
ACP Summer School on Practical Constraint Programming
June 16-20, 2014, Bologna, Italy

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

vanhoeve@andrew.cmu.edu

Hybrid Methods
(here: CP+OR)

Motivation

Benefits of CP
• Modeling power
• Inference methods
• Advanced search
• Exploits local structure

Benefits of OR
• Optimization algorithms
• Relaxation methods
• Duality theory
• Exploits global structure

Integrated methods can combine these
complementary strengths

Can lead to several orders of magnitude of
computational advantage

2

Some additional references

• Conference series CPAIOR
– integration of techniques from CP, AI, and OR
– http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
– online master classes/tutorials
– book ‘Hybrid Optimization’ [Van Hentenryck&Milano, 2011]

• Other tutorials
– CP summer school 2011: ‘Integrating CP and

mathematical programming’ [John Hooker]

– http://ba.gsia.cmu.edu/jnh/slides.html

• Success stories
– http://moya.bus.miami.edu/~tallys/integrated.php

3

Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders
– column generation

4

Propagation with Network Flows

J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 209-215,
1996. 5

Network Flows

Let G=(V,A) be a directed graph with vertex set V and arc set A. To each arc
a∈A we assign a capacity function [d(a),c(a)] and a weight function w(a).

Let s,t ∈ V. A function f: A→ R is called an s-t flow (or a flow) if

• f(a) ≥ 0 for all a∈A
• ∑a enters v f(a) = ∑a leaves v f(a) for all v∈V (flow conservation)
• d(a) ≤ f(a) ≤ c(a) for all a∈A

Define the cost of flow f as ∑a∈A w(a)f(a). A minimum-cost flow is a flow with
minimum cost.

[0,3], w=0

d

s

a

b c

t

[2,4], w=2

[0
,2

],
w

=3

[0
,2

],
w

=1

1

1
1

2

1

1

1

0

auxiliary arc to ensure flow conservation

flow (in blue) with cost 10

2

[0,2], w=3

6

Example: Network flow for alldifferent

Fact: matching in bipartite graph ⇔
integer flow in directed bipartite graph

Step 1: direct edges from X to D(X)
Step 2: add a source s and sink t
Step 3: connect s to X, and D(X) to t
Step 4: add special arc (t,s)

all arcs have capacity [0,1] and weight 0
except arc (t,s) with capacity [0, min{|X|,|D(X)|}]

x1 x2 x3

a b c

s

t

D(X)

X

[0,1]

[0,1]

[0,1]

[0,3] 1 1 1

11 1

1 1 1

3

7

Cardinality constraints

• The global cardinality constraint restricts the number
of times certain values can be taken in a solution

• Example: We need to assign 75 employees to shifts.
Each employee works one shift. For each shift, we
have a lower and upper demand.

shift 1 2 3 4 5 6

min 10 12 16 10 6 4

max 14 14 20 14 12 8

D(xi) = {1, 2, 3, 4, 5, 6} for i = 1, 2,…, 75

gcc(x1,…,x75, min, max)
8

Propagation for cardinality constraints

Definition: Let X be a set of variables with D(x) ⊆ V for all x∈X
(for some set V). Let L and U be vectors of non-negative
integers over V such that L[v] ≤ U[v] for all v∈V.
The constraint gcc(X, L, U) is defined as the conjunction

∧v∈V (L[v] ≤ ∑x∈X (x=v) ≤ U[v])

Questions:
1. Can we determine in polynomial time whether the

constraint is consistent (satisfiable)?
2. Can we establish domain consistency (remove all

inconsistent domain values) in polynomial time?

9

Network representation

• Lemma [Regin, 1996]: Solution to gcc is equivalent to
particular network flow
– similar to bipartite network for alldifferent
– node set defined by variables and domain values, one

source s and one sink t
– define arc (x,v) for all x∈X, v∈D(x) with capacity [0,1]
– define arcs from s to x for all x∈X with capacity [1,1]
– define arcs from v to t for all v∈V with capacity [L[v],U[v]]

• Feasible integer flow corresponds to solution to gcc
• Note: If L[v]=0, U[v]=1 for all v∈V then gcc is

equivalent to alldifferent

10

Example

gcc network

11

Domain consistency for gcc

• Determining consistency: compute network flow
– Using Ford & Fulkerson’s augmenting path algorithm, this

can be done in O(mn) time for (n is number of variables,
m is number of edges in the graph)

– Can be improved to O(m√n) [Quimper at al., 2004]

• Naïve domain consistency
– Fix flow of each arc to 1, and apply consistency check.

Remove arc if no solution. O(m2√n) time.

• More efficient algorithm: use residual network
– similar to SCCs for alldifferent
– domain consistency in O(m) time
– maintain residual network incrementally

12

Optimization Constraints

• In the CP literature, ‘optimization’ constraints refer to
constraints that represent a structure commonly
identified with optimization
– usually linked to the objective function (e.g., minimize cost)
– sometimes stand-alone structure (budget limit, risk level,

etc.)
– for example, knapsack constraint

• For any constraint, a weighted version can be
obtained by applying a weight measure on the variable
assignments, and restricting the total weight to be
within a threshold

13

GCC with costs

• The classical weighted version of the gcc is obtained
by associating a weight w(x,v) to each pair x∈X, v∈V.
Let z be a variable representing the total weight. Then

cost_gcc(X, L, U, z, w) =

gcc(X,L,U) ∧ ∑x∈X, x=v w(x,v) ≤ z

• In other words, we restrict the solutions to those that
have a weight at most max(D(z))

14

Domain filtering for weighted gcc

1. Determine consistency of the constraint
2. Remove all domain values from X that do not belong

to a solution with weight ≤ max(D(z))
3. Filter domain of z

– i.e., increase min(D(z)) to the minimum weight value over
all solutions, if applicable

15

Determining consistency of cost_gcc

• Once again, we can exploit the correspondence with a
(weighted) network flow [Regin 1999, 2002]:
A solution to cost_gcc corresponds to a weighted
network flow with total weight ≤ max(D(z))

• We can test consistency of the cost_gcc by computing
a minimum-cost flow

16

Example

gcc network

w(x,v)

17

Time complexity

• A minimum-cost flow can be found with the classical ‘successive
shortest paths’ algorithm of Ford & Fulkerson
– The flow is successively augmented along the shortest path in the

residual network
– Finding the shortest path takes O(m + n log n) time (for m edges, n

variables)
– In general, this yields a pseudo-polynomial algorithm, as it depends on

the cost of the flow. However, we compute at most n shortest paths
(one for each variable)

– Overall running time is O(n(m + n log n)) time

• Naïve domain consistency in O(nm(m + n log n))
• Can be improved to O(min{n,|V|}(m + n log n))

– all shortest paths in residual graph

18

Other constraints

• Network flows have been applied to several other
global constraints
– soft alldifferent
– soft cardinality constraint
– soft regular constraint
– cardinality constraints in weighted CSPs
– sequence constraint [Maher et al. 2008] [Downing et al. 2012]

– resource scheduling [Baptiste et al. 2001] [Lombardi&Milano, 2012]
[Bessiere et al. 2014]

– …

• Very powerful and generic technique for handling
global constraints

[v.H. “Over-Constrained
Problems”, 2011]

19

Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders
– column generation

20

Linear Programming

• LP model is restricted to linear constraints and continuous
variables

• Linear programs can be written in the following standard form:

or, using matrix notation:

21

Benefits of Linear Programming

• Solvable in polynomial time
– very scalable (millions of variables and constraints)

• Many real-world applications can be modeled and
solved using LP
– from production planning to data mining

• LP models are very useful as relaxation for integer
decision problems
– LP relaxation can be strengthened by adding constraints

(cuts) based on integrality

• Well-understood theoretical properties
– e.g., duality theory

22

LP-based domain filtering

• Suppose we have a LP relaxation available for our problem

• We could establish “LP bounds consistency” on the domains of
the variables:

For each variable xi

change objective to min xi and solve LP: lower bound LBi

change objective to max xi and solve LP: upper bound UBi

xi ϵ [LBi , UBi]

• Time-consuming (although it can pay off, e.g., in nonlinear
programming problems)

23

LP-based domain filtering

• Instead of min/max of each variable, exploit reduced costs as
more efficient approximation
– marginal impact on objective for each variable

[Focacci, Lodi, and Milano, 1999, 2002]

• In the following, we consider ‘optimization constraints’ again:
– associate a weight c(x,v) to each pair x∈X, v∈D(x)
– z is a variable representing the total weight

cost_C(X, z, c) = C(X) ∧ ∑x∈X, x=v w(x,v) ≤ z

24

Creating a generic LP relaxation

• Create mapping between linear model and CP model by
introducing binary variables yij for all i∈{1,…,n} and j∈D(xi)
such that

• To ensure that each variable xi is assigned a value, we add the
following constraints to the linear model:

• The objective is naturally stated as

25

LP relaxation (cont’d)

• The next task is to represent the actual constraint, and this
depends on the combinatorial structure

• For example, if the constraint contains a permutation structure
(such as the alldifferent), we can add the constraints:

• (Note that specific cuts known from MIP may be added to
strengthen the LP)

• After the linear model is stated, we obtain the natural LP
relaxation by removing the integrality condition on yij :

26

Reduced-cost based filtering

• The output of the LP solution is an optimal solution value z*, a
(fractional) value for each variable yij, and an associated
reduced cost

• Recall that represents the marginal change in the objective
value when variable yij is forced in the solution
– e.g., if yij = 1 then z* increases by

• But yij represents

• Reduced-cost based filtering:

(This is a well-known technique in OR, called ‘variable fixing’)

27

Pros and Cons

• Potential drawbacks:
– The filtering power depends directly on the quality of the LP relaxation,

and it may be hard to find an effective relaxation
– Solving a LP using the simplex method may take much more time than

propagating the constraint using a combinatorial filtering algorithm

• Potential benefits:
– It’s very generic; it works for any LP relaxation of a single constraint, a

combination of constraints, or for the entire problem
– Can be generated automatically from CP model (Xpress-Kalis)
– New insights in MIP/LP solving can have immediate impact
– For several constraint types, there exist fast and incremental

combinatorial techniques to solve the LP relaxation
– This type optimality-based filtering complements nicely the feasibility-

based filtering of CP; several applications cannot be solved with CP
otherwise

28

Example Application: TSP

• CP model
• LP relaxation

– Assignment Problem

• Impact of reduced-cost based filtering

Graph G = (V,E) with vertex
set V and edge set E

|V| = n

w(i,j): distance between i and j

29

CP models for the TSP

• Permutation model
– variable posi represents the i-th city to be visited
– (can introduce dummy node posn+1 = pos1)

min ∑i w(posi, posi+1)
s.t. alldifferent(pos1, …, posn)

• Successor model
– variable nexti represents the immediate successor of city i

min ∑i w(i, nexti)
s.t. alldifferent(next1, …, nextn)

path(next1, …, nextn)

both models decouple the
objective and the circuit

(Hamiltonian Path, not always
supported by the CP solver) 30

More CP models

• Combined model (still decoupled)

• Integrated model

min z
s.t. alldifferent(next1, …, nextn) [redundant]

WeightedPath(next, w, z)

(Note: most CP solvers do not support this constraint)

[Focacci et al., 1999, 2002]

31

Relaxations for TSP

• An integrated model using WeightedPath(next, w, z) allows to
apply an LP relaxation and perform reduced-cost based filtering

• Observe that the TSP is a combination of two constraints
– The degree of each node is 2
– The solution is connected (no subtours)

• Relaxations:
– relax connectedness: Assignment Problem
– relax degree constraints: 1-Tree Relaxation 3

2
4

5

6

1

32

3

2
4

5

6

1

Assignment Problem

Binary variable yij represents whether the tour goes from i to j

∑∑
∈ ∈

=
Vi Vj

ijij ywzmin

Vjiy

Viy

Vjy

ij

Vj
ij

Vi
ij

∈∀≤≤

∈∀=

∈∀=

∑

∑

∈

∈

,,10

,1

,1s.t.

Mapping between CP and LP model
nexti = j ⇔ yij = 1
nexti ≠ j ⇔ yij = 0

33

3

2
4

5

6

1

Benefits of AP relaxation
• Continuous relaxation provides

integer solutions (total
unimodularity)

• Specialized O(n3) algorithm
(Hungarian method)

• Incremental O(n2) running time
• Reduced costs come for free
• Works well on asymmetric TSP

Assignment Problem

Binary variable yij represents whether the tour goes from i to j

∑∑
∈ ∈

=
Vi Vj

ijij ywzmin

Vjiy

Viy

Vjy

ij

Vj
ij

Vi
ij

∈∀≤≤

∈∀=

∈∀=

∑

∑

∈

∈

,,10

,1

,1s.t.

Mapping between CP and LP model
nexti = j ⇔ yij = 1
nexti ≠ j ⇔ yij = 0

34

Computational results for TSP-TW
Dyn.Prog. Branch&Cut CP+LP

35

Langrangean Relaxation

Move subset (or all) of constraints into the objective with ‘penalty’
multipliers μ:

Weak duality: for any choice of μ, Lagrangean L(μ) provides a
lower bound on the original LP

Goal: find optimal μ (providing the best bound) via

36

Motivation for using Lagrangeans

• Lagrangean relaxations can be applied to nonlinear
programming problems (NLPs), LPs, and in the context of
integer programming

• Lagrangean relaxation can provide better bounds than LP
relaxation

• The Lagrangean dual generalizes LP duality
• It provides domain filtering analogous to that based on LP

duality [Sellmann, CP 2004]

• Lagrangean relaxation can dualize ‘difficult’ constraints
– Can exploit the problem structure, e.g., the Lagrangean relaxation may

decouple, or L(μ) may be very fast to solve combinatorially

• Next application: Lagrangean relaxation for TSP
37

Recall: Relaxations for TSP

• An integrated model using WeightedPath(next, w, z) allows to
apply an LP relaxation and perform reduced-cost based filtering

• Observe that the TSP is a combination of two constraints
– The degree of each node is 2
– The solution is connected (no sub tours)

• Relaxations:
– relax connectedness: Assignment Problem
– relax degree constraints: 1-Tree Relaxation 3

2
4

5

6

1

38

The 1-Tree Relaxation for TSP

• Relaxation of the degree constraints [Held&Karp, 1970, 1971]

• A minimum spanning tree gives such a relaxation
• A 1-tree is a stronger relaxation, which can be

obtained by:
– Choosing any node v (which is called the 1-node)
– Building a minimum spanning tree T on G = (V\{v}, E)
– Adding the smallest two edges linking v to T

• For n vertices, a 1-tree contains n edges

P.S. an MST can be found in
O(m α(m,n)) time 39

The Held and Karp bound for TSP

The 1-tree can be tightened through the use of Lagrangean
relaxation by relaxing the degree constraints in the TSP model:

Let binary variable xe represent whether edge e is used

40

The Held and Karp bound for TSP

Lagrangean relaxation with multipliers π (penalties for node
degree violation):

How to find the best penalties π?
• In general, subgradient optimization
• But here we can exploit a

combinatorial interpretation
• No need to solve LP

41

Held-Karp iteration

• Solve 1-tree w.r.t. updated edge weights w’(i,j) = w(i,j) – πi – πj

• Optimal 1-tree T gives lower bound: cost(T) + 2 ∑i πi

• If T is not a tour, then we iteratively update the penalties as
πi += (2-degree(i))*β (step size β different per iteration)

and repeat

π2

π4

π3

π1

w’(2,4) = w(2,4) – π2 – π4

42

Example

0

0

0

0

5

0

-5

0

β = 5

β = 3

1010

10

5

5

5

55

10

10

5

10

Cost = 25

5

0

-5

0

Cost = 25

55

10

10

5

10

88

10

7

5

7

2

0

-2

0

Cost = 30

43

How can we exploit 1-tree in CP?

• We need to reason on the graph structure
– manipulate the graph, remove costly edges, etc.

• Not easily done with ‘next’ and ‘pos’ variables
– e.g., how can we enforce that a given edge e=(i,j) is

mandatory?
– (nexti = j or nextj = i) ?
– (posk = i) ⇒ ((posk+1 = j) or (posk-1 = j)) ?

• Ideally, we want to have access to the graph rather
than local successor/predecessor information
– modify definition of global constraint

44

One more CP model for the TSP

Integrated model based on graph representation

min z

s.t. weighted-circuit(X, G, z)

• G=(V,E,w) is the graph with vertex set V, edge set E, weights w

• X is a set variable representing the set of edges that will form
the circuit
– Domain D(X) = [L(X), U(X)], with fixed cardinality |V| in this case
– Lower bound L(X) is set of mandatory edges
– Upper bound U(X) is set of possible edges

• z is a variable representing the total edge weight

[Benchimol et al., 2012]

45

Domain Filtering

• Given constraint

weighted-circuit(X, G=(V,E,w), z)

• Apply the 1-tree relaxation to
– remove sub-optimal edges from U(X)
– force mandatory edges into L(X)
– update bounds of z

• For simplicity, the presentation of the algorithms are restricted
to G = (V\{1}, E)

46

Removing non-tree edges

• The marginal cost of a non-tree edge e is the additional cost of
forcing e in the solution:

c’e = cost(T(e)) − cost(T)
• Given a current best solution UB, edge e can be removed if

cost(T(e)) > UB, or
c’e + cost(T) > UB

Replacement cost of
• (1,2) is 4 - 2 = 2
• (6,7) is 5 - 5 = 0

47

Computing marginal costs

Basic algorithm for computing marginal edge costs:
• For each non-tree edge e=(i,j)

– find the unique i-j path Pe in the tree
– the marginal cost of e is ce − max(ca|a ∈ Pe)

Complexity: O(mn), since Pe can be found in O(n) time by DFS

Can be further improved
to O(m + n + n log n)

[Regin, 2008]

48

Impact of edge filtering

upper bound = 700 upper bound = 675

st70 from TSPLIB

49

Forcing tree edges

• The replacement cost of a tree edge e is the additional cost
when e is removed from the tree:

cr
e = cost(T \ e) − cost(T)

• Given a current best solution UB, edge e is mandatory if
cost(T \ e) > UB, or cr

e + cost(T) > UB

Replacement cost of (1,4)?
we need to find the cheapest
edge to reconnect: 3 - 1 = 2

50

Computing replacement costs

1. Compute minimum spanning tree T in G
2. Mark all edges in T as ‘unmarked’
3. Consider non-tree edges, ordered by non-decreasing weight:

• For non-tree edge (i,j), traverse the i-j path in T
• Mark all unmarked edges e on this path, and assign cr

e = cij - ce

4. Basic time complexity O(mn), or, at no extra cost if performed
together with the computation of marginal costs

non-tree edge mark edge replacement cost
(3,4) (1,4) 3 - 1 = 2

(1,3) 3 - 2 = 1

(1,2) (2,4) 4 - 2 = 2

(edge (1,4) already marked)
...

51

Improving the time complexity

• We can improve this complexity by ‘contracting’ the marked
edges (that is, we merge the extremities of the edge)
– First, root the minimum spanning tree
– Apply Tarjan’s ‘path compression’ technique during the algorithm
– This leads to a time complexity of O(mα(m,n))

1

3

5

7

9

4

2

8

6

52

Impact of filtering

previous CP approaches could handle 100 cities maximum (if at all)

randomly generated symmetric TSPs, time limit 1800s
average over 30 instances per size class

53

Comparison with ILOG CPO

Instances from TSPLIB, time limit 1800s
bayg29 was the largest instance for which CPO could find a solution

This relaxation-based filtering now allows CP to scale up to
rbg443 (asymmetric TSP), resp. a280 (symmetric TSP) [Fages & Lorca, 2012] 54

Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders
– column generation

55

Motivation

• Many practical applications are composed of several
subproblems
– facility location: assign orders to facilities with minimum

cost, but respect facility constraints
– vehicle routing: assign pick-up locations to trucks, while

respecting constraints on truck (capacity, driver time, …)

• By solving subproblems separately we can
– be more scalable (decrease solving time)
– exploit the subproblem structure

• OR-based decomposition methods can preserve
optimality

56

Motivation for integrated approach

Example: airline crew rostering
• Crew members are assigned a schedule from a huge list of

possible schedules
– this is a ‘set covering’ problem: relatively easy for IP/LP

• New schedules are added to the list as needed
– many challenging scheduling constraints – difficult for MIP, but

doable for CP

• Integrated OR/CP
decompositions broaden the
applicability to more complex
and larger applications

57

Benders Decomposition

When fixing variables x, the
resulting problem may
become much simpler:

Example: multi-machine scheduling
• variables x assign tasks to machines
• variables y give feasible/optimal schedules per machine
• when fixing x, the problem decouples into independent

single-machine scheduling problems on y

Benders decomposition can
be applied to problems of the
form:

58

Benders Decomposition (cont’d)

Iterative process
• Master problem: search over variables x

– optimal solution xk in iteration k

• Subproblems: search over variables y, given fixed xk

– optimal objective value vk

• Add Benders cut to master problem
v ≥ Bk(x) (such that Bk(xk) = vk)

Bounding
• Master is relaxation: gives lower bound
• Subproblem is restriction: gives upper bound
• Process repeats until the bounds meet

59

Logic-based Benders

• Original Benders decomposition applies to LP and NLP
problems
– Based on duality theory to obtain Benders cuts

• However, the concept is more general
– Logic-based Benders: generalizes LP-based Benders to other

types of inference methods, using ‘inference duality’
– Also allows additional types of ‘feasibility’ cuts (nogoods)
– Moreover, CP can be applied to solve the subproblems

[Jain & Grossmann, 2001] [Hooker & Ottoson, 2003]

60

Example: Task-Facility Allocation

task 1

ri dipi

task 2

task 3

task n

Facility 1

Facility 2

Facility m

task 1 task 3

task 2 task n

task 4

… …

Makespan

61

Logic-Based Benders Scheme

Find schedule
for each facility f

(CP)

Assign tasks to
facilities (MIP)

min Makespan

s.t. ∑f xif = 1, for all i

Makespan ≥ (∑i Lif xif) /Capacity(f), for all f

xif in {0,1}
task assign-

ments T(f)
Benders
cuts

min Max(EndOf(T(f)))
s.t. ParallelSchedule(T(f), Capacity(f))

[Hooker, 2007]

Benders cuts; LBs and feasibility

Cumulative Resource

62

Pros and Cons

• Benefits of Logic-based Benders
– reported orders of magnitude improvements in solving time

w.r.t. CP and MILP [Jain & Grossmann, 2001], [Hooker, 2007]

– CP models very suitable for more complex subproblems
such as scheduling, rostering, etc.

• Potential drawbacks
– finding good Benders cuts for specific application may be

challenging
– feasible solution may be found only at the very end of the

iterative process

63

Column Generation

• One of the most important techniques for solving very large
scale linear programming problems
– perhaps too many variables to load in memory

cTx

Ax b≥

min

s.t.

• Delayed column generation (or variable generation):
– start with subset of variables (‘restricted master problem’)
– iteratively add variables to model until optimality condition is met

x ≥ 0

64

Column Generation (cont’d)

Column generation process:
• Solve for subset of variables S (assume feasible)
• This gives shadow prices λ for the constraints
• Use reduced costs to price the variables not in S

• If < 0, variable xi may improve the solution:

add xi to S and repeat

• Otherwise, we are LP-optimal (since all reduced costs are
nonnegative)

How can we find the best variable to add?
65

Pricing Problem

• Solve optimization problem to find the variable (column) with
the minimum reduced cost:

• In many cases, columns of A can be described using a set of
(complicated) constraints

• Remarks:
– any negative reduced cost column suffices (need not be optimal)
– CP can be suitable method for solving pricing problem

66

Application: Capacitated Vehicle Routing

• Set of clients V, depot d
• Set of trucks (unlimited, equal)

• Parameters:
– distance matrix D
– load wj for each client j in V (unsplittable)
– truck capacity Q

• Goal:
– find an allocation of clients to trucks
– and a route for each truck
– respecting all constraints
– with minimum total distance

67

Problem Formulation: Restricted Master

• Let R be (small) set of feasible individual truck routes
– parameter arj = 1 if client j is on route r ϵ R
– parameter cr represent the length of route r ϵ R

• Let binary variable xr represent whether we use route r ϵ R

• Set covering formulation:

continuous LP relaxation

shadow price λj for all j

68

Pricing Problem

• Truck route similar to TSP, but
– not all locations need to be visited
– there is a capacity constraint on the trucks

• We can solve this problem in different ways
– shortest path problem in a layered graph
– single machine scheduling problem

69

Pricing as shortest path

i

j

...

depot

Binary variable yijk: travel from location i to j in step k
Constraints:
• variables yijk must represent a path from and to the depot
• we can visit each location at most once
• total load cannot exceed capacity Q

This model can be solved by IP (or dedicated algorithms)

distance D(i,j) - λj

client 1

client 2

client |V|

…

70

Benefit of using CP

• We can use CP to solve the pricing problem:
– represent the constrained shortest path as CP model,
– or we can view the pricing problem as a single machine scheduling

problem

• A major advantage is that CP allows to add many more side
constraints:
– time window constraints for the clients
– precedence relations due to stacking requirements
– union regulations for the drivers
– …

• In such cases, other methods such as IP may no longer be
effective

71

From TSP to machine scheduling

• Vehicle corresponds to ‘machine’ or ‘resource’
• Visiting a location corresponds to ‘activity’

D

1

2

3

4

5

D time

• Sequence-dependent setup times
 Executing activity j after activity i induces setup time Dij (distance)

• Minimize ‘makespan’ (or sum of the setup times)
• Activities cannot overlap (disjunctive resource)

D35

makespan

72

CP Model

• Activities (or interval variables):
– Optional activity visit[j] for each client j (duration: 0)
– StartAtDepot
– EndAtDepot

• Transition times between two activities i and j
– T[i,j] = D(i,j) – λj

73

CP Model (cont’d)

minimize EndAtDepot.end – ∑ j λj(Visit[j].present)

s.t. DisjunctiveResource(
Activities: Visit[j], StartAtDepot, EndAtDepot
Transition: T[i,j]
First: StartAtDepot
Last: EndAtDepot)

∑ j wj(Visit[j].present) ≤ Q

• Observe that this model naturally allows to add time windows
(on Visit[j]), precedence relations, etc

74

Demo

75

Discussion

• Benefits of column generation
– A small number of variables may suffice to prove optimality

of a problem with exponentially many variables
– Complicated constraints can be moved to subproblem
– Can stop at any time and have feasible solution (not the case

with Benders)

• Potential drawbacks / challenges
– LP-based column generation still fractional: need branch-

and-price method to be exact (can be challenging)
– For degenerate LPs, shadow prices may be non-informative
– Difficult to replace single columns: need sets of new

columns which are hard to find simultaneously
76

Summary

• Various ways to integrate CP and OR
– Global constraint propagation (e.g., network flows)
– Integrating relaxations (LP, Lagrangian, SDP)
– Decomposition methods (Benders, column generation)

• Very active research area
– SCIP solver [Achterberg et al. 2007-]

– CP/OR + local search [Michel&Van Hentenryck 2005-] [Benoist et al, 2011]

– SAT and CP reasoning in MIP solving [Achterberg et al. 2013]

– SAT+CP in Lazy Clause Generation [Ohrimenko, Stuckey, et al., 2007-]

– SAT+OR techniques for MaxSAT problems [Davies 2013]

– CP+machine learning [Bartolini et al. 2011] [Lombardi&Milano, 2013]

– …many more examples by Hadrien Cambazard tomorrow
77

	Slide Number 1
	Motivation
	Some additional references
	Outline
	Slide Number 5
	Network Flows
	Example: Network flow for alldifferent
	Cardinality constraints
	Propagation for cardinality constraints
	Network representation
	Example
	Domain consistency for gcc
	Optimization Constraints
	GCC with costs
	Domain filtering for weighted gcc
	Determining consistency of cost_gcc
	Example
	Time complexity
	Other constraints
	Outline
	Linear Programming
	Benefits of Linear Programming
	LP-based domain filtering
	LP-based domain filtering
	Creating a generic LP relaxation
	LP relaxation (cont’d)
	Reduced-cost based filtering
	Pros and Cons
	Example Application: TSP
	CP models for the TSP
	More CP models
	Relaxations for TSP
	Assignment Problem
	Assignment Problem
	Computational results for TSP-TW
	Langrangean Relaxation
	Motivation for using Lagrangeans
	Recall: Relaxations for TSP
	The 1-Tree Relaxation for TSP
	The Held and Karp bound for TSP
	The Held and Karp bound for TSP
	Held-Karp iteration
	Example
	How can we exploit 1-tree in CP?
	One more CP model for the TSP
	Domain Filtering
	Removing non-tree edges
	Computing marginal costs
	Impact of edge filtering
	Forcing tree edges
	Computing replacement costs
	Improving the time complexity
	Impact of filtering
	Comparison with ILOG CPO
	Outline
	Motivation
	Motivation for integrated approach
	Benders Decomposition
	Benders Decomposition (cont’d)
	Logic-based Benders
	Example: Task-Facility Allocation
	Logic-Based Benders Scheme
	Pros and Cons
	Column Generation
	Column Generation (cont’d)
	Pricing Problem
	Application: Capacitated Vehicle Routing
	Problem Formulation: Restricted Master
	Pricing Problem
	Pricing as shortest path
	Benefit of using CP
	From TSP to machine scheduling
	CP Model
	CP Model (cont’d)
	Demo
	Discussion
	Summary

