
ACP Summer School on Practical Constraint Programming
June 16-20, 2014, Bologna, Italy

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

vanhoeve@andrew.cmu.edu

Global Constraints

Outline

• Introduction
• Alldifferent constraint
• Knapsack constraint
• Regular constraint
• Research directions

Example: Graph coloring

Assign a color to
each country

Adjacent countries
must have
different colors

Can this be done
with k colors?
(minimize k)

3

Smaller (8 variable) instance

x1
x2

x3

x4
x5

x8

x6

x7

4

Solution with four colors

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

5

CP Model for k=3 colors

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

Constraints: xi ≠ xj for all edges (i,j)
Variables and domains: xi in {r,g,b} for all i

6

rgbr

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

rgb

rgb

rgb

rgb
rgb

rgb

rgb

Search choice: x2 = r
(by symmetry, no need to consider x2 = g, b)

x2 = r

7

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

gb

gb

rgb
rgb

r

gb

gb

Search choice: x5 = g
(be prepared to backtrack)

x2 = r

x5 = g x5 ≠ g

8

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

b

g

rb
rb

r

gb

b

… and propagate
x7 has an empty domain: we need to backtrack

x2 = r

x5 = g x5 ≠ g

9

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

gb

b

rgb
rgb

r

gb

gb

Propagate…

x2 = r

x5 = g x5 ≠ g

10

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

g

b

rg
rg

r

gb

g

x2 = r

x5 = g x5 ≠ g

11

Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

g

b

rg
rg

r

gb

g

…and propagate
x7 has an empty domain: we are done

x2 = r

x5 = g x5 ≠ g

12

Recall example: first propagation

x2

x3

x4
x5

x8

x6

x7

x1

x8

gb

gb

gb

rgb
rgb

r

gb

gb

Can we do more propagation?
After x2 = r we are done.

x2 = r

rgb

rgb

rgb

rgb

rgb

x3

x1

x5

x7

x6

x2

x4

13

Introduce global constraints

• We can increase the inference by adding more
knowledge to the solver
– in this case, group not-equal constraints that form a clique
– use alldifferent constraints

alldifferent(x1,x2,...,xn) := ∧i<j xi ≠ xj

Model 1: x1 ∈ {g,b}, x4∈ {g,b}, x8∈ {r,g,b}

x1 ≠ x4, x1 ≠ x8 , x4 ≠ x8

Model 2: x1 ∈ {g,b}, x4∈ {g,b}, x8∈ {r,g,b}

alldifferent(x1,x4,x8)

no propagation

x8 = r

x4

x8

x1

x8

gb

gb

rgb

x1

x4

14

Impact of global constraint propagation

• Graph coloring problem; random instances

• Can set alldifferent propagation level from ‘low’ to
‘extended’
– ‘low’: pairwise not-equal constraints
– ‘extended’: best possible propagation
– notice the difference in search tree size (search choices or

failures) and solving time

15

Global constraints overview

• Examples
– Alldifferent, Cardinality, Circuit, BinPacking, …

• Global constraints represent combinatorial structure
– can be viewed as the combination of elementary

constraints
– expressive building blocks for modeling applications
– embed powerful algorithms from OR, Graph Theory, AI,

CS, …

• Essential for the successful application of CP
– User can identify global constraints to be used in model
– Automated detection for certain constraints (ILOG CPO)

Embedded Algorithms
Constraint Structure/technique

alldifferent bipartite matching [Régin, 1994]

cardinality network flow [Régin, 1996]

knapsack dynamic programming [Trick, 2003]

regular directed acyclic graph [Pesant, 2004]

sequence various [vH et al., 2006,09] [Brand et al., 2007] [Maher et al., 2008]

The ‘global constraint catalog’ currently contains 364 constraints
http://sofdem.github.io/gccat/

BinPacking various [Shaw, 2004] [Cambazard et al., 2010] [Schaus et al., 2010-13]

N-value various [Beldiceanu et al., 2001] [Bessiere et al., 2005, 10]

circuit network flow [Genc Kaya & Hooker, 2006]

weighted circuit AP [Focacci et al., 1999], 1-Tree [Benchimol et al., 2012]

disjunctive/cumulative dedicated algorithm [Nuijten 1994, Carlier et al., 1994] [Vilim, 2009]

.

Role of global constraints

Global constraints can typically play three roles
1. Convenient modeling

– Global constraints are the building blocks of a complex
problem

2. More effective constraint propagation
– Identify more inconsistent domain values; reduce the

search space

3. Help guide the search
– Provide variable and value ordering heuristics

18

Consistency notions for global constraints

• Hyperarc consistency
– (a global constraint defines a hyperarc in the constraint

network)
– ensure that all domain values are consistent w.r.t. the

constraint
– a.k.a. generalized arc consistency or domain consistency

• Bounds consistency
– treat the domains as intervals, and ensure that all domain

bounds are consistent

• Ad-hoc consistencies
– constraint dependent; can be based on relaxations of the

constraint
19

Global constraints during propagation

• Algorithms that enforce a local consistency are
referred to as domain filtering algorithms, or
propagation algorithms

• General tasks for a propagation algorithm:
1. Determine whether the constraint is satisfiable

(consistency check)
2. Remove some or all inconsistent domain values (the actual

domain filtering)

• The consistency check and the filtering are typically
done separately for efficiency reasons

20

Propagation algorithm for alldifferent

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 362-367, 1994.

21

Alldifferent Propagation

• Goal: establish domain consistency on alldifferent
– Guarantee that each remaining domain value participates in

at least one solution
– Can we do this in polynomial time?

• We already saw that the decomposition is not
sufficient to establish domain consistency

x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {a,b,c}

x1 ≠ x2, x1 ≠ x3 , x2 ≠ x3 versus alldifferent(x1,x2,x3)

22

First attempt: Hall’s Theorem

Hall’s Marriage Theorem [1935]:

For alldifferent(X) this means that a solution exists iff

Example: x1 ∈ {b,c}, x2 ∈ {b,c}, x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
• solution exists for any subset of 3 variables
• no solution when K = {x1, x2, x3, x4}

23

Matchings in graphs

• Definition: Let G = (V,E) be a graph with vertex set V and edge
set E. A matching in G is a subset of edges M such that no two
edges in M share a vertex.

• A maximum matching is a matching of
maximum size

• Definition: An M-augmenting path is a
vertex-disjoint path with an odd number of
edges whose endpoints are M-free

• Theorem: Either M is a maximum-size
matching, or there exists an
M-augmenting path [Petersen, 1891]

24

Finding a maximum matching

• The augmenting path theorem can be used to iteratively find a
maximum matching in a graph G:
– given M, find an M-augmenting path P
– if P exists, augment M along P and repeat
– otherwise, M is maximum

V1

V2

• For a bipartite graph G = (V1,V2,E), an M-
augmenting path can be found in O(|E|) time
– finding a maximum matching can then be done in

O(|V1|·|E|), as we need to compute at most |V1|
paths (assume |V1| ≤ |V2|)

– this can be improved to O(√|V1|·|E|) time [Hopcroft & Karp, 1973]

• For general graphs this is more complex, but still tractable
– can be done in O(√ |V|·|E|) time [Micali & Vazirani, 1980]

25

Value Graph Representation

• Definition: The value graph of a set of variables X is a
bipartite graph (X, D, E) where
– node set X represents the variables
– node set D represents the union of the variable domains
– edge set E is { (x,d) | x ∈ X, d ∈ D(x) }

• Example:
x1 ∈ {a,b}
x2∈ {a,b}
x3∈ {b,c}

x1 x2 x3

a b c

26

From alldifferent to matchings

Lemma [Régin, 1994]:
solution to alldifferent(X) ⇔
matching in value graph covering X

Example:
x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {b,c}
alldifferent(x1,x2,x3)

Theorem: Domain consistency for alldifferent:
remove all edges (and corresponding domain values)
that are not in any maximum matching

x1 x2 x3

a b c

27

Propagation Algorithm

1. Verify consistency of the constraint
– find maximum matching M in value graph
– if M does not cover all variables: inconsistent

2. Verify consistency of each edge
– for each edge e in value graph:

fix e in M, and extend M to maximum matching
if M does not cover all variables: remove e from graph

What is the time complexity?
• Establishes domain consistency in polynomial time
• But not very efficient in practice… can we do better?

O(√|X|·|E|2)

O(√|X|·|E|)

x1 x2 x3

a b c

28

A useful theorem

• Theorem [Petersen, 1891] [Berge, 1970]: Let G be graph and M a
maximum matching in G. An edge e belongs to a maximum-size
matching if and only if
– it either belongs to M
– or to an even M-alternating path starting at an M-free vertex
– or to an M-alternating circuit

29

1. compute a maximum matching M: covering all variables X ?
2. direct edges in M from X to D, and edges not in M from D to X
3. compute the strongly connected components (SCCs)

4. edges in M, edges within SCCs and edges on path starting
from M-free vertices are all consistent

5. all other edges are not consistent and can be removed

A Better Filtering Algorithm

x1 x2 x3

a b c d

• SCCs can be computed in
O(|E|+|V|) time [Tarjan, 1972]

• consistent edges can be
identified in O(|E|) time

• filtering in O(|E|) time

Note: SCCs correspond to ‘tight’ Hall sets K: 30

Important aspects

• Separation of consistency check (O(√|X|·|E|)) and
domain filtering (O(|E|))

• Incremental algorithm
– Maintain the graph structure during search
– When k domain values have been removed, we can repair

the matching in O(km) time
– Note that these algorithms are typically invoked many times

during search / constraint propagation, so being incremental
is very important in practice

31

Propagation algorithm for knapsack

M. A. Trick. A dynamic programming approach for consistency and propagation for
knapsack constraints. Annals of Operations Research 118 (1-4):73-84, 2003.

32

Knapsack constraints

• Knapsack constraints restrict a weighted linear sum to
be no more than a given maximum:
– Variables X = {x1,…,xn} with finite integer domains
– Integer weights wi (i=1..n)
– Integer variable z representing the capacity
– Knapsack(X, z, w) := ∑i wi xi ≤ z

Questions:
1. Can we determine in polynomial time whether the knapsack

constraint is consistent (satisfiable)?
2. Can we establish domain consistency (remove all inconsistent

domain values) in polynomial time?

NP-hard [Garey&Johnson, 1979]

33

‘Dynamic Programming’ representation

• Example:
─ x1∈{2,4}, x2∈{2,3,4}, x3∈{1, 3}, z ∈ {7,9,12}
─ unit weights (wi = 1)
─ ∑i xi ≤ z

0

1

2
3

4

x1

2

4

6

7

8

x2

5

4 3 2

4 3 2

0

1

2
3

4

5

6
7

8

9

10

11
12

x3

3
1

3
1

3
1

3
1

3
1

D(z)

34

Characterization [Trick, 2003]

Lemma: Any path in the graph from the origin to a goal
state corresponds to a feasible solution to the knapsack
constraint
Lemma: If a variable xi has no edge with label d in the
graph, then d can be removed from D(xi) without
affecting the set of solutions

Theorem: Domain consistency for knapsack:
remove all edges (and corresponding domain values)
that are not in any path to a goal state

35

Filtering the graph and domains

• Example:
─ x1∈{2,4}, x2∈{2,3,4}, x3∈{1, 3}, z ∈ {7,9,12}
─ unit weights (wi = 1)
─ ∑i xi ≤ z

0

1

2
3

4

x1

2

4

6

7

8

x2

5

4
2

4
2

0

1

2
3

4

5

6
7

8

9

10

11
12

x3

3

3
1

1

D(z)

36

Time complexity

• Filtering the graph takes linear time
– one forward and one backward pass suffices to establish

domain consistency
– but size of graph depends on domain size: pseudo-

polynomial time
– no need to re-compute from scratch each time; we can

maintain the graph incrementally

37

Propagation algorithm for regular

N. Beldiceanu, M. Carlsson, T. Petit. Deriving Filtering Algorithms from Constraint
Checkers. In Proceedings of CP, pp. 107-122, 2004

G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In Proceedings of CP, pp. 482-495, 2004.

38

Regular constraint

A regular language can be represented by a deterministic finite
automaton (DFA):

automaton accepts string ⇔ string belongs to regular language

Example:
start state: q0, end states: q3 and q4

each transition between states has a label

e.g. strings ‘aabbaa’ and ‘ccc’ accepted
string ‘caabbac’ not accepted

Given a DFA, the constraint regular(x1,x2,...,xn, DFA) imposes that
the ‘string’ x1x2···xn is accepted by DFA (actually; NFA is also fine)

DFA

39

Regular constraint - application

Nurse rostering problem
• each nurse works at most one shift a day
• each shift contains 8 consecutive hours

– day shift: 8am-4pm
– evening shift: 4pm-12am
– night shift: 12am-8am

• after a night shift, nurse needs to take one day rest
• after an evening shift, nurse may not work a day shift

q0

q1

q2

q3

d

r
e

r
d

e

nr
n

r

e

• For each nurse, introduce variables X = {x1,x2,...,x7} representing shift
on day 1,2,...,7 with domains D(x) = {r,d,e,n} for all x ∈ X

• Model the requirements as regular(X, DFA) for each nurse

Feasible (7-day) schedule: day - day - evening - night - rest - day - day

40

Theorem:
solution to regular ⇔ path from q0 to ‘goal state’ in layered graph

Propagation for the regular constraint

x1 ∈ {a,b,c}, x2 ∈ {a,b,c},
x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
regular(x1,x2,x3,x4,DFA)

DFA

Example:

Domain consistency: remove all arcs whose label is not supported
by domain value and vice versa (linear time in size of graph)

41

Theorem:
solution to regular ⇔ path from q0 to ‘goal state’ in layered graph

Propagation for the regular constraint

x1 ∈ {a,b,c}, x2 ∈ {a,b,c},
x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
regular(x1,x2,x3,x4,DFA)

DFA

Example:

Domain consistency: remove all arcs whose label is not supported
by domain value and vice versa (linear time in size of graph)

42

Reformulation [Beldiceanu et al., 2004]

• We can ‘decompose’ regular into separate transitions:

1. create a ‘table’ representing all possible transitions (edges)

T: { (q0, a, q1),
(q1, a, q1),
(q1, b, q2),
(q2, b, q2),

(q2, a, q3),
(q3, a, q3),
(q0, c, q4),
(q4, c, q4) }

2. define ‘state’ variables Q0, Q1, Q2, Q3, Q4, with
Q0∈{q0}, Q1, Q2, Q3∈{q0,q1,q2,q3,q4}, Q4∈{q3, q4}

3. define transition constraint T(Qi, xi+1, Qi+1) for i=0,1,2,3

43

Domain consistency via reformulation

• Theorem [Beldiceanu et al. 2004, 2005]:
– establishing domain consistency on the reformulation is

equivalent to establishing domain consistency on regular
– the reformulation can be made domain consistent in

O(n|T|) time (here |T| is number of transitions), which is
the same as regular

Proof: dual constraint graph is acyclic

T(Q0,x1,Q1) T(Q1,x2,Q2) T(Qn-1,xn,Qn)
Qn-1Q2Q1

• The reformulation is easier to implement, and can be more
efficient than Pesant’s algorithm in practice [Quimper&Walsh, 2006]

44

Research directions

• Not all 364 constraints in the catalog are equally
useful
– Most solvers only support a handful of constraints:

alldifferent, cardinality, table constraints, constraints for
scheduling

– Unsupported global constraints are simply reformulated or
decomposed

• Challenge seems not to be in creating new constraints,
but into handling/utilizing existing constraints better

45

Direction 0: optimization

• By design, pure CP solvers are based on feasibility
reasoning
– relatively weak support for optimization (compared to e.g.,

MIP)

• Adapt global constraints for optimization
• Utilize known relaxations (linear programming,

Lagrangian relaxations, …)
– progress over last 10~15 years
– this will be covered in other lectures (incl. Hybrid Methods

on Thursday)

46

Direction 1: learn and automate

• Automate the process of identifying the ‘right’ global
constraint to apply
– ModelSeeker does this by learning constraints from example

solutions [Beldiceanu&Simonis, 2012]

– IBM ILOG CPO does this by grouping together specific
constraints

• Learn no-goods during search
– Record the implications from the propagation process
– Explain search failure by identifying a minimal conflict set to

be added as ‘no-good’ (e.g., Lazy Clause Generation)
– Need to derive explanations from global constraints

[Rochart et al., 2003-2005], [Downing et al., 2012]

47

Direction 2: guide search

• Use global constraints to dynamically define a good
variable and value selection heuristic
– Counting-based search: for each variable/value pair, count

the number of solutions in which it appears
[Pesant, Zanarini, et al., 2007-2013]

– Two strategies: highest solution density first, or lowest
solution density first

• Global constraints can also be used to guide local
search methods
– automatic definition of neighborhood or penalty function

[Galinier & Hao, 2000, 2005], [Nareyek, 2001], [Michel & Van
Hentenryck, 2002, 2005]

48

Direction 3: improve communication

• Current CP solvers are centered around domain
propagation
– In effect, very limited information is communicated between

(global) constraints

• One approach is to study pairs (or more) of constraints
• Another approach is to propagate more structured

information
– precedence constraints in scheduling applications
– constraints over structured domains such as set variables
– for general CP: propagate approximate decision diagrams

[Andersen et al., 2007], [Hadzic et al., 2007-2009], [Hoda et al., 2010], …

49

Summary

• Global constraints provide convenient building blocks
for modeling and solving practical applications of
optimization

• Constraint propagation is usually divided in two parts
– consistency check
– domain filtering
(in some cases, domain consistency can be established in
polynomial time)

• Global constraints embed efficient algorithms
– some are adapted from known techniques: matchings,

networks, dynamic programming, …
– others are new, dedicated, algorithms

50

References

• J-C. Régin. Global Constraints: a survey. In Hybrid Optimization,
M. Milano and P. Van Hentenryck (eds.), pp. 63-134. Springer,
2011.

• v.H. and I. Katriel. Global Constraints. Chapter 6 of F. Rossi, P.
van Beek and T. Walsh (eds.), Handbook of Constraint
Programming. Elsevier, 2006.

51

	Slide Number 1
	Outline
	Example: Graph coloring
	Smaller (8 variable) instance
	Solution with four colors
	CP Model for k=3 colors
	Search & propagate
	Search & propagate
	Search & propagate
	Search & propagate
	Search & propagate
	Search & propagate
	Recall example: first propagation
	Introduce global constraints
	Impact of global constraint propagation
	Global constraints overview
	Embedded Algorithms
	Role of global constraints
	Consistency notions for global constraints
	Global constraints during propagation
	Slide Number 21
	Alldifferent Propagation
	First attempt: Hall’s Theorem
	Matchings in graphs
	Finding a maximum matching
	Value Graph Representation
	From alldifferent to matchings
	Propagation Algorithm
	A useful theorem
	A Better Filtering Algorithm
	Important aspects
	Slide Number 32
	Knapsack constraints
	‘Dynamic Programming’ representation
	Characterization [Trick, 2003]
	Filtering the graph and domains
	Time complexity
	Slide Number 38
	Regular constraint
	Regular constraint - application
	Propagation for the regular constraint
	Propagation for the regular constraint
	Reformulation [Beldiceanu et al., 2004]
	Domain consistency via reformulation
	Research directions
	Direction 0: optimization
	Direction 1: learn and automate
	Direction 2: guide search
	Direction 3: improve communication
	Summary
	References

