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Outline

• Introduction
• Alldifferent constraint
• Knapsack constraint
• Regular constraint
• Research directions



Example: Graph coloring

Assign a color to
each country

Adjacent countries
must have 
different colors

Can this be done 
with k colors? 
(minimize k)
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Smaller (8 variable) instance
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Solution with four colors
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CP Model for k=3 colors
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Constraints: xi ≠ xj for all edges (i,j)
Variables and domains:   xi in {r,g,b}  for all i
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rgbr

Search & propagate
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Search choice:  x2 = r
(by symmetry, no need to consider x2 = g, b)

x2 = r
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Search & propagate
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Search choice:  x5 = g
(be prepared to backtrack)

x2 = r

x5 = g x5 ≠ g
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Search & propagate
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… and propagate
x7 has an empty domain: we need to backtrack

x2 = r

x5 = g x5 ≠ g
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Search & propagate
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Propagate…

x2 = r

x5 = g x5 ≠ g
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Search & propagate

x1
x2

x3

x4
x5

x8

x6

x7

x1
x2

x3

x4
x5

x8

x6

x7

gb

g

b

rg
rg

r

gb

g

x2 = r

x5 = g x5 ≠ g
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Search & propagate
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…and propagate
x7 has an empty domain: we are done

x2 = r

x5 = g x5 ≠ g
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Recall example: first propagation
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Can we do more propagation? 
After x2 = r we are done.
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Introduce global constraints

• We can increase the inference by adding more 
knowledge to the solver
– in this case, group not-equal constraints that form a clique
– use alldifferent constraints

alldifferent(x1,x2,...,xn) :=   ∧i<j xi ≠ xj

Model 1: x1 ∈ {g,b}, x4∈ {g,b}, x8∈ {r,g,b}

x1 ≠ x4, x1 ≠ x8 , x4 ≠ x8

Model 2: x1 ∈ {g,b}, x4∈ {g,b}, x8∈ {r,g,b}

alldifferent(x1,x4,x8)

no propagation

x8 = r

x4

x8

x1

x8

gb

gb

rgb

x1

x4
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Impact of global constraint propagation

• Graph coloring problem; random instances

• Can set alldifferent propagation level from ‘low’ to 
‘extended’
– ‘low’: pairwise not-equal constraints
– ‘extended’: best possible propagation
– notice the difference in search tree size (search choices or 

failures) and solving time
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Global constraints overview

• Examples
– Alldifferent, Cardinality, Circuit, BinPacking, …

• Global constraints represent combinatorial structure
– can be viewed as the combination of elementary 

constraints
– expressive building blocks for modeling applications
– embed powerful algorithms from OR, Graph Theory, AI, 

CS, …

• Essential for the successful application of CP
– User can identify global constraints to be used in model
– Automated detection for certain constraints (ILOG CPO)



Embedded Algorithms
Constraint Structure/technique

alldifferent bipartite matching [Régin, 1994]

cardinality network flow [Régin, 1996]

knapsack dynamic programming [Trick, 2003]

regular directed acyclic graph [Pesant, 2004]

sequence various [vH et al., 2006,09] [Brand et al., 2007] [Maher et al., 2008]

The ‘global constraint catalog’ currently contains 364 constraints
http://sofdem.github.io/gccat/

BinPacking various [Shaw, 2004] [Cambazard et al., 2010] [Schaus et al., 2010-13]

N-value various [Beldiceanu et al., 2001] [Bessiere et al., 2005, 10]

circuit network flow [Genc Kaya & Hooker, 2006]

weighted circuit AP [Focacci et al., 1999], 1-Tree [Benchimol et al., 2012]

disjunctive/cumulative dedicated algorithm [Nuijten 1994, Carlier et al., 1994] [Vilim, 2009]

. . . . . .



Role of global constraints

Global constraints can typically play three roles
1. Convenient modeling

– Global constraints are the building blocks of a complex 
problem

2. More effective constraint propagation
– Identify more inconsistent domain values; reduce the 

search space

3. Help guide the search
– Provide variable and value ordering heuristics
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Consistency notions for global constraints

• Hyperarc consistency
– (a global constraint defines a hyperarc in the constraint 

network)
– ensure that all domain values are consistent w.r.t. the 

constraint
– a.k.a. generalized arc consistency or domain consistency

• Bounds consistency
– treat the domains as intervals, and ensure that all domain 

bounds are consistent

• Ad-hoc consistencies
– constraint dependent; can be based on relaxations of the 

constraint
19



Global constraints during propagation

• Algorithms that enforce a local consistency are 
referred to as domain filtering algorithms, or 
propagation algorithms 

• General tasks for a propagation algorithm:
1. Determine whether the constraint is satisfiable

(consistency check)
2. Remove some or all inconsistent domain values (the actual 

domain filtering)

• The consistency check and the filtering are typically 
done separately for efficiency reasons
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Propagation algorithm for alldifferent

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of 
the National Conference on Artificial Intelligence (AAAI), pp. 362-367, 1994.
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Alldifferent Propagation

• Goal: establish domain consistency on alldifferent
– Guarantee that each remaining domain value participates in 

at least one solution
– Can we do this in polynomial time?

• We already saw that the decomposition is not 
sufficient to establish domain consistency

x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {a,b,c}

x1 ≠ x2, x1 ≠ x3 , x2 ≠ x3 versus alldifferent(x1,x2,x3)
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First attempt: Hall’s Theorem

Hall’s Marriage Theorem [1935]: 

For alldifferent(X ) this means that a solution exists iff

Example:  x1 ∈ {b,c}, x2 ∈ {b,c}, x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
• solution exists for any subset of 3 variables
• no solution when K = {x1, x2, x3, x4}
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Matchings in graphs

• Definition: Let G = (V,E) be a graph with vertex set V and edge 
set E. A matching in G is a subset of edges M such that no two 
edges in M share a vertex.

• A maximum matching is a matching of 
maximum size

• Definition: An M-augmenting path is a 
vertex-disjoint path with an odd number of 
edges whose endpoints are M-free

• Theorem: Either M is a maximum-size 
matching, or there exists an                       
M-augmenting path [Petersen, 1891]
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Finding a maximum matching

• The augmenting path theorem can be used to iteratively find a 
maximum matching in a graph G:
– given M, find an M-augmenting path P
– if P exists, augment M along P and repeat
– otherwise, M is maximum

V1

V2

• For a bipartite graph G = (V1,V2,E), an M-
augmenting path can be found in O(|E|) time
– finding a maximum matching can then be done in 

O(|V1|·|E|), as we need to compute at most |V1| 
paths (assume |V1| ≤ |V2|)

– this can be improved to O(√|V1|·|E|) time    [Hopcroft & Karp, 1973]

• For general graphs this is more complex, but still tractable
– can be done in O(√ |V|·|E|) time [Micali & Vazirani, 1980]
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Value Graph Representation

• Definition: The value graph of a set of variables X is a 
bipartite graph (X, D, E) where
– node set X represents the variables
– node set D represents the union of the variable domains
– edge set E is { (x,d) | x ∈ X, d ∈ D(x) }

• Example:
x1 ∈ {a,b}
x2∈ {a,b}
x3∈ {b,c}

x1 x2 x3

a b c
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From alldifferent to matchings

Lemma [Régin, 1994]: 
solution to alldifferent(X) ⇔
matching in value graph covering X

Example:
x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {b,c}
alldifferent(x1,x2,x3)

Theorem: Domain consistency for alldifferent: 
remove all edges (and corresponding domain values) 
that are not in any maximum matching

x1 x2 x3

a b c
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Propagation Algorithm

1. Verify consistency of the constraint
– find maximum matching M in value graph
– if M does not cover all variables: inconsistent

2. Verify consistency of each edge
– for each edge e in value graph:

fix e in M, and extend M to maximum matching
if M does not cover all variables: remove e from graph

What is the time complexity?
• Establishes domain consistency in polynomial time
• But not very efficient in practice… can we do better?

O(√|X|·|E|2)

O(√|X|·|E|)

x1 x2 x3

a b c
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A useful theorem

• Theorem [Petersen, 1891] [Berge, 1970]:   Let G be graph and M a 
maximum matching in G. An edge e belongs to a maximum-size 
matching if and only if
– it either belongs to M
– or to an even M-alternating path starting at an M-free vertex
– or to an M-alternating circuit
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1. compute a maximum matching M: covering all variables X ?
2. direct edges in M from X to D, and edges not in M from D to X
3. compute the strongly connected components (SCCs)

4. edges in M, edges within SCCs and edges on path starting 
from M-free vertices are all consistent

5. all other edges are not consistent and can be removed

A Better Filtering Algorithm

x1 x2 x3

a b c d

• SCCs can be computed in 
O(|E|+|V|) time     [Tarjan, 1972]

• consistent edges can be 
identified in O(|E|) time

• filtering in O(|E|) time

Note: SCCs correspond to ‘tight’ Hall sets K: 30



Important aspects

• Separation of consistency check ( O(√|X|·|E|) ) and 
domain filtering ( O(|E|) )

• Incremental algorithm
– Maintain the graph structure during search
– When k domain values have been removed, we can repair  

the matching in O(km) time
– Note that these algorithms are typically invoked many times 

during search / constraint propagation, so being incremental 
is very important in practice
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Propagation algorithm for knapsack

M. A. Trick.  A dynamic programming approach for consistency and propagation for 
knapsack constraints. Annals of Operations Research 118 (1-4):73-84, 2003.
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Knapsack constraints

• Knapsack constraints restrict a weighted linear sum to 
be no more than a given maximum:
– Variables X = {x1,…,xn} with finite integer domains
– Integer weights wi (i=1..n)
– Integer variable z representing the capacity
– Knapsack( X, z, w ) :=   ∑i wi xi ≤ z

Questions:
1. Can we determine in polynomial time whether the knapsack

constraint is consistent (satisfiable)?
2. Can we establish domain consistency (remove all inconsistent 

domain values) in polynomial time?

NP-hard [Garey&Johnson, 1979]
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‘Dynamic Programming’ representation

• Example:
─ x1∈{2,4}, x2∈{2,3,4}, x3∈{1, 3}, z ∈ {7,9,12}
─ unit weights (wi = 1)
─ ∑i xi ≤ z
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Characterization [Trick, 2003]

Lemma: Any path in the graph from the origin to a goal 
state corresponds to a feasible solution to the knapsack 
constraint
Lemma: If a variable xi has no edge with label d in the 
graph, then d can be removed from D(xi) without 
affecting the set of solutions

Theorem: Domain consistency for knapsack:
remove all edges (and corresponding domain values) 
that are not in any path to a goal state
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Filtering the graph and domains

• Example:
─ x1∈{2,4}, x2∈{2,3,4}, x3∈{1, 3}, z ∈ {7,9,12}
─ unit weights (wi = 1)
─ ∑i xi ≤ z
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Time complexity

• Filtering the graph takes linear time
– one forward and one backward pass suffices to establish 

domain consistency
– but size of graph depends on domain size: pseudo-

polynomial time
– no need to re-compute from scratch each time; we can 

maintain the graph incrementally
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Propagation algorithm for regular

N. Beldiceanu, M. Carlsson, T. Petit.  Deriving Filtering Algorithms from Constraint 
Checkers. In Proceedings of CP, pp. 107-122, 2004

G. Pesant.  A Regular Language Membership Constraint for Finite Sequences of 
Variables. In Proceedings of CP, pp. 482-495, 2004.
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Regular constraint

A regular language can be represented by a deterministic finite 
automaton (DFA):

automaton accepts string ⇔ string belongs to regular language

Example: 
start state: q0, end states: q3 and q4

each transition between states has a label

e.g.  strings  ‘aabbaa’ and  ‘ccc’  accepted
string  ‘caabbac’  not accepted

Given a DFA, the constraint regular(x1,x2,...,xn, DFA) imposes that 
the ‘string’ x1x2···xn is accepted by DFA (actually; NFA is also fine)

DFA
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Regular constraint - application

Nurse rostering problem
• each nurse works at most one shift a day
• each shift contains 8 consecutive hours

– day shift: 8am-4pm
– evening shift: 4pm-12am
– night shift: 12am-8am

• after a night shift, nurse needs to take one day rest
• after an evening shift, nurse may not work a day shift

q0

q1

q2

q3

d

r
e

r
d

e

nr
n

r

e

• For each nurse, introduce variables X = {x1,x2,...,x7} representing shift 
on day 1,2,...,7 with domains D(x) = {r,d,e,n} for all x ∈ X

• Model the requirements as  regular(X, DFA)  for each nurse

Feasible (7-day) schedule: day - day - evening - night - rest - day - day
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Theorem: 
solution to regular ⇔ path from q0 to ‘goal state’ in layered graph

Propagation for the regular constraint

x1 ∈ {a,b,c}, x2 ∈ {a,b,c}, 
x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
regular(x1,x2,x3,x4,DFA)

DFA

Example:

Domain consistency: remove all arcs whose label is not supported 
by domain value and vice versa  (linear time in size of graph)
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Theorem: 
solution to regular ⇔ path from q0 to ‘goal state’ in layered graph

Propagation for the regular constraint

x1 ∈ {a,b,c}, x2 ∈ {a,b,c}, 
x3 ∈ {a,b,c}, x4 ∈ {a,b,c}
regular(x1,x2,x3,x4,DFA)

DFA

Example:

Domain consistency: remove all arcs whose label is not supported 
by domain value and vice versa  (linear time in size of graph)
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Reformulation [Beldiceanu et al., 2004]

• We can ‘decompose’ regular into separate transitions:

1. create a ‘table’ representing all possible transitions (edges)

T: { (q0, a, q1),
(q1, a, q1),
(q1, b, q2),
(q2, b, q2),

(q2, a, q3),
(q3, a, q3),
(q0, c, q4),
(q4, c, q4) }

2. define ‘state’ variables Q0, Q1, Q2, Q3, Q4, with
Q0∈{q0}, Q1, Q2, Q3∈{q0,q1,q2,q3,q4}, Q4∈{q3, q4}

3. define transition constraint T(Qi, xi+1, Qi+1) for i=0,1,2,3
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Domain consistency via reformulation

• Theorem [Beldiceanu et al. 2004, 2005]: 
– establishing domain consistency on the reformulation is 

equivalent to establishing domain consistency on regular
– the reformulation can be made domain consistent in 

O(n|T|) time (here |T| is number of transitions), which is 
the same as regular

Proof: dual constraint graph is acyclic

T(Q0,x1,Q1) T(Q1,x2,Q2) T(Qn-1,xn,Qn)
Qn-1Q2Q1

• The reformulation is easier to implement, and can be more 
efficient than Pesant’s algorithm in practice [Quimper&Walsh, 2006]
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Research directions

• Not all 364 constraints in the catalog are equally 
useful
– Most solvers only support a handful of constraints: 

alldifferent, cardinality, table constraints, constraints for 
scheduling

– Unsupported global constraints are simply reformulated or 
decomposed

• Challenge seems not to be in creating new constraints, 
but into handling/utilizing existing constraints better
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Direction 0: optimization

• By design, pure CP solvers are based on feasibility 
reasoning
– relatively weak support for optimization (compared to e.g., 

MIP)

• Adapt global constraints for optimization 
• Utilize known relaxations (linear programming, 

Lagrangian relaxations, …) 
– progress over last 10~15 years
– this will be covered in other lectures (incl. Hybrid Methods 

on Thursday)
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Direction 1: learn and automate

• Automate the process of identifying the ‘right’ global 
constraint to apply
– ModelSeeker does this by learning constraints from example 

solutions [Beldiceanu&Simonis, 2012]

– IBM ILOG CPO does this by grouping together specific 
constraints

• Learn no-goods during search
– Record the implications from the propagation process
– Explain search failure by identifying a minimal conflict set to 

be added as ‘no-good’ (e.g., Lazy Clause Generation)
– Need to derive explanations from global constraints    

[Rochart et al., 2003-2005], [Downing et al., 2012]
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Direction 2: guide search

• Use global constraints to dynamically define a good 
variable and value selection heuristic
– Counting-based search: for each variable/value pair, count 

the number of solutions in which it appears  
[Pesant, Zanarini, et al., 2007-2013]

– Two strategies: highest solution density first, or lowest 
solution density first

• Global constraints can also be used to guide local 
search methods
– automatic definition of neighborhood or penalty function 

[Galinier & Hao, 2000, 2005], [Nareyek, 2001], [Michel & Van 
Hentenryck, 2002, 2005]
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Direction 3: improve communication

• Current CP solvers are centered around domain
propagation
– In effect, very limited information is communicated between 

(global) constraints

• One approach is to study pairs (or more) of constraints
• Another approach is to propagate more structured 

information
– precedence constraints in scheduling applications
– constraints over structured domains such as set variables 
– for general CP: propagate approximate decision diagrams 

[Andersen et al., 2007], [Hadzic et al., 2007-2009], [Hoda et al., 2010], …
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Summary

• Global constraints provide convenient building blocks 
for modeling and solving practical applications of 
optimization

• Constraint propagation is usually divided in two parts
– consistency check
– domain filtering
(in some cases, domain consistency can be established in 
polynomial time)

• Global constraints embed efficient algorithms
– some are adapted from known techniques: matchings, 

networks, dynamic programming, …
– others are new, dedicated, algorithms
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