
reason is that once the players converge to a fair allocation, all sub-
sequent switches are only between two consecutive levels, which
keeps the inefficiency small.

Delayed Update: The parameter α provides a way to tune the
tradeoff between efficiency and stability. We examine this trade-
off with different number of players and bandwidth variability in
Figure 14. (We discuss the exact variability model in Section 6.4).
From the bottom-right to top-left, α increases from 5 to 30; larger
α provides higher efficiency at the cost of stability (Section 3). We
suggest a guideline of picking the α that is close to the “knee” of
the curve or the point closest to the origin. Across most scenarios,

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6

In
s
ta

b
ili

ty
 i
n
d
e
x

Inefficiency index

α=12

3 players, bw variability=0.3
3 players, bw variability=0.1
6 players, bw variability=0.3
6 players, bw variability=0.1

12 players, bw variability=0.3
12 players, bw variability=0.1

Figure 14: Tradeoff of delayed update between efficiency and
stability: ‘knee’ points using α = 12.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Unfairness index

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Inefficiency index

Base
Base+Randomized

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Instability index

Base+Randomized+Stateful
Base+Randomized+Stateful+Delay

Figure 15: Break-down evaluation of FESTIVE.

we find this roughly corresponds to α = 12; we use this value for
FESTIVE.

6.3 How critical is each component?
To see the effect of each component in FESTIVE, Figure 15 shows

the effect of incrementally adding the randomized scheduler, state-
ful bitrate selection, delayed update to the baseline. For this result,
we consider the scenario with 10 players competing for a 10 Mbps
bottleneck link. First, we see that the randomized scheduler im-
proves the fairness and efficiency over the baseline (by avoiding
bias of starting time), and stateful bitrate selection further improves
these (by avoiding bias of initial bitrates). However, these compo-
nents are likely to increase the instability relative to the baseline.
The delayed update then helps control this tradeoff between effi-
ciency and stability; it reduces the efficiency slightly but improves
stability significantly.

6.4 Robustness
Last, we investigate FESTIVE’s performance in the presence of

varying number of concurrent players, bandwidth variability and
available bitrate sets.

Number of concurrent players: We fix the total bandwidth at
10Mbps and vary the number of concurrent players from 2 to 30.
In each run, the players arrive randomly within the first 30 seconds
after the first player starts. For each setting, we report the median
and error bars over 15 runs for both baseline and FESTIVE in Fig-
ure 16. First, we see that FESTIVE outperforms the baseline across
all settings and that the performance variability of FESTIVE is much
smaller. Second, we see that unfairness and instability issues are
lower when there are too few or too many players. In the former
case, all player can sustain the highest bitrate and in the latter case
the only feasible solution is for all players to choose the lowest bi-
trate (350 Kbps). Finally, we see an interesting effect where the
metrics are not monotone in the number of players. Specifically,
the case of 12 and 20 players are much better than their nearby

points. This is essentially an effect of the discreteness of the bitrate
levels. For example, when 12 players share a 10Mbps bottleneck,
each player is very likely to stay at 845Kbps and saturate the link.
However, at 10 players or 14 players, the player will try lower or
higher bitrate because there is no optimal saturation bitrate.

 0

 0.02

 0.04

 0.06

 0.08

 0 0.05 0.1 0.15 0.2 0.25 0.3

In
s
ta

b
ili

ty
 i
n

d
e

x

Bandwidth variability

Baseline
FESTIVE

Figure 17: Instability vs. bandwidth variability when 10 play-
ers compete for a 10Mbps (expected) link

Bandwidth variability: We focus on the 10 player scenario with
an expected bottleneck bandwidth of 10 Mbps. All players arrive
within the first 30 seconds and we report the results from 15 runs
per parameter. This bottleneck bandwidth is an expected value,
because we vary the bandwidth every 20 second by picking a value
uniformly at random [BW × (1 − ε),BW × (1 + ε)]. Figure 17
plots the performance of baseline and FESTIVE as a function of this
parameter ε. We see that FESTIVE is more robust to the bandwidth
variability (from ε = 0.05 to ε = 0.3) and in fact the improvement
with FESTIVE increases with higher variability.

Unfairness Instability Inefficiency
g Base. FESTIVE Base. FESTIVE Base. FESTIVE

1.2 0.128 0.071 0.052 0.039 0.111 0.126
1.4 0.154 0.061 0.049 0.005 0.125 0.095
1.6 0.172 0.076 0.002 0.0 0.104 0.117
1.8 0.184 0.051 0.040 0.0 0.133 0.121

Table 3: Performance metrics vs. bitrate gaps when 10 players
compete a bottleneck of 10Mbps

Available bitrates: Last, we test robustness to the set of avail-
able bitrate levels. We create a set of 10 available bitrate levels by
{bi = gi · 350Kbps}i=0,...9, where g controls the gap between the
bitrates, i.e., how discrete the bitrate levels are. A value of g close
to 1 means that the gaps between consecutive levels are small and
vice versa for larger g. Table 3 compares the performance of base-
line and FESTIVE under g. FESTIVE consistently outperforms the
baseline. The baseline becomes more unfair as g increases while
FESTIVE works robust against higher g.

6.5 Summary of main results
In summary, our evaluation shows

• FESTIVE outperforms existing solutions in terms of fairness by
≥40%, stability by ≥50%, and efficiency by ≥10%.
• Each component of FESTIVE works as predicted by our analysis

and is necessary as they complement each other.
• FESTIVE is robust against various number of players, band-

width variability, and different available bitrate set.

7. DISCUSSION
We discuss three outstanding issues w.r.t the design of adaptive

video players.

Heterogeneous algorithms: With the diversity of video content
providers, we expect that there will be heterogeneity in player de-
signs. So far, we have considered a homogeneous settings where all

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30

In
s
ta

b
ili

ty
 i
n

d
e

x

of players

Baseline
FESTIVE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

In
e

ff
ic

ie
n

c
y
 i
n

d
e

x

of players

Baseline
FESTIVE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

U
n

fa
ir
n

e
s
s
 i
n

d
e

x

of players

Baseline
FESTIVE

Figure 16: Performance of FESTIVE and the baseline player as a function of the number of concurrent players. Here, we assume the
players are sharing a 10 Mbps bottleneck link.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 100 200 300 400 500 600

b
it
ra

te

time(s)

Emulated SmoothStreaming
Emulated Netflix

Emulated Akamai
Emulated FESTIVE

Figure 18: 8 emulated players including FESTIVE, Smooth-
Streaming, Netflix and Akamai HD with random start time
share a bottleneck of 8Mbps, and 4 of them are presented. FES-
TIVE appears to be more stable and stays on an efficient bitrate.

players run FESTIVE or existing commercial algorithms. One nat-
ural concern here is the interaction between different players. As
a preliminary result, we consider a mixed workload with 8 emu-
lated players, 2 players each for FESTIVE, SmoothStreaming, Net-
flix and Akamai HD, sharing a 8Mbps bottleneck link. For a fair
comparison, we use emulated players and let them use the same
set of bitrates found on respective demo sites. Each player arrives
at random in the first 20 seconds. We pick one player instance for
each algorithm and show the time series of bitrate in Figure 18. We
see that FESTIVE is more stable than the other players, and spends
most of the time at an efficient bitrate (1130kbps). There are many
other questions with heterogeneous players; e.g., Are there specific
cases of unfairness or starvation when a particular combination of
players compete? Can we incentivize players to be “good citizens”
and avoid being greedy? Is there an analog to TCP-friendliness?
Studying the interaction between multiple heterogeneous players is
an interesting and rich direction of future work.

Interaction with non-video traffic: Another natural question is
how video adaptation logic interacts with non-video traffic (e.g.,
short Web transfers) [32]. Because FESTIVE retains the single-
connection HTTP-based interface, it retains TCP-level friendliness
per chunk. We use an example scenario of Figure 19 to confirm the
intuition. Here, 3 FESTIVE players share a bottleneck with avail-
able bandwidth of 3Mbps, and one short TCP session joins at the
30th second and two short TCP sessions join at the 150th second.
The gray line gives the bitrate selected by one FESTIVE instance.
The figure shows that when TCP sessions join, FESTIVE will still
achieve a fair share of the bandwidth when downloading a chunk;
FESTIVE trades efficiency for stability, so bitrate almost does not
vary with the interference of short TCP sessions. At the same time,
the TCP sessions are able to get a throughput that is not too much
less than the fair share. This is only a preliminary result and we
need to more systematically explore these effects.

Wide-area effects: Another interesting direction of future work is
to see if and how the efficiency, fairness, and stability issues man-
ifest in the wide area. For instance, wide area effects imply more
background traffic, less synchronization but many more players,

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 50 100 150 200

T
h

ro
u

g
h

p
u

t

time(s)

FESTIVE
TCP

FESTIVE bitrate

Figure 19: FESTIVE vs. short TCP sessions: short TCP sessions
do not impact FESTIVE and vice versa.

multiple bottlenecks, interaction with router buffer sizing, among a
host of other factors.

8. RELATED WORK
Measurements of commercial players: Early studies focused
on the bitrate switching behavior of a single player in response
to bandwidth variation (e.g., [15, 19, 40, 44]). More recent work
analyzes fairness, efficiency, and stability when two players share
a bottleneck link [14, 27]). These have identified the periodic be-
havior as a potential problem similar to Section 3. Recent work
has also identified some of the biased feedback loop effects we ob-
serve [28]. We confirm these problems on a broader set of commer-
cial players and extend these beyond the two-player setting. More
importantly, we provide a detailed understanding of the causes and
present a concrete design to address these shortcomings.
Quality metrics: A key aspect in video delivery is the need to op-
timize user-perceived quality of experience. There is evidence that
users are sensitive to frequent switches (e.g., [18]), sudden changes
in bitrate (e.g., [39]), and buffering (e.g., [21]). The design of a
good QoE metric (e.g., [47] [16]) is still an active area of research.
As our understanding of video QoE matures, we can extend FES-
TIVE to be QoE-aware.
Player optimizations: The use of multiple connections or multi-
path solutions can improve throughput and reduce the bandwidth
variability (e.g., [25, 26, 31, 33]). However, these require changes
to the application stack and/or server-side support. Furthermore,
they may not be friendly to background traffic. In contrast, FES-
TIVE retains the same single TCP connection interface and requires
no modifications to the server infrastructure or the end-host stack.
Other approaches use better bandwidth prediction and stability tech-
niques (e.g., [34, 38, 40]). These proposals are largely complemen-
tary to the design of FESTIVE.
Server and network-level solutions: This includes the use of
server-side bitrate switching (e.g., [32]), TCP changes to avoid bursts
(e.g., [24]), and in-network bandwidth management and caching
(e.g., [27, 40, 45]). Our focus is on client-side mechanisms with-
out requiring changes to the network or servers. While these ap-
proaches will further improve the performance, we believe that
a client-side solution is fundamentally necessary for two reasons.
First, the client is in the best position to detect and respond to dy-

namics. Second, recent work suggests the need for cross-CDN op-
timizations that implies the need for keeping minimal state in the
network or servers [35, 36].

Video Coding: Layered or multiple description coding offers more
graceful degradation of video quality (e.g., [17]). However, they
impose higher overhead on content providers and the delivery in-
frastructure and thus we do not consider this class of solutions.

9. CONCLUSIONS
With the growth of video traffic, we are revisiting classical net-

working problems w.r.t resource sharing and adaptation. These
problems have a rich literature with solutions at the network (e.g., [20]),
transport (e.g., [29]), and application layers (e.g., [17, 37]). How-
ever, there are several factors that make the problem unique and
challenging in today’s HTTP-based video delivery: the granularity
of the control decisions, the timescales of adaptation, the nature of
feedback from the network, and the interactions with other (inde-
pedent) control loops in lower layers of the networking stack.

In this work, we have taken a pragmatic stance to work within
the constraints that have spurred the growth of video traffic—using
HTTP, no modifications to end-host stacks, and imposing no mod-
ification to the network and CDN server infrastructure. Within this
context, we provide a principled understanding of problems that
lead to inefficiency, unfairness, and instability when multiple play-
ers compete for a bottleneck link. Building on these insights, we
provide guidelines on designing better scheduling and bitrate selec-
tion techniques to overcome these problems.

There are several open questions with respect to co-existence
of video and non-video traffic, competition among heterogeneous
players (e.g., FESTIVE vs. legacy players?), the interaction with
management optimizations in other aspects of the video delivery
system [36], and exploring “clean-slate” solutions that can redesign
network and transport layers to support video traffic [30]. We hope
that our work acts as a fillip to address these broad spectrum of
issues as new standards for video transport emerge [13].

10. ACKNOWLEDGEMENTS
We are grateful to our shepherd Rittwik Jana and anonymous

reviewers for their feedback. This research was supported in part
by the National Science Foundation under awards CNS-1040757,
CNS-1040800, and CNS-1040801.

11. REFERENCES
[1] Adobe http dynamic streaming.

www.adobe.com/products/hds-dynamic-streaming.html.
[2] Adobe osmf player. http://www.osmf.org.
[3] Akamai hd adaptive streaming.

http://wwwns.akamai.com/hdnetwork/demo/index.html.
[4] Apple quicktime. www.apple.com/quicktime/download/.
[5] Cisco forecast. http://goo.gl/hHzW4.
[6] Crystal-clear hd with adobe http dynamic streaming. http://

zeridemo-f.akamaihd.net/content/adobe/demo/1080p.f4m.
[7] Harmonic mean.

http://en.wikipedia.org/wiki/Harmonic_mean.
[8] Mail service costs Netflix 20 times more than streaming.

http://goo.gl/msuYK.
[9] Osmf 2.0 release code. http://sourceforge.net/projects/osmf.

adobe/files/latest/download.
[10] Real-time messaging protocol. www.adobe.com/devnet/rtmp.html.
[11] Smoothstreaming experience.

http://www.iis.net/media/experiencesmoothstreaming.
[12] Smoothstreaming protocol.

http://go.microsoft.com/?linkid=9682896.
[13] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the

Internet. IEEE Multimedia, 2011.
[14] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What Happens

when HTTP Adaptive Streaming Players Compete for Bandwidth? In Proc.
NOSSDAV, 2012.

[15] S. Akhshabi, A. Begen, and C. Dovrolis. An Experimental Evaluation of Rate
Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. MMSys,
2011.

[16] A. Balachandran, V. Sekar, A. Akella, S. Stoica, and H. Zhang. A quest for an
internet video quality-of-experience metric. 2012.

[17] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to
asynchronous reliable multicast. IEEE JSAC, Oct. 2002.

[18] N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality.
International Journal of Human-Computer Studies, 2006.

[19] L. De Cicco and S. Mascolo. An experimental investigation of the akamai
adaptive video streaming. HCI in Work and Learning, Life and Leisure.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In Proc. SIGCOMM, 1989.

[21] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and
H. Zhang. Understanding the impact of video quality on user engagement. In
Proc. SIGCOMM, 2011.

[22] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions
Between HTTP Adaptive Streaming and TCP. In Proc. NOSSDAV, 2012.

[23] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao. Youtube
everywhere: Impact of device and infrastructure synergies on user experience.
In Proc. IMC, 2011.

[24] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting
YouTube Video Streaming. In Proc. USENIX ATC, 2012.

[25] S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed and Adaptive
HTTP Streaming. In Proc. ICME, 2011.

[26] D. Havey, R. Chertov, and K. Almeroth. Receiver driven rate adaptation for
wireless multimedia applications. In Proc. MMSys, 2012.

[27] R. Houdaille and S. Gouache. Shaping http adaptive streams for a better user
experience. In Proc. MMSys, 2012.

[28] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC,
2012.

[29] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer
Communication Review, volume 18, pages 314–329. ACM, 1988.

[30] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking Named Content. In Proc. CoNext, 2009.

[31] R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of http-based
request-response streams for internet video streaming. Multimedia Systems,
pages 245–256, 2011.

[32] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive
Live Video Streaming. In Proc. of ACM Multimedia Systems Conference, 2011.

[33] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Streaming.
In Proc. ICCCN, 2011.

[34] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive http
streaming. Proc. ACM MMSys, 2011.

[35] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and
Performance for Content Multihoming. In Proc. SIGCOMM, 2012.

[36] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A
Case for a Coordinated Internet Video Control Plane. In SIGCOMM, 2012.

[37] S. McCanne, M. Vetterli, and V. Jacobson. Low-complexity video coding for
receiver-driven layered multicast. IEEE JSAC, Aug. 1997.

[38] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation Algorithm for
Adaptive Streaming over HTTP. In Proc. Packet Video Workshop, 2012.

[39] R. K. P. Mok, E. W. W. Chan, X. Luo, and R. K. C. Chang. Inferring the QoE of
HTTP Video Streaming from User-Viewing Activities . In SIGCOMM
W-MUST, 2011.

[40] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A
QoE-aware DASH system. In Proc. MMSys, 2012.

[41] R. Pantos. Http live streaming. 2011.
[42] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future

internet. In Proc. HotNets, 2010.
[43] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and

discrimination for resource allocation in shared computer system. Technical
Report, DEC, 1984.

[44] A. Rao, Y.-S. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous.
Network Characteristics of Video Streaming Traffic. In Proc. CoNext, 2011.

[45] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multimedia proxy
cache for internet streaming. In Proc. NOSSDAV, 2001.

[46] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
ACM SIGCOMM Computer Communication Review, 27(1):31–41, 1997.

[47] H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates, Y. Zhang, A. Basso, and
M. Chen. Q-score: Proactive Service Quality Assessment in a Large IPTV
System. In Proc. IMC, 2011.

