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Abstract. Nogood learning is a critical component of Boolean satisfia-
bility (SAT) solvers, and increasingly popular in the context of integer
programming and constraint programming. We present a generic method
to learn valid clauses from exact or approximate binary decision diagrams
(BDDs) and resolution in the context of SAT solving. We show that any
clause learned from SAT conflict analysis can also be generated using
our method, while, in addition, we can generate stronger clauses that
cannot be derived from one application of conflict analysis. Importantly,
since SAT instances are often too large for an exact BDD representation,
we focus on BDD relaxations of polynomial size and show how they can
still be used to generated useful clauses. Our experimental results show
that when this method is used as a preprocessing step and the generated
clauses are appended to the original instance, the size of the search tree
for a SAT solver can be significantly reduced.

Introduction

Solvers for Boolean satisfiability (SAT) have become increasingly powerful in
recent decades and can now be used to solve large-scale instances involving
millions of variables and constraints. Much of the success of modern SAT solvers
stems from their ability to quickly learn new constraints from infeasible search
states via conflict-directed clause learning (CDCL). Conflict analysis has also
been applied in the context of mixed-integer programming (MIP) [1, 17] and
constraint programming (CP) [15, 21, 24] as “nogood” learning. In the context
of constraint programming, nogood learning techniques have been proposed for
specific combinatorial structures that arise from global constraints. For example,
Downing et al. [12] study nogoods for global constraints that can be represented
as a network flow. However, it remains a challenge to learn effective nogoods for
MIP and CP solvers in a more generic context.

In this paper we introduce a generic approach for learning nogoods from
decision diagrams, both exact and approximate. Decision diagrams provide a
compact representation of the solution space for discrete optimization problems,
and have been used to improve constraint propagation [2, 11, 14] and to derive
optimization bounds [6, 8]. This work proposes an extension of the use of such



decision diagrams to learn nogoods. We specifically focus on clause learning in
the context of SAT solving, being perhaps the most general form of nogood
learning.

The architecture of today’s SAT solvers, combining unit propagation with
rapid restarts and CDCL, focuses on techniques with very low overhead and
maximizes the number of search nodes that can be processed per second. While
this has clearly been beneficial, the unit propagation inference performed by
SAT solvers is arguably limited in strength. We therefore investigate a way
to generate clauses that are stronger than those currently derived from unit
propagation and CDCL. We show that these clauses, when added to the original
formula, can substantially reduce the search tree size.

Our clause generation scheme is based on a novel application of binary de-
cision diagrams (BDDs) to represent a given propositional formula. In contrast
to conventional BDD construction methods that are context-agnostic, we asso-
ciate a meaning with each node of the BDD: the set of clauses that are not yet
satisfied. This allows us to apply a top-down compilation scheme [8] in which
node equivalence is defined by the set of unsatisfied clauses. This node informa-
tion provides a sufficient condition for efficiently creating BDDs (that are not
necessarily reduced, however).

The key observation in our work is that the BDD node information, for those
nodes that do not lead to a satisfying solution, can also be used to generate
new clauses. Such clauses can be viewed as “nogoods” that forbid the solver to
visit the associated search states. Since a node in a BDD can represent multiple
partial assignments, a single nogood generated in this way is as strong as multiple
nogoods derived from these separate partial assignments.

We formally characterize the strength of the clauses generated by our method.
For example, we show that our clauses can indeed be stronger than one invoca-
tion of traditional conflict analysis. We also show the equivalence of our approach
to regular and ordered resolution, which are specific restricted forms of resolution
proofs.

BDDs that exactly represent a given CNF formula are well known to grow
exponentially large in general. This has significantly limited the success of BDD-
based techniques for SAT solving. To circumvent this limitation, we explore ways
to apply our method to relaxed and restricted BDDs that represent a superset
and subset, respectively, of all solutions instead [7, 8]. These approximate BDDs
are created by merging non-equivalent nodes so as to respect a given limit on the
size of the BDD. We show that the clauses derived from relaxed (or restricted)
BDDs are still valid and can be computed efficiently.

We report results of computational experiments performed to evaluate the
strength of our generated clauses in practice. We show that, for certain problem
classes, our clauses can reduce the search tree size considerably. Interestingly, the
solving time is not always reduced accordingly; we attribute this behavior to the
length and number of our generated clauses. Nonetheless, the qualitative strength
of our clauses demonstrates a great potential for inclusion in SAT solvers, and
we propose several suggestions for doing so in the conclusion.



Binary Decision Diagrams

A binary decision diagram (BDD) [10, 18, 19, 25] is an edge-labeled acyclic
directed multigraph whose nodes are arranged in n+1 layers L1, . . . , Ln+1. The
layer L1 consists of a single node, called the root. In this paper, every edge in
the BDD is directed from a node in layer Li to a node in layer Li+1. Each node
in layers L1, . . . , Ln has two outgoing edges, one labeled “true” and the other
labeled “false.” There are two nodes in layer Ln+1, called the sinks or terminals;
one of them, labeled >, is the true sink, while the other, labeled ⊥, is the false
sink.

A BDD represents a Boolean function f defined on variables x1, . . . , xn as fol-
lows. The layers L1, . . . , Ln correspond respectively to the variables x1, . . . , xn.
A path from the root to a sink corresponds to values of these variables; a “true”
edge from a node in layer Li to a node in layer Li+1 corresponds to xi = 1, while
a “false” edge corresponds to xi = 0. If the path corresponding to the values
of x1, . . . , xn ends at the true sink, then f(x1, . . . , xn) = 1; otherwise the path
ends at the false sink, and f(x1, . . . , xn) = 0.

BDDs for SAT

An instance of the Boolean satisfiability (SAT) problem is a propositional for-
mula on variables x1, . . . , xn, expressed in conjunctive normal form (CNF),
that is, as a conjunction of disjunctions of literals, where a literal is a variable xi
or its negation xi. Each of these disjunctions is called a clause. Because logical
conjunction and disjunction are commutative, associative, and idempotent, we
may view a SAT instance as a set of clauses, each of which is a set of literals. The
objective is to determine whether there exists an assignment of Boolean values
to the variables that simultaneously satisfies every clause.

Let I be a SAT instance on the variables x1, . . . , xn, and let S denote the
set of satisfying assignments to these variables. Let B be a BDD defined on the
variables x1, . . . , xn, and let B denote the set of assignments to these variables
represented by B (that is, for which the Boolean function defined by B is true).
If B = S, B ⊇ S, or B ⊆ S, then B is said to be an exact BDD, a relaxed BDD,
or a restricted BDD for I, respectively [2, 7, 8, 13].

A path in a BDD from the root to a node in the layer Li+1 represents a
partial assignment, i.e., an assignment y ∈ {0, 1}i of values to the variables
x1, . . . , xi. Let S(y) denote the set of satisfying completions of this partial
assignment, that is, S(y) =

{
z ∈ {0, 1}n−i : (y, z) is feasible

}
. If y and y′ are

partial assignments with S(y) = S(y′), then we say that y and y′ are equivalent.
Note that in an exact BDD all paths from the root to a fixed node v represent
equivalent partial assignments, and conversely if two partial assignments y and y′

are equivalent then the paths in an exact BDD that correspond to y and y′ can
lead to the same node.

In the literature, BDDs are commonly required to be reduced, in the sense
that any two equivalent partial assignments must be represented by the same
node. The BDDs in this paper are not necessarily reduced.



In general, determining whether two partial assignments are equivalent is NP-
hard for the SAT problem. However, we can sometimes determine that two par-
tial assignments are equivalent by associating partial assignments with “states”
[14, 16]. A state function for layer i is a map σi from the set {0, 1}i−1 of partial
assignments at layer i into some set Si of states, such that σi(y) = σi(y

′) implies
S(y) = S(y′). In other words, two partial assignments that lead to the same
state have the same set of satisfying completions.

Behle [5] described a top-down algorithm for the construction of threshold
BDDs, which are exact representations of solution sets of instances of 0–1 knap-
sack problems. A general algorithm for a top-down, layer-by-layer construction
of a multivalued decision diagram (MDD), which is similar to a BDD except that
the labels of the edges may come from any set, was given by Bergman et al. [8].
This algorithm works by maintaining state information for each node, comput-
ing the resulting state for each outgoing edge, and reusing nodes (i.e., pointing
two edges at the same node) when the resulting states are the same.

To apply this top-down algorithm for the construction of a BDD from a SAT
instance, we define σi(y) for a partial assignment y = {y1, . . . , yi−1} to be the set
of clauses in the instance that are not satisfied by the assignments x1 = y1, . . . ,
xi−1 = yi−1. Observe that if two partial assignments at layer i have the same
set of unsatisfied clauses, then they have the same set of feasible completions,
so this is indeed a state function. The state of the root node is the full set of
clauses in the instance, and the state of a child node is formed from the state of
its parent by removing all clauses that are satisfied by the variable assignment
corresponding to the edge from the parent to the child.

Example 1. Consider a graph coloring problem on a complete graph with three
vertices. Vertices 1 and 2 can be colored 0 or 1, while vertex 3 can be colored
0, 1, or 2. All nodes must be colored differently. We introduce variable x1 for
vertex 1, where x1 represents color 0 and x1 represents color 1. Likewise we
introduce x2 for vertex 2. For vertex 3, we introduce three variables x3, x4,
and x5 for colors 0, 1, and 2, respectively. Here a positive literal represents that
we choose that color, while its negation represents that we do not choose that
color (e.g., x3 means that vertex 3 is not colored 0). We can formulate this
problem as the following SAT instance with 11 clauses:

(1) x3 ∨ x4 ∨ x5 (7) x1 ∨ x2
(2) x3 ∨ x4 ∨ x5 (8) x1 ∨ x4 ∨ x5
(3) x3 ∨ x4 (9) x1 ∨ x3 ∨ x5
(4) x3 ∨ x5 (10) x2 ∨ x4 ∨ x5
(5) x4 ∨ x5 (11) x2 ∨ x3 ∨ x5
(6) x1 ∨ x2

The constructed BDD, using the lexicographic variable ordering, is presented
in Figure 1. The state of each node is the set of (indices of) clauses that have not
been satisfied by any path from the root to that node. “True” edges are drawn as
solid lines, and “false” edges are drawn as dashed lines. Infeasible nodes, that is,
nodes from which no path leads to the true sink, are shaded gray.
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Fig. 1. The exact BDD for the example. The false sink is drawn multiple times for
clarity.

Approximate BDDs

In general, exact BDDs can be of exponential size, so the construction of an
exact BDD may not be practical. For this reason, it is useful to consider BDDs
that represent relaxations or restrictions of the SAT instance. Such BDDs are
called approximate BDDs because their structure approximates the structure of
the exact BDD.

MDDs of limited width were proposed by Andersen et al. [2] to reduce space
requirements. In this approach, the MDD is constructed in a top-down, layer-
by-layer manner, and whenever a layer of the MDD exceeds some predetermined
value W an approximation operation is applied to reduce its size to W before
constructing the next layer. One way to perform this approximation is to use a
relaxation (or restriction) operation ⊕ defined on the states of nodes so that,
given nodes v and v′, the state given by state(v)⊕ state(v′) is a “relaxation” (or
“restriction”) of both state(v) and state(v′). A subset of nodes in a layer can be
merged into a single node by applying this operator to obtain a state for the new
node, and this is repeated until the size of the layer is reduced to W [8, 14, 16].

In our case, the state of a node is a set of unsatisfied clauses, and so the ap-
propriate relaxation operation is the intersection operation (and the appropriate
restriction operation is the union operation).

Clause Generation with BDDs

We propose the use of a BDD representation of a SAT instance to generate
clauses. One simple way to deduce clauses from a BDD is to project the variable



assignments along the satisfying paths in a BDD and to look for variables whose
values must be fixed. For instance, in the example above, we can infer from
both feasible paths that we can fix x3, x4, and x5. However, in practice we
must use approximate BDDs, and this approach does not produce much useful
information.

A more fruitful approach is to deduce clauses from the infeasible nodes of
the BDD (that is, the nodes from which no path leads to the true sink) by
using the state information for these nodes. In particular, we generate a clause
for each infeasible node in the BDD that witnesses its infeasibility. We do this
systematically by applying a sequence of resolution steps.

Resolution is a commonly used inference rule applied to propositional for-
mulas in conjunctive normal form. The resolution rule, applied to two clauses
xi ∨ P and xi ∨Q, where P and Q denote disjunctions of literals, is

xi ∨ P xi ∨Q
P ∨Q

.

The resulting clause P ∨Q is called the resolvent.
During the top-down construction of a BDD for a SAT instance, infeasibility

of a state is detected when an unsatisfied clause contains no variable correspond-
ing to a lower layer of the BDD. When this occurs, we choose one such clause
as a witness of the infeasibility of the corresponding node.

After the BDD construction is complete, we perform a single bottom-up
pass to identify all infeasible nodes and generate a witness clause for each. For
an infeasible node v in layer Li, we generate a witness clause as follows:

– If one of the child states has a witness clause that does not contain the
variable xi, then choose this clause as the witness clause for v.

– Otherwise, one child has a witness clause containing xi and the other has a
witness clause containing xi, so apply the resolution rule to these two clauses
with respect to the variable xi and use the resolvent as the witness clause
for v.

At the end, we output the witness clauses for all roots of maximal infeasible
subtrees of the BDD.

Example 2. Continuing the graph-coloring example from earlier, consider the
infeasible subtree rooted at the node with state {2, 3, 4, 5, 8} in layer L4 in Fig-
ure 1. This subtree is redrawn in Figure 2. Setting x4 = 0 satisfies clauses 2, 3,
and 5, so the “false” child (i.e., the child along the “false” edge) has state {4, 8}.
However, from this node, setting x5 = 0 means that clause 8 cannot be satisfied,
and setting x5 = 1 means that clause 4 cannot be satisfied. Therefore, neither
of the children of the node with state {4, 8} is feasible, and we have a witness of
the infeasibility of each: clause 8, x1∨x4∨x5, for the “false” child, and clause 4,
x3 ∨ x5, for the “true” child.

Likewise, returning to the node with state {2, 3, 4, 5, 8}, if we set x4 = 1 then
clause 3 cannot be satisfied, so clause 3, x3 ∨ x4, is a witness of the infeasibility
of this child.



2, 3, 4, 5, 8

4, 8 ⊥ (3)

⊥ (8) ⊥ (4)

x1 ∨ x3

x1 ∨ x3 ∨ x4 x3 ∨ x4

x1 ∨ x4 ∨ x5 x3 ∨ x5

x4
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Fig. 2. Witness clauses generated from the infeasible subtree rooted at the node with
state {2, 3, 4, 5, 8} in layer L4.

Now, in our bottom-up pass, we first determine that the node with state
{4, 8} is infeasible. Both of its child nodes have witness clauses that contain
the variable x5, so we apply the resolution rule to these two witness clauses
with respect to x5 to obtain the clause x1 ∨ x3 ∨ x4, which is a witness of
the infeasibility of the node with state {4, 8}. Likewise, the node with state
{2, 3, 4, 5, 8} is infeasible, so we apply the resolution rule to these two witness
clauses with respect to x4 to obtain the clause x1 ∨ x3.

Since the node with state {2, 3, 4, 5, 8} is the root of a maximal infeasible
subtree of the BDD, we produce the clause x1 ∨ x3 as output. This is a valid
clause for the original SAT instance.

In a similar way, we generate the witness clause x2 ∨ x3 for the node with
state {2, 3, 4, 5, 10} in layer L4 in the BDD in Figure 1.

Characterization of Generated Clauses

Let us formally define a clause C to be valid for a propositional formula F if
F |= C, i.e., F logically entails C. In other words, F ∧ C has the same set of
solutions as F itself. We begin with a few properties of witness clauses generated
using the BDD method.

Theorem 1. Let F be a CNF formula and B be a top-down exact, relaxed, or
restricted BDD for F constructed as described above. Then:

1. Every witness clause generated from B is valid for F .
2. The set of variables in every witness clause generated at layer Li+1 is a

subset of {x1, x2, . . . , xi}.
3. If B is an exact or relaxed BDD, the witness clause C generated for a node v

of B is falsified by the partial assignment corresponding to every path from
the root of B to v. In particular, C does not contain any variable that appears
both negatively and positively in paths from the root to v.

4. If B is an exact or relaxed BDD, the witness clause C associated with any
infeasible node v of B witnesses the infeasibility of v.



5. Let U denote the roots of maximal infeasible subtrees of B. If B is exact, then
the set G of all witness clauses associated with nodes v ∈ U is a reformulation
of F .

Proof. The first claim follows immediately from the observation that the witness
clause C associated with any node v is derived using a sequence of resolution
operations starting from the clauses in state(v). Since resolution is a sound proof
system, state(v), and hence F , must entail C.

We prove the second claim by induction on i. For i = n+1, the claim trivially
holds. Suppose the claim holds for clauses generated at layer Li, with i > 1. By
construction, any clause C generated at layer Li−1 either is identical to a clause
generated at layer Li, in which case it does not contain the variable xi−1, or else
is obtained by resolving two clauses at layer Li on the variable xi. In either case,
by the induction hypothesis, the variables appearing in C must be a subset of
{x1, x2, . . . , xi−2}.

To prove the third claim, we recall from the definition of the state function
that when B is exact or relaxed, the partial assignment y corresponding to any
path from the root to v does not satisfy any clause in state(v) = Fv ⊆ F . For
the sake of contradiction, suppose ` is a literal of the witness clause C that is
satisfied by y. Since C is derived by applying resolution steps to clauses in Fv, the
literal ` must appear in at least one clause C ′ of Fv. Since y satisfies `, it would
also satisfy C ′, a contradiction. Hence, C must be falsified by y. Finally, if C
contained a literal ` that appears positively and negatively in partial assignments
y and y′ corresponding to two paths from root to v, then C would clearly be
satisfied by at least one of y and y′, which, as proved above, cannot happen.
Hence, C must not contain any such literal.

For proving the fourth claim, we use the above property that when B is exact
or relaxed, the partial assignment y corresponding to any path from the root to v
does not satisfy C. Suppose y could be extended to a full assignment (y, z) that
satisfies F . Then z must satisfy all clauses in state(v) = Fv as these clauses, by
definition of the state function, are not satisfied by y. Since C is derived from Fv

by applying a sequence of resolution operations, z must then also satisfy C.
However, as observed above, C is a subset of {x1, x2, . . . , xi−1}, where Li is
the layer containing v, and hence C cannot possibly be satisfied by z. This
proves that y cannot be extended to a full assignment satisfying F , and that the
generated clause C witnesses this fact as well as the infeasibility of v.

Lastly, when B is exact, we argue that the set G of witness clauses associated
with roots of maximal infeasible subtrees of B is logically equivalent to F . If y
is a solution to F , then y must satisfy all witness clauses as these clauses are
entailed by F . Hence y must also satisfy G. On the other hand, if y is not a
solution to F , then let y′ be the partial assignment corresponding to the path
in B associated with y but truncated at the root v′ of a maximal infeasible
subtree. By the third property above, y′ (and hence y) must falsify the clause C ′

associated with v′, and hence falsify G. It follows that F and G have the same
set of solutions and thus G is a reformulation of F . ut



In the remainder of this section, we explore how BDD-guided clause genera-
tion relates to propagation and inference techniques used in today’s SAT solvers.
To make this connection precise, we recall the notion of absorbed clauses [3, 22].
A clause C is said to be absorbed by a CNF formula F if for every literal ` ∈ C,
performing unit propagation4 on F starting with all literals of C except ` set to
false either infers ` or infers a conflict. The intuition here is that C is absorbed
by F if F and F ∧C have identical entailment power with respect to unit propa-
gation, i.e., whatever one can derive from F ∧C using unit propagation one can
also derive from F itself.

Pipatsrisawat and Darwiche [22] showed that the conflict-directed clause
learning (CDCL) mechanism in SAT solvers always produces clauses that are
not absorbed by the current theory, that is, by the set of initial clauses of F
and those learned thus far during the search. As we show next, this property
also holds for clauses generated by the BDD method applied to F , as long as we
ignore any states at which unit propagation already identifies a conflict.

More formally, given a BDD B, let us define a unit-propagated BDD, denoted
Bup, as the one obtained by removing from B all nodes v such that unit propa-
gation on state(v) results in a conflict. From a practical standpoint, such nodes
can be easily identified in linear time and discarded.

Theorem 2. Let F be a CNF formula and B be a top-down exact, relaxed, or
restricted BDD for F constructed as described above. Let C be the witness clause
for the root v of any maximal infeasible subtree in Bup. Then C is not absorbed
by F .

Proof. We first show that setting all literals of C to false and performing unit
propagation does not result in a conflict. From Theorem 1, the partial assignment
y corresponding to the path from the root of Bup to y falsifies C. Yet, by design,
unit propagation on state(v) does not result in a conflict. Therefore, it must be
the case that unit propagation on F starting with the partial assignment y does
not result in a conflict. Since y falsifies all literals of C, we infer that falsifying
all literals of C and performing unit propagation does not result in a conflict.

To finish the argument that C is not absorbed by F , we next show that
there exists a literal ` in C such that setting all literals of C except ` to false
does not allow unit propagation to infer `. Since v is the root of a maximal
infeasible subtree in Bup, it must be the case that v has a sibling node v′ that is
not identified as being infeasible. Let u be the common parent of v and v′. The
witness clause C associated with v must include a literal ` corresponding to the
branching variable associated with the layer of u. We will use ` to demonstrate
that C is not absorbed by F .

Suppose, for the sake of contradiction, that setting all literals of C other
than ` to false and performing unit propagation infers `. Consider the partial

4 Unit propagation on a CNF formula is the process of identifying, if there is one, a
clause that contains only one literal `, setting ` to true, simplifying the formula by
removing ¯̀ from all clauses and removing all clauses containing `, and repeating.
Unit propagation is said to result in a conflict if it generates an empty clause.



assignment z corresponding to the path from the root of Bup to u. This partial
assignment z differs from the partial assignment y identified above in only the
literal `. It must then be the case that z falsifies all literals of C except for `,
and therefore unit propagation on state(u) starting with z must infer `. In other
words, there exists a clause C ′ in state(u) such that ` ∈ C ′ and z, after unit
propagation, falsifies all literals of C ′ other than `. This, however, implies that
C ′ is also in state(v′), the state corresponding to the sibling v′ of v, and further
that unit propagation on state(v′) must falsify C ′, resulting in a conflict. This,
however, contradicts the fact that v′ was not identified as an infeasible node
in Bup. ut

This establishes that our clause generation approach effectively produces
clauses that provide useful information not already captured by unit propagation
inference on F .

While a series of potentially exponentially many applications of the CDCL
mechanism can eventually let the solver learn any clause entailed by F (including
the empty clause in case F is unsatisfiable), we show below that any clause that
it can learn with one application of conflict analysis starting from a clause set F
is a special case of the BDD-generated clauses starting from F . This holds for any
clause learning scheme employed by the solver to choose a cut in the underlying
conflict graph.5

The proof of this claim uses properties of a few different restrictions of general
resolution which we briefly recapitulate. A tree-like resolution is one where no
clause, other than the initial clauses of F , is used in more than one resolution
step. A regular resolution is one where no variable is resolved upon more than
once in any root-to-leaf path. Finally, an ordered resolution is one where the
order of variables resolved upon is identical across all root-to-leaf paths.

Theorem 3. For any clause C learned from one application of SAT conflict
analysis on F using any clause learning scheme, there exists a variable ordering
under which a top-down approximate BDD of width at most 2|C| for F generates
a clause C ′ ⊆ C.

Proof. To prove this, we use the resolution-based characterization of CDCL
clauses [4], namely, the CDCL derivation of a clause C starting from F and
using any clause learning scheme can be viewed as a very simple form of resolu-
tion derivation that has a ladder-like structure. More formally, the derivation τ
of C is simultaneously a tree-like, regular, linear, and ordered resolution deriva-
tion from the clauses in F . This means that each intermediate clause Cj+1 in τ is
obtained by resolving Cj with a clause of F and that the sequence σ of variables
resolved upon in τ consists of all distinct variables.

We can use BDDs to derive from F a clause C ′ that, together with F , ab-
sorbs C. To construct such a BDD B, we use as the top-down (partial) variable
order first the variables that appear in C (in any order) followed by variables

5 The specifics of the SAT conflict analysis terminology are not critical here. The
interested reader is referred to relevant surveys such as by Marques-Silva et al. [20].



in the reverse order of σ. The first |C| variables result in a BDD of width at
most 2|C|. Let v be the node of B in the layer L|C|+1 at which all literals of C
are falsified. When expanding B from v, the ladder-like structure of τ guarantees
that at least one branch on the variables in σ can be labeled directly by a clause
of F that is falsified. The corresponding lower part of B starting at v is thus of
width 1. For the remaining 2|C|− 1 nodes of B in the layer L|C|+1, we construct
an approximate lower portion of the BDD such that the overall width does not
increase. This makes the overall width of B be 2|C|.

While B may have several infeasible nodes, the node v in the layer L|C|+1

is guaranteed by the derivation τ to be infeasible. Recall that the path p from
the root of B to v falsifies C. Consider the node v′ that is the root of the
maximal infeasible subtree of B that contains v. Let C ′ be the BDD-generated
clause witnessing the infeasibility of v′. By Theorem 1, C ′ must be falsified by the
path p′ from the root of B to v′. Note that p′ is a sub-path of p. By construction,
C contains all |C| literals mentioned along p, while, by Theorem 1, C ′ contains
a subset of the literals mentioned along p′ and hence along p. It follows that
C ′ ⊆ C. ut

The above reasoning can be extended to construct an exact BDD that gen-
erates a subclause of C. However, the width of such a BDD will depend not only
on |C| but also on the number of resolution steps involved in conflict analysis
during the derivation of C.

Theorem 4. Clauses generated by applying the BDD method to F correspond
to regular and ordered resolution derivations starting from the clauses of F .

Proof. It is easily seen that the resolution operations performed during clause
generation from a BDD respect, by construction, the restrictions of being regular
and ordered. Hence, any BDD generated clause C can be derived using regular
and ordered resolution starting from F .

On the other hand, let τ be any regular and ordered resolution derivation
of C starting from F . An argument similar to the one in the proof of Theorem 3
can be used to show that there exists a natural variable order (namely, first
branch on the variables of C, then follow the top-down variable order imposed
by τ) under which the top-down BDD B for F contains a node v such that the
path from the root of B to v falsifies all literals of C. As before, witness clauses
for B may not directly include C as is, but the witness clause C ′ associated
with the root of the maximal infeasible subtree of B containing v would be a
subclause of C. ut

We recall again the resolution-based characterization of CDCL clauses, name-
ly, those that can be derived using tree-like, regular, linear, and ordered reso-
lution. This results in linear-size resolution derivations and thus forms a strict
subset of all possible derivations that are regular and ordered, but not necessarily
tree-like and linear. The above theorem therefore implies the following:

Corollary 1. There exist BDD-generated clauses that cannot be derived using
one application of SAT conflict analysis.



Implementation and Experimental Results

We implemented the clause generation algorithm described above in C++, as a
program called Clausegen. Several implementation decisions needed to be con-
sidered.

The variable ordering used in a BDD can have a very significant effect on
the size of the BDD (and consequently the quality of an approximate BDD).
Unfortunately, determining the optimal variable ordering is very difficult; in
general, the problem of determining whether a given variable ordering of a BDD
can be improved is NP-complete [9]. For our implementation, we use a simple
heuristic to determine the variable ordering: each variable is assigned a score,
computed as the quotient between the number of clauses containing the variable
and the average arity of those clauses, and the variables are sorted in decreasing
order according to this score, so that higher-scoring variables (that is, variables
that appear in many mostly short clauses) correspond to layers nearer the top
of the BDD.

The construction of a relaxed BDD via merging also requires a rule for deter-
mining which nodes to merge in a layer that exceeds the maximum width. Since
unsatisfied clauses lead to infeasibility, and our method generates clauses from
infeasible subtrees, the following merging rule is used: if a constructed layer ex-
ceeds the maximum width W , sort the nodes by the number of unsatisfied clauses
in their states, preserve the W −1 nodes with the greatest number of unsatisfied
clauses, and merge the other nodes into a single node. (The state of the resulting
node is the intersection of the states of the nodes that were merged.) Merging
rules similar to this one have been applied before in the context of optimization
and scheduling, for example by Cire and van Hoeve [11].

To demonstrate our method, we considered SAT instances produced from
randomly generated bipartite graph matching problems, with 15 vertices on each
side, in which a random subset of 10 vertices on one side is matched with only
9 vertices on the other side, so that the graph fails to satisfy Hall’s condition,
thereby making the SAT instance unsatisfiable. We preprocessed the instance
with SatELite 1.0 (using the +pre option) and used Minisat 2.2.0 as the SAT
solver (with -rnd-freq=0.01). Because Minisat uses a nondeterministic algo-
rithm, it was run 20 times for each test with different random seeds, and the
results were averaged. The experiments were run on an Intel Xeon E5345 at
2.33 GHz with 24 GB of RAM running Ubuntu 12.04.5.

For a representative instance of this type, with 225 variables and 748 clauses
(80 variables and 405 clauses after preprocessing), Minisat made 864,930 deci-
sions and encountered 714,625 conflicts on average.

Figure 3 shows the results of appending the clauses produced by Clausegen
before the instance is given to Minisat. As the maximum BDD width is increased
from 10 to 10,000, thus yielding more accurate approximate BDDs, the numbers
of decisions and conflicts encountered by Minisat decrease. The clauses generated
at BDD width 10,000 produced an improvement in these metrics by over 75% in
comparison with the original instance: Minisat averaged 212,158 decisions and
178,101 conflicts.



However, we do not see a corresponding improvement in the running time of
Minisat. The stacked area plot in Figure 3 shows the running time of Clausegen
and Minisat as the BDD width is increased. On the original instance, Minisat
required an average of 7.83 s; this time increased to 17.65 s when the clauses
generated at BDD width 10,000 were added. The number of generated clauses in-
creases linearly with the BDD width, from 12 clauses at width 10 to 9745 clauses
at width 10,000. The clauses generated at width 10,000 have an average length
of 11.8, compared to an average length of 2.1 in the original instance.
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Fig. 3. Minisat statistics for an unsatisfiable bipartite matching instance.

Figure 4 shows our results for another instance, counting-clqcolor-unsat-set-
b-clqcolor-08-06-07.sat05-1257.reshuffled-07.cnf, from the SAT Challenge 2012
Hard Combinatorial SAT+UNSAT benchmark instances [23]. This instance has
132 variables and 1527 clauses of average length 2.9 (117 variables and 1599
clauses of average length 4.3 after preprocessing with SatELite) and is also un-
satisfiable; it represents a graph coloring instance with a hidden clique that
is larger than the number of colors available. Minisat averaged 2,072,107 deci-
sions and 1,511,029 conflicts for the original instance, taking 14.18 s on average.
When the 3255 clauses of average length 8.7 produced by Clausegen at BDD



width 10,000 were added, the average numbers of decisions and conflicts de-
creased to 713,718 and 515,514, respectively, and the average running time of
Minisat decreased to 6.34 s. The minimum total running time of Clausegen and
Minisat together was achieved at a BDD width of 464; Clausegen took 0.57 s
to generate 340 clauses of average length 8.7, and Minisat averaged 1,351,691
decisions and 972,674 conflicts, taking 9.14 s on average to solve the instance,
for a total average solving time of 9.71 s (an improvement of 31.5% over the
original instance).
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Fig. 4. Minisat statistics for counting-clqcolor-unsat-[. . .].cnf from SAT Challenge 2012.

It may be that not all of the generated clauses are necessary. Preliminary
experiments involving the selection of random subsets of the generated clauses
appear to indicate that some subsets are significantly more helpful than others.
A heuristic to select useful subsets of the generated clauses may allow a decrease
in running time to match the decreases in the numbers of decisions and conflicts.



Conclusion

We presented a new algorithm that uses BDDs and resolution to generate valid
clauses from a SAT instance. This algorithm can use approximate BDDs for in-
stances that are too large for an exact BDD. We compared the strength of our
method to that of SAT conflict analysis and showed that our method can gen-
erate strictly stronger clauses than a single application of SAT conflict analysis.
Our experimental results show that concatenating these generated clauses to the
original instance can significantly reduce the size of the search tree for a SAT
solver.

For a practical implementation of our method, we propose the following tech-
niques to improve computational efficiency. First, initial experimentation has
shown that not all generated clauses are equally effective. We therefore suggest
the development of a heuristic to select and add only a small subset. Second, a
large formula may be decomposable into subformulas that are each representable
effectively by a BDD. It seems natural to make such a decomposition based on
structural properties of the formula (e.g., properties of the constraint graph).
Third, when a SAT solver appears to be making very little progress, and the
number of remaining free variables is limited, we can interrupt the search and
give the rest of the formula to a BDD to generate clauses conditional on the
partial assignment represented by the last search state.
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