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Abstract. Relaxed decision diagrams have been successfully applied
to solve combinatorial optimization problems, but their performance is
known to strongly depend on the variable ordering. We propose a port-
folio approach to selecting the best ordering among a set of alternatives.
We consider several different portfolio mechanisms: a static uniform time-
sharing portfolio, an offline predictive model of the single best algorithm
using classifiers, a low-knowledge algorithm selection, and a dynamic
online time allocator. As a case study, we compare and contrast their
performance on the graph coloring problem. We find that on this prob-
lem domain, the dynamic online time allocator provides the best overall
performance.
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1 Introduction

Relaxed decision diagrams have recently been successfully applied within a range
of solution methodologies for discrete optimization, including constraint pro-
gramming, integer linear programming, integer nonlinear programming, and
combinatorial optimization. For exact decision diagrams (e.g., reduced ordered
binary decision diagrams), it is well known that the variable ordering greatly in-
fluences the size of the diagram [8, 9, 22]. Likewise, for relaxed decision diagrams
the variable ordering is often of crucial importance for their effectiveness. For
example, Bergman et al. [2, 3] demonstrate that a variable ordering that yields
a small exact diagram typically also provides stronger dual bounds from the
relaxed diagram.

In some cases, e.g., for sequential scheduling problems, the variable ordering
is prescribed by the sequential nature of the application. In most cases, however,
we must design and/or select a variable ordering that we expect to perform well.
In the literature several variable ordering strategies, generic as well as problem-
specific, have been proposed. When decision diagrams are built from a single
top-to-bottom compilation, dynamic variable orderings can be very effective. For
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example, a recent work by Cappart et al. [10] deploys deep reinforcement learning
to dynamically select the next variable during compilation. Dynamic variable
orderings are less applicable, however, to compilation via iterative refinement,
in which case the ordering must be specified in advance. Oftentimes there is no
single variable ordering strategy that dominates all others, and the challenge
in practice is to select a strategy that works well for a specific instance. This
is a well-studied problem in artificial intelligence, in the context of algorithm
portfolios.

There are several ways to construct an algorithm portfolio: using static or
dynamic features, formulating predictive models at the algorithm or portfolio
level, predicting one algorithm to run per instance or creating a schedule of
algorithms to run, using a fixed portfolio or updating it online [19]. In this work,
as we consider variable ordering strategies for relaxed decision diagrams, our goal
is to study which portfolio design leads to the best performance of the diagram.

As a case study, we consider the graph coloring problem, for which a de-
cision diagram approach was recently introduced [16, 17]. It uses an iterative
refinement procedure much like Benders decomposition or lazy-clause genera-
tion, by repeatedly refining conflicts in the diagram until the solution is conflict
free. Our experimental results show several insights, at least for this problem
domain: First, even the simplest portfolio (the static uniform time allocation)
can already outperform all individual orderings. Second, predictive methods us-
ing classification models or exploration phases can lead to more instances solved
optimally. However, these methods may lead to delayed optimality results on
problem instances that are easy to solve. Third, allocating time to more than
one variable ordering can yield a solution with a unique best upper bound from
one ordering and a unique best lower bound from a different ordering. This indi-
cates that it may be advantageous to use one variable ordering to obtain a lower
bound and another to obtain the upper bound.

2 Decision Diagrams

We follow the framework of Bergman, Cire, van Hoeve, and Hooker [4] and in-
troduce decision diagrams as a graphical representation of a set of solutions to
a discrete optimization problem P defined on an ordered set of decision vari-
ables X = {x1, x2, . . . , xn} and (optionally) an objective function f(X) to be
minimized or maximized.

2.1 Definitions

A decision diagram for P is a layered directed acyclic graph D = (N,A) with
node set N and arc set A. Diagram D has n+ 1 layers of nodes, where a node in
layer j represents a state associated with variable xj . Layer 1 contains a single
root node r, and layer n+ 1 contains a single terminal node t. Arcs are directed
from a node u in layer j to a node v in layer j + 1 and labeled with a decision
value for variable xj . The outgoing arcs for each node must have unique labels.



Variable Ordering for Decision Diagrams: A Portfolio Approach 3

Hence, an arc-specified r-t path p = (a1, a2, . . . , an) defines a complete variable
assignment by setting xj to be the label of aj for j = 1, . . . , n. We let Sol(D)
be the set of solutions represented by all r-t paths of D. We will slightly abuse
notation and denote by Sol(P ) the set of feasible solutions to problem P . We
say that D is an exact decision diagram for P if Sol(D) = Sol(P ). D is a relaxed
decision diagram for P if Sol(P ) ⊆ Sol(D).

The objective function f(X) can be represented in D by appropriately asso-
ciating a ‘weight’ to each arc in the diagram. We define the weight of an r-t path
as a function (e.g., the sum) of its arc weights, and require that the weight of
the path is equal to the objective value of the solution it encodes. The shortest
(or longest) path in D can be computed in linear time since D is acyclic. Such
path corresponds to an optimal solution if D is exact, and yields a dual bound if
D is relaxed.

We can extend the application of decision diagrams to let multiple paths in
D represent the solution to an optimization problem, as proposed in [16, 17]. In
that case, an optimal solution can be computed as a constrained network flow.
We will use this application in our case study in Section 4.

2.2 Compilation Methods

We limit our discussion to the two most popular decision diagram compilation
methods in the context of discrete optimization [4]: top-down compilation and
iterative refinement. Both methods rely on an underlying recursive formulation
of the problem P , using states (associated with each node in N) and labeled
transition functions (represented by the arcs in A).

Top-down compilation expands the diagram one layer at the time. It considers
the nodes (states) in the previous layer, and creates all possible states according
to the transition function. Equivalent states are merged. For relaxed decision
diagrams, it is typical to impose a maximum size (or ‘width’) on the layers,
in which case non-equivalent nodes may need to be merged. This compilation
method can be applied recursively in a branch-and-bound like scheme to obtain
an exact solution method.

Iterative refinement alternatively starts with an initial relaxed decision dia-
gram in which each layer contains a single node, and all possible arcs between
the nodes in subsequent layers are present. The diagram is then iteratively re-
fined by splitting nodes and/or removing infeasible arcs. This is the method of
choice for MDD-based constraint propagation, in which case refinement is again
limited until a maximum width is reached. It can also be applied as a stand-alone
exact solution method, by repeated computation of the optimal solution (which
provides a dual bound) and refining any constraints that are violated along the
optimal path(s).

2.3 Variable Ordering

As mentioned in Section 1, the variable ordering can have a crucial impact on
the size of the decision diagram. This is illustrated in the following example:
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Fig. 1. Constraint graph (a) and exact decision diagrams using the lexicographic vari-
able ordering (b) and the ‘path’ ordering (c), for the problem in Example 1. In the
decision diagrams, dashed arcs represent arcs with label 0, while solid arcs represent
arcs with label 1.

Example 1. Consider the following constraint satisfaction problem:

x1 + x3 ≤ 1, x2 + x4 ≤ 1, x3 + x4 ≤ 1,

x1, x2, x3 ∈ {0, 1}

The constraint graph for this problem is shown in Fig. 1(a). The associated exact
decision diagram following the lexicographic variable ordering (x1, x2, x3, x4) is
shown in Fig. 1(b). In Fig. 1(c) we show a smaller exact decision diagram using
the path-ordering (x1, x3, x4, x2) that follows from the constraint graph.

Finding the variable ordering that yields the smallest exact decision diagram
is an NP-hard problem [22]. In practice, one therefore typically relies on heuristic
variable ordering strategies. An example of a problem-specific variable ordering
is the maximal path decomposition heuristic for compiling the independent sets
of a graph [5, 3]. It relies on an a priori computed path decomposition of the
input graph, and selects the next variable according to this decomposition. An
example of a generic variable ordering is the k-look ahead ordering [5, 3]. It selects
the variable that yields the smallest-width layer when k = 1, and evaluates a
subset of k variables in general. We will present several more variable ordering
heuristics for our case study in Section 4.

The maximal path decomposition heuristic is static as the ordering is de-
termined once in advance. In contrast, the k-look ahead ordering is dynamic
because the selection of the next variable is determined during the compilation
and depends on the previous choices. Likewise, the reinforcement learning ap-
proach of Cappart et al. [10] is a dynamic variable ordering heuristic by design.
It uses an action-value function, based on neural fitted Q-learning, to determine
the best variable to add to the ordering at each step. Due to its dynamic nature,
it can however not be effectively applied when the decision diagram is compiled
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using iterative refinement (as in our case study). In our case study, we compose
a portfolio of static orderings for settings where iterative refinement is used.

3 Algorithm Portfolio Design

Algorithm portfolios have been studied widely in artificial intelligence, and have
been shown to be particularly effective for combinatorial optimization and Boolean
satisfiability [14, 23, 13]. While many variants exist, most approaches either se-
lect one algorithm among a set of alternatives to solve a given problem, or run
multiple algorithms (in parallel or sequentially) in dedicated time schedules.
Typically one needs to trade off time for exploration (learning the performance
of each method) and exploitation (executing the selected algorithm). We refer
to Kothoff [19] for a recent survey.

For our purposes we made a selection of four methods from the literature,
which contrast offline versus online learning, single versus multiple algorithm
selection, and low-level versus high-level knowledge utilization. We assume that
we are given a set of variable ordering heuristics (each leading to a different
algorithm) and a maximum overall time limit. We explain each portfolio using a
contrived example instance in Fig. 2(a). Notice how one variable ordering may
have exponentially longer runtime to reach the optimal value compared to other
variable orderings.

3.1 Static Uniform Time Allocator

This multiple-algorithm selection approach proceeds in rounds; in round t, each
algorithm is given 2t seconds to solve the problem [13]. We continue until the
time limit is reached. As an example, see Fig. 2(b), where the optimal value of
10 will be reached in the round of 64s once V.O. 1 has run for 20 seconds total.
So, the total runtime will be (1s+2s+4s+8s+16s+32s+5.25s)=67.25 seconds.

(a) Variable Ordering Runtimes (b) Uniform Time Allocator

Fig. 2. An example of lower bounds for 4 different variable orderings at various run-
times, where the optimal value is 10, and the distribution of runtimes using a uniform
time allocator.
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3.2 Offline Predictive Models Via Classifiers

This approach uses classification models to predict the optimal algorithm to
run on a given problem instance [23, 20]. As input, the method requires several
easily computable features of a problem instance and logic to label the best
algorithm for an instance given performance data. These features and labels are
computed for a training dataset, then discretized using MDL with Kononenko’s
criteria, and a greedy forward feature selection process. Pairwise products are
computed for this subset of features as in a similar work by Xu et al. [23]. Then,
the same discretization and feature selection process is performed to obtain the
final features and labels used to train classification models. Several classification
models can be applied including Bayesian Networks (BN), Decision Trees (DT),
k-Nearest Neighbor (kNN), Multilayer Perceptrons (MP), Random Forests (RF),
and Support-Vector-Machines (SVM). The trained classification model is used
to select one algorithm from the portfolio to solve a given test instance. For
the example in Fig. 2(a), suppose the model takes t seconds to predict V.O. 1.
The total runtime will be t + 20s. If alternatively the model predicts V.O. 3,
then the runtime will be t + 3000s. This demonstrates two things: t affects the
overall performance of the predictive model approach, and the predictive model
choosing one single variable ordering could be detrimental.

3.3 Low-Knowledge Single Algorithm Selection

This is a single-algorithm selection method that runs in two phases [1]. An ex-
ploration phase runs each algorithm for a time t, and then an exploitation phase
chooses one algorithm to run for the remaining time based on the results of
the exploration phase. In [1], three prediction rules for the exploitation phase
are proposed: pcost max (select algorithm with best lower bound), pslope mean
(maximum mean of the change in the best lower bound), and pextrap (extrapo-
late pcost max with pslope mean to find the maximum lower bound at the time
limit). Ties are broken by choosing the ordering with the best mean performance
at the time limit for the training data. For each prediction rule, the optimal time
t to use on the testing data is found by running t = 10, 20, . . . , 300 on the training
instances and choosing the t that gives the maximum number of optimal lower
bound results. For the example in Fig. 2(a), suppose the model trains for 30
seconds with each variable ordering. Using pcost max, the model would choose
the ordering with the better mean performance on the training data between
V.O. 1 and V.O. 4 as these have the highest bounds, pcost slope would choose
V.O. 4 as it has the highest mean change of 0.2 per second if we start from an
offset of 10 seconds, and pcost extrap would choose V.O. 4 by calculating the
highest extrapolated value of 10 + 0.2*(timeout - 30s).

3.4 Dynamic Online Time Allocator

This is a multi-algorithm selection method following a dynamic online sched-
ule [13]. It proceeds in rounds, such that round t has a limit of 2t seconds. We
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initially assign to each algorithm a share of the runtime. After each round, the
time share for each algorithm is updated based on a function of the problem
instance features, the current runtime for each algorithm, and the performance
of each algorithm. For our purposes, we use an updating function with three pa-
rameters: maximum lower bound (lb bonus), maximum change in lower bound
(delta bonus), and a tie parameter (tie bonus) that encourages reversion to the
uniform time allocator. Given a time share allocation (vo1, vo2, . . . , vok) at the
beginning of a round, this function adds lb bonus to the voi for the variable
ordering i with the maximum lower bound at the end of the round. Similarly,
delta bonus adds to the maximum change in lower bound from the beginning
of the round to the end of the round. In the case of any ties, the bonus is di-
vided evenly amongst the tied variable orderings. In the case that all variables
tie for both lb bonus and delta bonus, tie bonus is added to all voi. After adding
bonuses, all voi are re-normalized so that they sum to 1. Similar to the Low-
Knowledge method of [1], we use the training instances to tune the parameters of
the updating function to use on the test instances. For the example in Fig. 2(a),
the table in Fig. 3 shows the distribution of runtimes for each round. Suppose
lb bonus=delta bonus=tie bonus=1. Then, no bonus is given until each variable
ordering runs for 1 second, where then the lb bonus and delta bonus are split
between V.O. 1, V.O. 2, and V.O. 3, creating the distribution for the 8s round.
Then, V.O. 1 receives the lb bonus as it passes 4s total runtime with a bound
of 7 while V.O. 4 receives the delta bonus as it passes 2s total runtime with a
bound of 6. The next round would use the tie bonus, as no variable ordering
improves in the 16s round. This portfolio reaches the optimal lower bound at
39.8 seconds in the 32s round when V.O. 1 reaches 20 seconds of runtime.

Fig. 3. The distribution of runtimes using the Dynamic Online Time Allocator.

4 Case Study: Graph coloring

We next apply the variable ordering portfolios for decision diagrams to graph
coloring as a case study. Given a graph, the graph coloring problem is to minimize
the number of colors necessary to color all vertices such that no vertices sharing
an edge have the same color.

A decision diagram approach for graph coloring was proposed in [16, 17],
using iterative refinement based on conflict resolution. The decision diagram
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represents the independent sets (color classes) of the graph, where each layer
corresponds to a vertex of the input graph. That is, each r-t path in the decision
diagram correspond to a color class defined by the vertices that take an arc with
label 1 in the path. A graph coloring solution consists of a set of color classes such
that each vertex belongs to one color class. To find such solution, we can define
a network flow optimization model on the decision diagram, that 1) minimizes
the total amount of flow out of the root node, while 2) ensuring that in each
layer at least one arc with label 1 is traversed. The optimal network flow solution
thus corresponds to a collection of r-t paths that ‘cover’ all vertices. If one of
these paths contains a conflict, the decision diagram is refined accordingly, and a
new network flow solution is computed. This process iterates until a conflict-free
solution is found or a stopping criterion is met. The experimental results in [17]
demonstrate that the performance of this approach relies strongly on the variable
ordering, which makes this a relevant case study for our portfolio approach.

4.1 Variable Orderings

We consider the following six variable orderings, the first three of which were
also studied in [17]:

Lexicographic: Order the variables as they are input into the problem.
Maximum Connectivity/Degree: Add vertices one at a time, choosing the

one with the maximum number of dependencies already in the ordering, and
the one with the largest degree as a tie-breaker [16].

DSATUR: Use the classic graph coloring heuristic from Brélaz [7].
Maximal Paths: Use a maximal path decomposition to order the variables [2].

Start by considering the variables in the order they were entered. While not
all vertices are in the ordering, choose the first unchosen vertex and create
a maximal path, adding vertices to the ordering as they are added to the
path, then remove that maximal path from the graph. To create the maximal
path, choose an unchosen vertex that is adjacent to the most recent vertex
added to the path, or if this does not exist, add an unchosen vertex adjacent
to the first vertex in the path until there are no more possible vertices to
add.

Maximal Cliques: Use a maximal clique decomposition to order the variables.
Sort the vertices from largest degree to smallest degree. Construct a maximal
clique decomposition on the graph of variable dependencies by choosing one
vertex at a time, and then the first neighbor in the adjacency list that main-
tains a clique if one exists. Order the vertices by starting with the largest
clique, and continue with cliques that share as many edges with the previous
clique as possible.

Minimum Width: Apply a variable ordering with minimum width, that is,
the maximum number of dependencies for a variable that come before that
variable in the ordering [12]. The algorithm is described in Algorithm 1.

In our evaluation, we will refer to the above orderings as ‘lex’, ‘max degree’,
‘dsatur’, ‘max path’, ‘max clique’, and ‘min width’, respectively. We note that
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Algorithm 1 Minimum Width Variable Ordering Algorithm

Input: Graph G = (V,E)
Output: Ordered list of vertices L
Definition: deg(v,G) is the degree of v in G.

L← ∅
while V not empty do

N ← argmin
v∈V

{deg(v,G)}

V ← V −N
E ← E − {(i, v) : (i, v) ∈ E, v ∈ N}
L← N :L {add N to front of L}
G← (V,E)

end while
return L

the latter two orderings have not been applied before to decision diagram com-
pilation, to the best of our knowledge. We give details for constructing each type
of portfolio below.

4.2 Algorithm Portfolios

Static Uniform Time Allocator For the uniform time allocator, the order
the heuristics run in each round is: min width, max clique, dsatur, max degree,
max path, lex. This order was chosen based on which variable orderings solved
the most instances of the Dimacs benchmark set within a 3600s time limit.

Offline Predictive Models Via Classifiers We used Culberson’s random
instance generator [11] to generate 432 graphs. We generated 4 graphs of each
type in the cross product of n=(100, 250, 500, 1000), density=(0.1, 0.5, 0.9),
embedded colorings of (0, 10, 20), (0, 25, 50), (0, 25, 100) and (0, 50, 100) for
each n respectively, and variability=(0, 1) when the embedding does not equal
0. We use 3 graphs of each type as a training set (324 graphs), and the 4th
graphs as a testing set (108 graphs). We ran each algorithm on these graphs
for a maximum of 1,800 seconds. We also used a set of 137 graphs from the
coloring and clique part of the well-established Dimacs Challenge [18] as another,
completely independent, test set. The Dimacs experiments ran with a time limit
of 3,600 seconds.

For the features, we calculate 50 characteristics of each problem instance.
We use a subset of the features from Musliu and Schwengerer [20], by including
only these categories: graph size features, node degree statistics, maximal clique
statistics, local clustering coefficient statistics, weighted local clustering coeffi-
cient statistics, and dsatur greedy coloring statistics. Graph Size features and
node degree statistics use their common definitions. Maximal clique uses a simple
greedy algorithm for each node. Clustering coefficients use their classic definition
[21], and weighted clustering coefficients multiplies each clustering coefficient for
a node by its degree. DSATUR runs the common algorithm mentioned earlier
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in this paper. Problem instances were labelled with a best algorithm based first
on maximum lower bound, then best time to the best lower bound, and then
most instances solved to optimality. To simplify parameter configuration for the
classification models, we used parameters recommended in [20]. For the BN, the
maximum number of parent nodes is set to 5. For the DT, the minimum number
of objects per leaf was set to 3. For kNN, the size of the neighborhood is set to 5.
For the RF, the number of trees was set to 15. For the MP and SVM, and other
remaining parameters, we used the default settings from the Weka system [6].

Low-Knowledge Single Algorithm Selection We order the variables as we
did in the Static Uniform Time Allocator, and we use the training set from the
Offline Predictive Models Via Classifiers to find the best parameter t. When
determining the mean change for pslope mean, we consider the interval from 10
seconds to the end of the training phase, as all variable orderings start with a
lower bound of 1.
Dynamic Online Time Allocator We order the variables as we did in the
Static Uniform Time Allocator, and we use the training set from the Offline
Predictive Models Via Classifiers to find the best set of bonus parameters.

5 Experimental Evaluation

All variable orderings and iterative refinement algorithms are written in C++.
The data evaluation scripts are written in Python, using a wrapper around the
Weka data mining library version 1.0.6 for the machine learning models used [6].
Following previous studies, we assume an ”ideal” machine with no task switch-
ing overhead [13]. Therefore, our experiments were run for each single variable
ordering, and this data was compiled to simulate each portfolio method. All
experiments were run on an Intel Xeon 2.33GHz CPU with Ubuntu 18.04. We
will evaluate each algorithm (i.e., the individual variable orderings and portfo-
lios) in terms of their performance: how many instances can be solved within a
given time limit? We first consider the performance of the individual variables
orderings, and then assess each of the four portfolio approaches from Section 3.

5.1 Performance of individual variable orderings

Before running our portfolio methods, we confirm that none of the individual
orderings always dominates the others, and that each ordering can be the best for
at least one instance. We show that this is the case for both the Test Culberson
instances and Dimacs instances through Figure 4(a), which plots the frequency
that a variable ordering achieved the best bound amongst all variable orderings
within three time ranges of when the quickest variable ordering achieved that
bound. For the 108 Test Culberson instances, any one variable ordering achieves
the best lower bound within 60 seconds of the quickest variable ordering to
achieve this bound for less than 80 instances. Similarly, this number is 100 of
the 137 Dimacs instances.
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A more detailed comparison of the individual variable orderings is given
in Fig. 5 by presenting their performance plots, i.e., the number of instances
solved by a given time limit. We show these plots separately for the test Culber-
son instances (a) and the Dimacs instances (b). The best performing individual
variable orderings for the Culberson instances are dsatur and max degree (both
solve 46 instances). While max degree solves 46 instances in 1200 seconds, dsatur
solves 46 instances in 1740 seconds. For the Dimacs instances the min width
ordering performs best (solving 54 instances). The min width ordering also per-
forms best overall, solving 98 instances in total compared to 96 for the runner
up max degree.

5.2 Experiment 1: Static Uniform Time Allocator

We included this method as a baseline comparison. Despite its simplicity, the
uniform time-sharing portfolio solves 55 Dimacs instances optimally, and solves
more Dimacs instances in faster times than all of the variable orderings indi-
vidually, as can be seen in Fig. 5(b). This method also works well, but not as
well, on the Test Culberson instances, as presented in Fig. 5(a). In both cases,
there is at least one instance that a hypothetical ‘oracle’ portfolio, which selects
the best variable ordering for each instance can solve, but the uniform portfolio
cannot.

5.3 Experiment 2: Offline Predictive Models Via Classifiers

The predictive model used a greedy forward feature selection which chose 28 fea-
tures (4 basic features and 24 product features) ranging over all of the feature
categories (the same features were used for all models). The Multilayer Percep-
trons model (MP) took 10 minutes to train, while the other models needed less
than one minute to train, so we chose to not include results for MP. All of the
testing took less than a second. Among all instances, the median time taken
to compute all features for an instance is 1 second, the 75th percentile is 19
seconds, and the maximum is 2562 seconds. Most classifiers showed similar per-
formance as seen in Fig. 6. Random Forests (RF) performed best for Culberson
instances solving 45 instances, and Bayesian Network (BN) for Dimacs instances
solving 55 instances. The results highlight the fact that the models are trained
on Culberson data, so the Culberson test results simulate a user having access
to results from a similar problem set, while the Dimacs results simulate a user
lacking similar training data.

5.4 Experiment 3: Low-Knowledge Single Algorithm Selection

Recall that for six orderings and a time limit T , the training phase for this
method takes 6∗ t seconds, while the the final selected algorithm runs for a total
of t+(T−6∗t) seconds. As stated before, we use T = (3600, 1800) for the Dimacs
and Culberson Test sets respectively. Based on the results of the training data,
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Fig. 4. The frequency that a variable ordering yields the best lower bound within a
time range of (1s, 60s, 1800/3600s) from the fastest time of any ordering, for the Test
Culberson instances (a) and the Dimacs instances (b).

we set t = (30, 10, 10) for pcost max, pslope mean, and pextrap respectively. We
present the performance for the three possible settings for this type of portfolio
in Fig. 7. We see that pcost slope performs best for Culberson instances solving
46 instances, while pcost max performs best for Dimacs instances, solving 56
instances. The choice of 10 seconds for pslope mean will always select the top
tie-breaker option (which was dsatur), because there is no slope to calculate
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Fig. 5. The number of instances solved to optimality within t seconds for each variable
ordering, the oracle, and the uniform time-sharing portfolio. The time is in log-scale.
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Fig. 6. The number of instances solved to optimality within t seconds for each type of
classifier used in the predictive method and the oracle. The time is in log-scale.
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with only one bin, so we use pcost max for both types of instances in our final
comparisons. The results show that while this type of portfolio may take a while
to train, its late performance looks strong for both types of instances.
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Fig. 7. The number of instances solved to optimality within t seconds for each function
that can be used in the low knowledge portfolio and the oracle. The time is in log-scale.
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5.5 Experiment 4: Dynamic Online Time Allocator

We ran this method on the training data using values of (0, 2, 4, 6) for each
possible bonus value. Based on those results, for the testing sets we used lb bonus
= 6, delta bonus = 6, and tie bonus = 6. These large yet equal bonuses made
it quick to either converge to an optimal allocation share or revert back to the
uniform distribution. The overall comparison in the next section includes these
results.

5.6 Overall Comparison

Table 1. Number of instances solved to optimality within three time limits for the
Culberson and Dimacs instance types. We compare the best single variable ordering,
each of the portfolio approaches, the oracle, and the method by Held et al. [15].

Culberson Dimacs

100s 750s 1,800s 100s 1,000s 3,600s

Single Variable Ordering (max degree/min width) 36 44 46 51 52 54

Static Uniform Time Allocator 35 40 44 51 54 55
Offline Predictive Model (RF/BN) 35 43 45 49 54 55
Low-Knowledge Single Algorithm (PCOST) 32 42 45 40 54 56
Dynamic Online Time Allocator 37 45 46 53 53 55

Oracle 39 44 46 54 54 57

Held et al. 44 50 52 53 56 60

Lastly, we compare the performance of the best settings for each type of
portfolio against the oracle, the best performing individual ordering (max degree,
resp. min width), and the state-of-the-art graph coloring solver by Held et al. [15].
The latter solver is based on integer linear programming, and implements a
branch-and-price algorithm.1 The performance plot for each method is given in
Fig. 8 for the Culberson instances (a) and Dimacs instances (b). In addition, Ta-
ble 1 presents the number of instances solved to optimality within three different
time limits for each algorithm and each instance type.

Table 1 shows that the best performing portfolios at the time limit are
PCOST and dynamic online for the Culberson instances (solving 46 instances),
and PCOST again for the Dimacs instances (solving 56 instances). Fig. 8 further-
more shows that also in terms of overall performance (across varying time limits
and for both instance types), both the low-knowledge PCOST and dynamic on-
line portfolios perform well. However, one may favor the dynamic online portfo-
lio because the low-knowledge method is often slower to reach optimality due to

1 The code has been downloaded from https://github.com/heldstephan/exactcolors.
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Fig. 8. The number of instances solved to optimality within t seconds for the best
performing individual variable ordering (max degree/min width), the best setting for
each portfolio method, the oracle, and the state-of-the-art code by Held et al. [15], for
the Test Culberson instances (a) and the Dimacs instances (b).
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its training phase. Notice that for the Culberson instances, the dynamic online
portfolio solves the same number of instances as the single variable ordering
max degree. More granularity shows that the dynamic online portfolio solves 46
instances in 1,080 seconds while the max degree ordering takes 1,200 seconds.
This indicates that for a set of similar graph instances, one variable ordering
might work just as well as a portfolio, but when the set of instances is more
diverse like in the Dimacs set, the portfolio can become more helpful.

The predictive method shows slightly stronger relative performance to the
other portfolio methods on the Culberson instances than for the Dimacs in-
stances, especially looking at 100s. This is likely because the training set con-
sists of Culberson instances. Also notice from comparing the performance of the
dynamic online portfolio and the oracle at 750s for Culberson instances that
portfolios using more than one ordering can even outperform the oracle when
one variable ordering finds the best lower bound and another finds the matching
upper bound.

In a comparison to the state of the art, the dynamic online portfolio improves
the performance of the decision diagram approach to be competitive with Held
et al. for the Dimacs instances. However, overall Held et al. solve more instances
within the time limit. For the Culberson instances, the approach by Held et al.
clearly outperforms the best portfolio approach.

6 Conclusion

We presented a portfolio approach to selecting the best variable ordering for
relaxed decision diagrams in the context of combinatorial optimization. We con-
sidered four approaches: uniform time allocation, predictive modeling, a low-
knowledge selection procedure, and a dynamic online time allocator. We com-
pared the performance of these methods on the graph coloring problem, and find
that even the simplest portfolio (uniform time allocation) already outperforms all
individual orderings for the Dimacs benchmark set of instances. The dynamic
online time allocator showed the best overall performance. As it can combine
lower and upper bounds from different orderings, it is even able to outperform
an oracle that selects the best single ordering for each instance.
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