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that have previously been handled separately in the literature: determin-
ing service level requirements at each bike sharing station, and designing
(near-)optimal vehicle routes to rebalance the inventory. Since finding prov-
ably optimal solutions is practically intractable, we propose a new cluster-
first route-second heuristic, in which a polynomial-size Clustering Problem
simultaneously considers the service level feasibility and approximate rout-
ing costs. Extensive computational results on real-world data from Hubway
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show that our heuristic outperforms a pure mixed-integer programming for-
mulation and a constraint programming approach.
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1. Introduction

Bike sharing systems are experiencing wide-spread adoption in major
cities around the world, with over 1,000 active systems and more than 300
in planning or under construction (Meddin & DeMaio, 2016). In these sys-
tems, users can pickup and return bikes at designated bike sharing stations
with a finite number of docks. Unfortunately, user behavior results in spatial
imbalance of the bike inventory over time. The system equilibrium is often
characterized by unacceptably low availability of bikes or open docks, for
pickups or returns respectively (Fricker et al., 2012, p. 375).

Therefore, operators deploy a fleet of trucks to rebalance the bike inven-
tory. We focus on the efficiency of these rebalancing operations, a major
cost driver for operators (DeMaio, 2009, p. 50). This problem consists of two
main components. First, determining the desired inventory level at each bike
station, which is typically done by an analysis of historic user data. Second,
designing truck routes that will perform the necessary pickups and deliveries
in order to reach the target inventory levels.

In practice, operators may perform a major rebalancing operation during
the night (the static case, assuming negligible user activity during reposi-
tioning), as well as continuous rebalancing during the daytime (the dynamic
case). Finding (near-)optimal solutions to these routing problems may take
several hours even for the most advanced optimization models available (Ra-
viv et al., 2013; Contardo et al., 2012).

We present a rigorous cluster-first route-second heuristic for the static
non-stationary case that combines inventory flexibility and routing decisions.
These aspects have mostly been considered separately in literature (see Sec-
tion 2 for a literature review). Combining routing and inventory flexibility
may lead to more efficient solutions, and allows operators to implement the
tradeoff between user satisfaction and the cost of rebalancing, which is often
faced in practice.

Our approach relies on target inventory bounds at each bike station that
represent service level requirements. In particular, we model the stochastic
demand by viewing the inventory at each station as a non-stationary queuing
system with finite capacity, and derive service level requirements using the
transient distribution of the availability of bikes and docks (Section 3). We
recognize that service level requirements can be met when the inventory is
between a lower and upper bound. Any other suitable uncertainty model
could be used for this purpose.
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Our proposed clustering heuristic proceeds by grouping together bike sta-
tions such that each cluster is ‘self-sufficient’, i.e. the target inventory bounds
can be satisfied by only performing within-cluster pickups and deliveries. The
novelty in our approach is that we estimate the routing cost of each cluster
by a new maximum spanning star approximation. A major benefit of the
maximum spanning star approximation is that it can be formulated using
a linear2 number of constraints only. The resulting mixed-integer program
(MIP) for our clustering problem can be solved optimally within seconds for
realistic problem sizes. For each cluster an optimal route can be computed
easily using a standard MIP formulation.

We also present a Constraint Programming (CP) formulation in Section 6,
acting both as an effective (exact) solution method for smaller instances and
a benchmark for our dedicated clustered routing heuristics.

We compare our approach to an exact MIP model based on existing
literature, as well as our CP model. Computational experiments (Section 7)
using data from Hubway (Boston, MA) and Capital Bikeshare (Washington,
DC) show that our heuristics strongly outperform the classical MIP model.
Within seconds, we identify a feasible solution with a reasonable optimality
gap. In a minute, we find better solutions for almost all instances than the
best MIP solution after 2 hours. Moreover, our dedicated Clustered MIP
heuristic outperforms Constraint Programming on larger instances.

2. Related Work

The study of bike sharing systems is increasing in popularity. DeMaio
(2009) and Shaheen et al. (2010) provide a history of bicycle sharing, start-
ing with the first generation ‘white bikes’ in Amsterdam as early as 1965.
From 1995 onwards, the third generation IT-based systems incorporate ‘ad-
vanced technologies for bicycle reservations, pickup, drop-off, and informa-
tion tracking’ (Shaheen et al., 2010, p. 7). For the interested reader Laporte
et al. (2015) provides a comprehensive survey of the vehicle/bike sharing
literature. We identify four research substreams in bike sharing literature:
strategic design, demand analysis, service level analysis, and rebalancing op-
erations.

2In the number of bike stations
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Strategic design

Since most major cities have planned or considered implementation of
bike sharing systems, and existing systems are often expanded, several studies
present models dedicated to strategic design. Dell’Olio et al. (2011) develop
a comprehensive methodology for implementation, from estimating potential
demand to optimizing locations. Martinez et al. (2012) and Prem Kumar &
Bierlaire (2012) present MIP models for the location problem. Lin & Yang
(2011) create a model trading off the interests of both users and investors.
We note that none of the studies include a notion of expected inventory
imbalance costs.

Demand analysis

The purpose of demand analysis is twofold: forecasting future demand
(e.g. for service level requirements) and understanding the explaining factors
for managerial decision making. Kaltenbrunner et al. (2010) predict the
system inventory state and suggest making such information available to
users. Froehlich & Oliver (2008); Borgnat & Abry (2009); Borgnat et al.
(2011), and Lathia et al. (2012) identify a temporal demand pattern and
forecast the number of rentals. Hampshire et al. (2013) seek land use and
socio-economic factors that explain the use of bike sharing systems. Vogel
et al. (2011) construct clusters of stations with similar demand patterns.
These studies could provide insights that are helpful in improving the service
level requirements developed in this paper.

Service level analysis

Several studies focus on service levels in bike sharing systems. We recall
that service level requirements are typically two-sided: for available bikes and
docks. Most notably, Nair & Miller-Hooks (2011) and Nair et al. (2013) de-
compose system-wide reliability into a set of dual-bounded chance constraints
for each station. We adapt their dual-bounded service level constraints, but
use a more realistic Markov chain to model the station inventory over time,
as opposed to observing the total net demand (see Section 3). Raviv & Kolka
(2013) present a queuing system with finite capacity to model expected user
dissatisfaction at each station, similar to our approach. Leurent (2012) mod-
els bike sharing stations as a dual Markovian waiting system, but contrary
to their assumption of waiting customers, we assume immediate lost sales.

George & Xia (2011) develop a method to determine fleet sizing given a
desired service level. This is accomplished by modeling the number of bikes
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at each station and their movements as a closed queueing network. Their
results follow from a steady state analysis of the queueing network. The work
does not take the capacity of stations into account, and their service level is
measured in terms of the availability of bikes as opposed to unmet demand
for pickups/returns. Our paper addresses these two limitations in the non-
steady state (transient) regime. Additionally, we consider the related routing
problem, which George & Xia do not consider.

Rebalancing operations

Using mean field analysis, Fricker et al. (2012) conclude that the equi-
librium system performance collapses under heterogeneity of user behavior
and that a pressing need for rebalancing operations exists. Vogel & Mat-
tfeld (2010) motivate rebalancing activities using a system dynamics model.
Shu et al. (2013) estimate rebalancing operations can lead to an additional
15-20% of trips supported system-wide.

We identify two modes of rebalancing: providing user incentives and de-
ploying a truck fleet. While Fricker & Gast (2014) and Waserhole & Jost
(2012) develop a pricing strategy, and some active systems have already im-
plemented incentive schemes (e.g. V+ for Vélib’, see Fricker & Gast, 2014),
we observe that every bike sharing system still operates a vehicle fleet for
rebalancing. Therefore, the underlying vehicle routing problem has received
most attention.

Most studies use an exact target inventory for each station, which implies
their routing problem is more closely related to the One-Commodity Pickup-
and-Delivery VRP (Hernández-Pérez & Salazar-González, 2003) than ours,
which adds inventory flexibility. Routing costs to attain exact target inven-
tories will always be larger than or equal to the costs strictly necessary to
maintain appropriate service levels (see Section 3). We note that our models
can be parameterized to solve the target inventory problem.

Erdoğan et al. (2013) consider the pickup and delivery redistribution
problem with one vehicle where the target inventory at each station must
lie in an interval. The intervals are input to their problem. Our problem is
a natural extension of this setting in that we consider multiple vehicles and
we determine the target inventory intervals. Chemla et al. (2013) present a
branch-and-cut algorithm for the static single-vehicle problem, with results
on instances of up to 100 stations. Approximation algorithms for the same
problem are given by Benchimol et al. (2011). Erdoğan et al. (2015) develop
an exact method to calculate the optimal route for the static single-vehicle
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rebalancing problem. Instances with up to 60 stations can be solved to op-
timality within 2 hours of computing time.

Raviv et al. (2013) present an alternative static approach: expected
system-wide user dissatisfaction is minimized subject to a time limit. Their
arc-, time-, and sequence-indexed MIP models are intractable for systems of
reasonable size, however we use these models in Section 4 to present the Bike
Sharing Rebalancing Problem in its pure MIP form.

Di Gaspero et al. (2013b) proposed a constraint programming formula-
tion for the vehicle routing problem that minimizes user dissatisfaction based
on the total deviation from fixed target levels for each bike station. Then
Di Gaspero et al. (2015) consider the design of optimal tours and operat-
ing instructions for relocating bikes among stations. The authors propose
a constraint programming models with Large Neighborhood Search (LNS).
However, their model formulation considers only the routing problem and
takes the target inventory levels as given.

Rainer-Harbach et al. (2014) also consider the joint problem of inventory
balancing and vehicle routing, and propose dedicated (meta-)heuristic ap-
proaches. They first present several construction heuristics, which can be
further improved by applying problem-specific local search moves, including
the insertion or removal of stations in a route, or the swap of stations within
routes. Care must be taken that the proposed moves, as well as the con-
struction heuristics, are feasible. In addition, the objective is to minimize
the weighted sum of a) the deviation from a given target inventory level for
each station, b) the number of (un)loading operations, and c) total work
time. The authors show that their heuristics are able to find high-quality
solutions in a reasonable time.

Di Gaspero et al. (2013a) combine a CP optimization model with Ant
Colony Optimization to solve a similar problem as Rainer-Harbach et al.
(2014), again minimizing a weighted sum of the deviation from target inven-
tory levels and total work time. Their CP model uses a direct ‘successor’
formulation with integer variables, whereas the CP model we propose in
Section 6 is based on constraint-based scheduling.

Kloimüllner et al. (2015) develop a cluster-first route-second approach.
Their objective function is to maximize the number of stations visited over
a fixed time window. Their algorithm is exact and utilizes a Benders com-
position. However, their routes must alternate between pickup and delivery
stations. This is a major drawback of their approach.

The paper by Forma et al. (2015) proposes 3-step heuristic for the static
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repositioning problem. Step 1 clusters stations that are close to each other
and have compatible demand structures. Step 2 routes the vehicles through
the clusters and makes heuristic inventory targets for the stations in each
cluster. Step 3 uses the results of steps 1 and 2 to determine both the routing
within the clusters and the inventory levels for each station. Their clusters
are constructed to reduce the size of the network, and not to decompose
the problem into many single vehicle routing problems. Additionally, their
routing step allows vehicles to travel between clusters. The proposed 3 step
method is successfully applied to several real life instances. However, the
authors provide no theoretical bounds or guarantees of the proposed method.

The PhD dissertation of O’Mahony (2015) at Cornell University builds
on our paper. The models developed in the dissertation are currently imple-
mented in the operations of Citi Bike Share in New Year City. The author
departs from our model in that he does not compute upper and lower in-
ventory levels. By contrast, he computes a convex cost function for each
starting inventory level. The corresponding routing problem is to minimize
the service level ‘costs’ over a fixed time interval. He argues that the minimal
makespan is often much longer than the time interval of a typical staff work
shift.

3. Service Level Requirements

In general, inventory rebalancing efforts are made in order to improve
customer service. Contrary to traditional inventory theory, where the service
level increases as inventory increases, bike sharing systems are subject to a
net demand process, with an empty station preventing users from picking up
bikes and a full station preventing returns. For the remainder of the paper,
we let S represent the set of bike sharing stations. Let Ci denote the capacity
(i.e. number of docks) of station i ∈ S.

Net demand implies that after a pickup and a return occur, the inven-
tory is unchanged. Previous studies (Nair et al., 2013) observe the total net
demand (pickups minus returns during observation period) at each station
i ∈ S. However, we note that while observing a net demand of zero, we often
still need bikes or docks. We view the net demand as a stochastic process
which needs to be satisfied during the entire observation period, not only at
the end.
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3.1. Service Level Definition

We implement a type 2 service level: the fraction of demands satisfied
directly should be larger than β−i for pickups and larger than β+

i for returns.
We assume no backorders, i.e., the effect of waiting customers is negligible.

Definition 1. The service level requirements at station i ∈ S are

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
≥ β−i

E[Satisfied bike return demands]

E[Total bike return demands]
≥ β+

i

for given β−i , β
+
i ∈ [0, 1].

3.2. Markov Chain Formulation

We assume that user behavior during the observation period is non-
stationary, i.e. rates depend on time. This allows us to implement the
model over multiple time periods (e.g. morning 6–9AM or evening 3–6PM).
The time-dependent rates allow the model to capture the demand changes
observed in practice. Our goal is to select an initial number of bikes that
achieve the service level requirements over the observation period for each
station. While some users arrive in groups (compound Poisson process), we
assume this effect is negligible.

The inventory at station i ∈ S can be modeled as an Mt/Mt/1/K queuing
system (Kendall, 1953), with the number of customers in the queue repre-
senting the inventory. This implies that the customer inter-arrival times (for
bike returns) and service times (i.e. inter-arrival times for bike pickups)
are exponentially distributed with time dependent rates λi(t) and µi(t), re-
spectively, at each station i ∈ S. There are K = Ci waiting spaces in the
system for station i ∈ S. The stationary M/M/1/K queue is well-studied
and closed-form expressions for the transient probabilities given a starting
state are available. In the non-stationary case, Mt/Mt/1/K, the transient
probabilities given a starting state are solutions to the Kolmogorov forward
equations (Morse, 1958).

This method computes the service levels for each station separately. The
approach does not account for the interactions of supply and demand be-
tween stations. To properly account for these interactions, a state dependent
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model of the ‘lost sales’ and ‘lost returns’ is needed. In order to jointly cal-
culate service levels for all stations the resulting model would likely be a
time dependent queueing network with a complex abandonment and routing
structure. Such a model is beyond the scope of this study.

0	   1	  

λi t( ) λi t( )

µi t( ) µi t( )

Ci	  Ci-‐1	  

λi t( )

µi t( )

λi t( )

µi t( )

 !

Figure 1: Markov chain for the inventory Si(t) at station i ∈ S.

Note. Users arrive with rate λi(t) to return bikes and with rate µi(t) to pickup
bikes.

Denote by {Si(t) : t ≥ 0} the stochastic process on state space {0, . . . , Ci}
representing the inventory of station i ∈ S at time t ≥ 0. Define pi(s, σ, t) ≡
Pr(Si(t) = σ | Si(0) = s), the transient probability that the inventory at
station i ∈ S equals σ ∈ {0, . . . , Ci} at time t ≥ 0 given starting inventory
s ∈ {0, . . . , Ci}.

Then, in order to meet both the pickup and return service level from
Definition 1 during the observation period [0, T ], we calculate the expected
values:

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
=

∫ T

0
µi(t) (1− pi(s, 0, t)) dt∫ T

0
µi(t)dt

≡ gi(s, 0, T ).

and similarly

E[Satisfied bike return demands]

E[Total bike return demands]
=

∫ T

0
λi(t) (1− pi(s, Ci, t)) dt∫ T

0
λi(t)dt

≡ gi(s, Ci, T ).

The transient probabilities solve the Kolmogorov forward equations

ṗi(s, 0, t) = µi(t) · pi(s, 1, t)− λi(t) · pi(s, 0, t)

9



ṗi(s, σ, t) = µi(t) · pi(s, σ + 1, t)− λi(t) · pi(s, σ − 1, t) σ = 1, . . . , Ci − 1

ṗi(s, Ci, t) = λi(t) · pi(s, Ci − 1, t)− µi(t) · pi(s, Ci, t)

Intuitively, as the starting inventory increases, the bike pickup service
level increases and the bike return service level decreases. Confirming this
intuition, the proof of Theorem 1 in Raviv & Kolka (2013, p. 9) yields that
the bike pickup and bike return service level are respectively increasing and
decreasing in the starting inventory, which gives us Lemma 1.

Lemma 1. Denote by si,T the station inventory of station i ∈ S after rebal-
ancing operations for an observation period [0, T ] . To meet the service level
requirements from Definition 1 at station i ∈ S, it must hold that si,T ≥ smin

i,T

and si,T ≤ smax
i,T with

smin
i,T = min

{
s ∈ {0, . . . , Ci} : gi(s, 0, T ) ≥ β−i

}
smax
i,T = max

{
s ∈ {0, . . . , Ci} : gi(s, Ci, T ) ≥ β+

i

}
.

Hence, for an observation period [0, T ] the vehicles should rebalance the
starting inventory s0i such that smin

i,T ≤ si,T ≤ smax
i,T for each station i ∈ S,

in order to meet the service levels β−i , β
+
i . Denote by S0 = {i ∈ S : smin

i,T ≤
s0i ≤ smax

i,T } the set of self-sufficient stations which satisfy the service level
requirements over time period [0,T] with their starting inventory.

Note that the service level requirements could theoretically be infeasible
over a given observation period. We identify three types of infeasibility:

• smax
i,T < smin

i,T requires the operator to prioritize the service level require-
ment for either pickups or returns at station i ∈ S, or choose a weighted
average.

• gi(Ci, 0, T ) < β−i or gi(0, Ci, T ) < β+
i implies the inventory always vio-

lates (one of) the service level requirements. This requires the operator
to choose the best possible inventory bounds.

•
∑

i∈S s
0
i <

∑
i∈S s

min
i,T or

∑
i∈S s

0
i >

∑
i∈S s

max
i,T implies a system-wide

shortage or excess (ignoring vehicle inventory and capacity for the sake
of simplicity).

All types of infeasibility would require the operator to take alternative mea-
sures in case service level problems persist, e.g., increase station capacity,
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Figure 2: Example of Service Level Requirements for Hubway (Boston, MA).

Note. Observation period 6–9AM (T = 3) on weekdays with β−i = β+
i = 85%.

The range [smin
i , smax

i ] is displayed solid with [0, Ci] displayed dotted. For
reference, we show the starting inventory s0i for each station as a solid marker,
based on a snapshot of the system taken at 6AM on June 26st 2012.

influence user behavior, or introduce or remove bikes from the system. We
introduce smin

i and smax
i for the inventory bounds adjusted for infeasibility.

Using Lemma 1, we are able to efficiently calculate the service level re-
quirements at each station. We solve the Kolmogorov forward equations for
the transient state probabilities using the fourth-order Runge–Kutta method.
We compute the service levels over increasingly larger observation periods,
i.e. 6–7AM, 6–8AM, 6–9AM, etc. The number of infeasible stations typically
increases with the length of the observation period. We select the observation
period that has up to 10–15% infeasible stations, since for several stations
infeasibility cannot be prevented, e.g. due to limited station capacity. For
infeasible stations, where necessary we prioritize pickups over returns, i.e.
smax
i = max{smax

i,T , smin
i,T }, and/or use smin

i = 0 and smax
i = Ci.

Below is an example using real data from the bike sharing system Hubway
in Boston, MA.

Example 1. For this example, we use trip data provided by Hubway (Boston,
MA) for the 60 stations that were active between November 1st 2011 and
May 31st 2012. In Appendix A, we give a detailed overview of the data
sources used for our examples and computational results. The observation
period is 6–9AM (T = 3) on weekdays, for which we have 82 observations.
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We estimate λi(t) and µi(t) by the mean (Maximum Likelihood Estimator for
Poisson variables) number of returns and pickups, respectively, per 15-minute
interval during the observation period.

These observations suffer from the ‘lost sales’ bias, i.e. unmet demand is
not recorded. Moreover, some lost sales are endogenous to the rebalancing
operations, e.g. removing bikes which due to the stochasticity of demand turn
out to be necessary. We note that these effects are stochastically complex to
capture and are out of scope for this study.

We require a β−i = β+
i = 85% service level at each station i ∈ S and

quickly calculate smin
i and smax

i using Lemma 1. Step 1 is to set s = 0 and
solve the Kolmogorov forward equations using the fourth-order Runge–Kutta
method to obtain gi(s, 0, T ). If gi(s, 0, T ) ≥ β−i , then the lower bound smin

i =
s, otherwise increment s = s+1 and repeat Step 1. If gi(Ci, 0, T ) < β−i , then
the station i is considered infeasible. The analogous procedure leads to the
upper inventory bound smax

i . We adjust the bounds for 10 infeasible stations
(out of 60) as described earlier.

The service level requirements for each station are depicted as bounds in
Figure 2. We observe that there is a lot of flexibility in the target inventory,
with most stations having relatively wide service level bounds. For some of
the stations, smin

i is relatively high, but this is paired with a higher than
average smax

i , in anticipation of bike pickups clearing sufficient docks for
returns.

4. Routing Problem

Recall that vehicles should rebalance the starting inventory s0i such that
smin
i ≤ si ≤ smax

i for each station i ∈ S, in order to meet the service level
requirements. We define the Routing Problem, a pure MIP approach to the
static Bike Sharing Rebalancing Problem, inspired by Raviv et al. (2013).
The bike sharing system is represented as a complete directed graph with
vertex set S and distances (routing costs) di,j for all i, j ∈ S. We note that
our model is both arc- and sequence-indexed, which increases the size, but
yields much stronger relaxations than the sequence-indexed model.

Several objectives could be applied to this routing problem, e.g. mini-
mizing the total routing time or minimizing user dissatisfaction. However,
from conversations with bike sharing operators and official sources (New York
City Bike Share, 2013) we learn that service levels are often a (contractual)
necessity and time for static overnight rebalancing is by definition limited.
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Therefore, our approach is to meet the service level requirements as soon as
possible (a minimize makespan objective), rather than maximizing service
given a time limit (e.g. Raviv et al., 2013).

Note that N ≡ S ∪ {0} extends the station set with an artificial vertex
0 for purposes mentioned below. We use a set T = {1, . . . , T} for sequence
indexing. We introduce binary decision variables xi,j,t,v to indicate whether
vehicle v ∈ V traverses arc (i, j) in time step t ∈ T . Decision variables
y−i,t,v, y

+
i,t,v indicate bike pickup or delivery, respectively, by vehicle v ∈ V .

As vehicle operators spend a large amount of time (un)loading bikes, we
introduce d− and d+ for the routing costs of picking up and delivering one
bike, respectively. We use q0v and Qv for the initial inventory and capacity of
vehicle v ∈ V , respectively. The formulation then becomes:

minimize H (P1)

s.t.

s0i +
∑
t∈T
v∈V

(y+i,t,v − y−i,t,v) ≥ smin
i ∀i ∈ S (1)

s0i +
∑
t∈T
v∈V

(y+i,t,v − y−i,t,v) ≤ smax
i ∀i ∈ S (2)

∑
i∈S
j∈N

xi,j,1,v ≤ 1 ∀v ∈ V (3)

∑
j∈N

xi,j,t,v ≤
∑
j∈S

xj,i,t−1,v ∀i ∈ S, t ∈ T \ {1}, v ∈ V (4)∑
i∈S
t∈T
v∈V

xi,i,t,v = 0 (5)

y−i,t,v ≤ Qv

∑
j∈N

xi,j,t,v ∀i ∈ S, t ∈ T , v ∈ V (6)

y+i,t,v ≤ Qv

∑
j∈S

xj,i,t,v ∀i ∈ S, t ∈ T , v ∈ V (7)∑
t∈T
v∈V

y−i,t,v ≤ s0i ∀i ∈ S (8)
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∑
t∈T
v∈V

y+i,t,v ≤ Ci − s0i ∀i ∈ S (9)

q0v +
∑
i∈S

t̃∈T :t̃≤t

(y−i,t,v − y+i,t,v) ≥ 0 ∀t ∈ T , v ∈ V (10)

q0v +
∑
i∈S

t̃∈T :t̃≤t

(y−i,t,v − y+i,t,v) ≤ Qv ∀t ∈ T , v ∈ V (11)

hv =
∑
i,j∈S
t∈T

di,jxi,j,t,v ∀v ∈ V (12)

+
∑
i∈S
t∈T

d−y−i,t,v

+
∑
i∈S
t∈T

d+y+i,t,v

H ≥ hv ∀v ∈ V (13)

xi,j,t,v ∈ {0, 1} ∀i ∈ S, j ∈ N , t ∈ T , v ∈ V
y−i,t,v, y

+
i,t,v ∈ N0 ∀i ∈ S, t ∈ T , v ∈ V

H, hv ≥ 0 ∀v ∈ V

Constraints (1)–(2) impose the service level requirements from Lemma 1.
Constraints (3)–(7) take care of vehicle routing. Constraints (3) imply that
each vehicle starts at most one route. Constraints (4) take care of flow
conservation. Constraints (5) prevent dwelling. Constraints (6)–(7) ensure
pickup or delivery can only take place when leaving from or arriving at a
station, respectively. Note that N allows picking up bikes at the final stop
without incurring routing costs. Constraints (8)–(9) limit the amount of
transshipments, because of the model’s inability to track station inventory
over time (cf. Raviv et al., 2013, p. 10). Constraints (10)–(11) ensure that
the vehicle inventory remains non-negative and within vehicle capacity at all
times. Constraints (12) define the routing costs for each vehicle by adding
up the total distance, loading, and unloading costs. Finally, constraints (13)
linearize the objective H = maxv∈V hv.

Denote by H∗(S,V) the optimal solution obtained by solving (P1) for
station set S and vehicle set V . Solving (P1) gives an optimal solution for the
Bike Sharing Rebalancing Problem (apart from the limited transshipments).
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However, we observe that (P1) is practically intractable for realistic station
sets with |S| ≥ 50 and vehicle fleets with |V| ≥ 3. Therefore, we introduce
Clustered Routing heuristics in Section 5 and a Constraint Programming
heuristic in Section 6 as alternatives to find high quality solutions in a short
amount of time.

5. Clustered Routing

We next formulate a Clustering Problem to decompose the Routing Prob-
lem (P1) into separate single-vehicle Routing Problems, thereby reducing
combinatorial complexity.

A feasible clustering solution assigns disjoint clusters of stations Sv ⊆ S to
vehicles v ∈ V such that the service level requirements can be satisfied using
only within-cluster vehicle routing. Implementing these feasibility constraints
in existing clustering algorithms, e.g. the Fisher-Jaikumar algorithm (Fisher
& Jaikumar, 1981), is non-trivial (see Section 5.3). Therefore, we propose to
formulate the Clustering Problem as an extended Set Partitioning Problem.
The core of the model is a set of binary decision variables:

zi,v =

{
1 if station i ∈ S is assigned to vehicle v ∈ V ,

0 otherwise.

These variables assign a cluster of stations Sv = {i ∈ S : zi,v = 1} to each
vehicle v ∈ V .

The objective of the Clustering Problem is to find a feasible solution
while minimizing makespan H = maxv∈V hv, i.e. rebalance the system as
soon as possible, likely by dividing the workload between vehicles. Opti-
mally, stations are clustered with known exact routing costs for any (feasi-
ble) combination of stations Sv. However, the computational complexity (see
Section 4) requires us to use approximations to estimate the routing costs.
Therefore, we are interested in non-algorithmic routing costs approximations
that correlate highly with the exact vehicle routing costs within a cluster.

5.1. Routing distance approximation

First, we focus on the distance component of approximating the routing
costs. Until Section 5.2 we ignore (un)loading costs, i.e. d− = d+ = 0,
for notational convenience. It is not straightforward to approximate the
optimal routing distance for a cluster, because feasibility constraints on the
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vehicle route may require revisits. However, assuming that all stations in Sv
need to be visited, the within-cluster routing costs H∗(Sv, {v}) are bounded
from below by the optimal solution of a Traveling Salesman Problem with
an added artificial zero-distance depot (to model the open tour for rolling
horizon implementation). If we impose the triangle inequality, then this lower
bound equals the length of the shortest Hamiltonian path over Sv.

TSP approximations are widely studied, see e.g. Laporte (1992). How-
ever, exponential approximations do not scale well in MIPs and, as men-
tioned, we refrain from algorithmic approximations because of the feasibility
constraints. For example, the MIP formulation of the Held-Karp relaxation
(Held & Karp, 1970; Charikar et al., 2004) would require constraints for each
non-empty subset of S. Furthermore, the polynomial-size Assignment Prob-
lem relaxation (Dantzig et al., 1954) has limited applicability, because it does
not satisfy monotonicity, i.e., adding stations to a cluster may actually de-
crease the routing costs approximation. Since sub-tours are not eliminated,
our experimentation with the Assignment Problem resulted in the undesir-
able assignment of geographically separated groups of stations to the same
cluster.

Instead, we introduce the Maximum Spanning Star approximation3. De-
note by SPSi(Sv) =

∑
j∈Sv di,j the cost of the spanning star (spanning tree

with depth one) of Sv rooted at station i ∈ Sv. The routing costs are approxi-
mated by the maximum-cost spanning star MAXSPS(Sv) = maxi∈Sv SPSi(Sv).
In Section 5.3 we show that the Maximum Spanning Star can be implemented
using a polynomial number of binary assignment variables and constraints.
Moreover, the Maximum Spanning Star is an upper bound on the shortest
Hamiltonian path over the cluster. Most importantly, the Maximum Span-
ning Star satisfies monotonicity, such that stations are only assigned to a
cluster if this is necessary for feasibility of the service level requirements.

We use the monotonicity and upper bound of the Maximum Spanning
Star approximation, to motivate our intuition that MAXSPS(Sv) andH∗(Sv, {v})
correlate. Namely, both H∗(Sv, {v}) and MAXSPS(Sv) are bounded from
below by the shortest Hamiltonian path over Sv, given that the Maximum
Spanning Star satisfies monotonicity (which ensures all stations are visited).

Lemma 2. The Maximum Spanning Star approximation satisfies monotonic-

3Note that Wu et al. (1998, p. 2) introduce the algorithmic minimum k-star approxi-
mation.
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ity:

MAXSPS(Sv ∪ {i}) ≥ MAXSPS(Sv).

Denote by TSP∗0(Sv) the length of the shortest Hamiltonian path over
Sv, which, under the triangle inequality, equals the optimal solution of a
Traveling Salesman Problem with an artificial zero-distance depot.

Lemma 3. The Maximum Spanning Star approximation is an upper bound
on the length of the shortest Hamiltonian path:

MAXSPS(Sv) ≥ TSP∗0(Sv).

Proof of Lemma 3. Denote by C(Sv) =
∑

i,j∈Sv di,j the cost of the directed
clique on Sv. Then: ∑

i∈Sv

SPSi(Sv) = C(Sv), which yields

MAXSPS(Sv) ≥
C(Sv)
|Sv|

.

Akiyama et al. (2004, p. 40) present the Walecki decomposition of a com-
plete undirected graph Kn with odd n ≥ 3 into (n− 1)/2 Hamiltonian cycles.
It follows that Kn with even n ≥ 2 can be decomposed into n/2 Hamiltonian
paths. This result gives us:

Case 1: |Sv| ≥ 2 is even. The complete directed graph on Sv can be de-
composed into |Sv| directed Hamiltonian paths. Hence,

TSP∗0(Sv) ≤
C(Sv)
|Sv|

.

Case 2: |Sv| ≥ 3 is odd. The complete directed graph on Sv can be decom-
posed into |Sv| − 1 directed Hamiltonian cycles. We can remove one of
the |Sv| edges in any of these |Sv| − 1 Hamiltonian cycles to obtain a
Hamiltonian path. Thereby,

TSP∗0(Sv) ≤
|Sv| − 1

|Sv|
C(Sv)
|Sv| − 1

=
C(Sv)
|Sv|

.
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Thus, for both even and odd |Sv| ≥ 2 we have

TSP∗0(Sv) ≤
C(Sv)
|Sv|

≤ MAXSPS(Sv).

We report on the approximation performance of the Maximum Spanning
Star in Section 7.1. In particular, we show that the Maximum Spanning Star
approximation is highly correlated with the actual routing distance for our
data sets (correlation of more than 85%).

5.2. (Un)loading time approximation

Next, we focus on approximating the (un)loading times for each cluster.
We assume until Section 5.3 that di,j = 0 for all i, j ∈ S for notational
convenience. Given the service level requirements smin

i and smax
i for each

station i ∈ S and starting inventories s0i , we define:

s+i = max
{
smin
i − s0i , 0

}
∀i ∈ S

s−i = max
{
s0i − smax

i , 0
}

∀i ∈ S

representing the minimum required number of bike deliveries (s+i ) or bike
pick ups (s−i ) for each station to meet its service level requirements. An
optimal vehicle route may require more bike deliveries and pickups than
strictly necessary to decrease distance. Hence, using these minimum required
bike deliveries and pickups, we can derive a lower bound on the (un)loading
times component of H∗(Sv, {v}).

Base case. (Un)loading times are in any case bounded from below by the
minimum required number of bike deliveries and pickups.

H∗(Sv, {v}) ≥
∑
i∈Sv

d+s+i + d−s−i

Case 1:
∑

i∈Sv

(
s+i − s−i

)
− q0v ≥ 0. In this case more bike deliveries than

bike pickups plus vehicle starting inventory q0v are required. Hence,
additional bikes need to be picked up to accommodate all deliveries.

H∗(Sv, {v}) ≥
∑
i∈Sv

(
d+s+i + d−s+i

)
− d−q0v
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Case 2:
∑

i∈Sv

(
s+i − s−i

)
− (Qv − q0v) ≤ 0. In this case more bike pickups

than bike deliveries plus vehicle slack capacity (Qv − q0v) are required.
Hence, additional bikes need to be delivered to free up capacity for all
pickups.

H∗(Sv, {v}) ≥
∑
i∈Sv

(
d+s−i + d−s−i

)
− d+

(
Qv − q0v

)
Note that when used in conjunction with the base case lower bound, the

lower bounds for case 1 and 2 are non-binding when their conditions are not
applicable.

5.3. Clustering Problem

We now implement the Maximum Spanning Star and (un)loading time
approximations in our Clustering Problem. The objective is to minimize the
estimated makespan Ĥ such that service level requirements can be satisfied
using only within-cluster vehicle routing.

minimize Ĥ (P2)

s.t. ∑
v∈V

zi,v = 1 ∀i ∈ S \ S0 (14)∑
v∈V

zi,v ≤ 1 ∀i ∈ S0 (15)

q0v +
∑
i∈S

s0i zi,v ≥
∑
i∈S

smin
i zi,v ∀v ∈ V (16)

−(Qv − q0v) +
∑
i∈S

s0i zi,v ≤
∑
i∈S

smax
i zi,v ∀v ∈ V (17)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) ∀i ∈ S, v ∈ V (18)

+
∑
j∈S

(
d+s+j + d−s−j

)
zj,v

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) ∀i ∈ S, v ∈ V (19)

+
∑
j∈S

(
d+s+j + d−s+j

)
zj,v
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− d−q0v
ĥv ≥

∑
j∈S

di,j(zi,v + zj,v − 1) ∀i ∈ S, v ∈ V (20)

+
∑
j∈S

(
d+s−j + d−s−j

)
zj,v

− d+
(
Qv − q0v

)
Ĥ ≥ ĥv ∀v ∈ V (21)

zi,v ∈ {0, 1} ∀i ∈ S, v ∈ V
Ĥ, ĥv ≥ 0 ∀v ∈ V

Constraints (14)–(17) ensure feasibility of the clustering solution. Insuf-
ficient stations must be visited by a vehicle (14) and self-sufficient stations
can be visited (15). A vehicle cluster must contain enough bikes, possibly
using the vehicle starting inventory q0v , such that service level requirements
can be met through within-cluster repositioning (16). Constraints (17) are
similar but then for the maximum inventory in the cluster, possibly using
vehicle surplus capacity Qv − q0v .

Constraints (18) impose SPSi(Sv) plus the base case (un)loading times
bound as a lower bound on the estimated routing costs ĥv, if station i ∈ S
is assigned to vehicle v ∈ V . Since ĥv is indirectly minimized, we have:

ĥv ≥ MAXSPS(Sv) +
∑
i∈Sv

d+s+i + d−s−i

Constraints (19) and (20) do the same but for case 1 and 2 from Section 5.2,
respectively. The estimated makespan Ĥ = maxv∈V ĥv is linearized through
constraints (21).

Note that we have formulated a compact clustering model with routing
costs approximation, which guarantees that the service level requirements can
be satisfied at each station while using only within-cluster vehicle routing.

Example 2. Figure 3 shows the assignment of stations to the two Hubway
vehicles obtained by solving the Clustering Problem (P2) for the service
level requirements from Example 1. We use real inventory data, based on a
snapshot of the system taken at 8AM on Friday June 1st 2012.
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Figure 3: Example of a solution of the Clustering Problem (P2) for Hubway (Boston,
MA).

5.4. Heuristics

Having presented MIP formulations for the Clustering Problem and the
Routing Problem, we now formally introduce our Clustered Routing heuris-
tics.

Heuristic 1 (Clustered MIP). Subsequently:

1. Solve the Clustering Problem (P2).

2. For each v ∈ V solve the Routing Problem (P1) with S = Sv and
V = {v} to obtain H∗(Sv, {v}).

3. H̃ = maxv∈V H
∗(Sv, {v}).

Since the routing costs approximation is imperfect and may therefore lead
to sub-optimal clusters, the Clustered MIP heuristic has an optimality loss.
However, we can use the information obtained from routing the individual
clusters to add cuts to the Clustering Problem.

Assume that an unknown optimal solution exists with makespan HOPT

strictly less than our best found solution H̃. This implies that all clusters Sv
with known optimal routing costs H∗(Sv, {v}) ≥ H̃ are not part of the opti-
mal solution. Therefore, these clusters can be eliminated from the solution
space of the Clustering Problem. Note that, contrary to problems in which
total routing costs are minimized, these cuts do not need to be removed later.
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Heuristic 2 (Clustered MIP with Cuts). Subsequently:

1. Define a cut set C ⊆ 2S of subsets of S. Initialize C = ∅.
2. Solve the Clustering Problem (P2) with additional constraints:∑

i∈c

zi,v −
∑
i∈S\c

zi,v ≤ |c| − 1 ∀c ∈ C, v ∈ V (22)

3. For each v ∈ V solve the Routing Problem (P1) with S = Sv and
V = {v} to obtain H∗(Sv, {v}).
(a) If maxv∈V H

∗(Sv, {v}) < H̃ or C = ∅ then store the routing solu-
tion and (re)define H̃ = maxv∈V H

∗(Sv, {v}).
(b) For each v ∈ V with H∗(Sv, {v}) ≥ H̃ redefine C = C ∪ {Sv}.

4. If cuts were added in 3(b) go to Step 2.

Note that H̃ is only redefined if an improvement is found 3(a), in which
case at least one cut is added per iteration (we have H∗(Sv, v) = H̃ for
at least one v ∈ V). If no improvement is found, then H̃ is not redefined
and at least one cluster has actual costs strictly larger than the best found
solution H̃. We add a cut for all non-improving clusters (3b), and continue.
Note that any strict subset or superset of a cut c ∈ C is not eliminated by
constraints (22). The cuts force the Clustering Problem to iteratively adjust
the assignment of stations to vehicles, thereby mitigating the approximation
error. After finitely, but possibly exponentially many steps, the heuristic
identifies the optimal solution.

Unfortunately, to our knowledge no stronger terminating condition for
Clustered MIP with Cuts heuristic than an exhaustive search of the Clus-
tering Problem solution space exists. However, Table 1 in Section 7.2 shows
how quickly improvements over the Clustered MIP heuristic are attained.

6. Constraint Programming

In this section we present our Constraint Programming (CP) model for
the Bike Sharing Rebalancing Problem. Constraint Programming is among
the state of the art for solving complex routing and scheduling problems, even
though it applies a generic modeling and solving approach. In particular,
CP has been applied before to constrained routing problems (Kilby & Shaw,
2006). Most industrial CP solvers combine constraint propagation with large
neighborhood search for solving routing problems (Shaw, 1998).
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In order to take advantage of the strengths of CP, it is common to rep-
resent routing problems as scheduling problems, by representing the visit of
a location as an activity. An activity is a high-level CP modeling structure
that implicitly defines integer variables for its start time, length, and end
time, and a Boolean variable for its presence. Activities for which the pres-
ence is not fixed to true are called optional activities. Traveling the distance
between two locations is represented by sequence-dependent setup times be-
tween the respective activities (for each pair of locations), i.e., if station j is
visited directly after station i, we need to respect the distance di,j as ‘setup’
time. In CP, activities impact resources which, in case of routing problems,
correspond to the vehicles. For example, for each vehicle, we must ensure
that no two activities overlap.

We next specify the details of our CP model, following the AIMMS no-
tation for activities and resources (Roelofs & Bisschop, 2016). In particular,
each activity A induces the variables A.Start, end time A.End, and presence
A.Present, as explained above. For each station i ∈ S and vehicle v ∈ V , we
define optional activities Pickup[i,v] and Delivery[i,v]. Variables y−i,v
and y+i,v represent the pickup, respectively delivery, amount for vehicle v at
station i, as in our models above. The makespan objective is implemented
by minimizing the maximum end time of all pickup and delivery activities.
Our CP model then becomes:

minimize max

{
max
i∈S
v∈V

{Pickup[i, v].End} ,max
i∈S
v∈V

{Delivery[i, v].End}

}
(P3)

s.t.

s0i +
∑
v∈V

y+i,v − y−i,v ≥ smin
i ∀i ∈ S (23)

s0i +
∑
v∈V

y+i,v − y−i,v ≤ smax
i ∀i ∈ S (24)∑

v∈V

Pickup[i,v].Present+
Delivery[i,v].Present ≤ 1 ∀i ∈ S (25)

Pickup[i, v].Present = 1⇔ y−i,v ≥ 1 ∀i ∈ S, v ∈ V (26)

Pickup[i, v].Present = 0⇔ y−i,v = 0 ∀i ∈ S, v ∈ V (27)

Delivery[i, v].Present = 1⇔ y+i,v ≥ 1 ∀i ∈ S, v ∈ V (28)
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Delivery[i, v].Present = 0⇔ y+i,v = 0 ∀i ∈ S, v ∈ V (29)

y−i,v, y
+
i,v ∈ {0, . . . , Qv} ∀i ∈ S, v ∈ V

with activities
Activity Pickup[i,v](

Schedule domain: {0, ..., MaxTime}
Property: Optional

Length: d−y−i,v
)

Activity Delivery[i,v](

Schedule domain: {0, ..., MaxTime}
Property: Optional

Length: d+y+i,v
)

and resources
Sequential resource VehicleTime[v](

Schedule domain: {0, ..., MaxTime}
Activities: Pickup[i,v], Delivery[i,v]

Transition: di,j
)

Parallel resource VehicleInventory[v](

Activities: Pickup[i,v], Delivery[i,v]

Level range: {0, . . . , Qv}
Initial value: q0v
Begin change: Delivery[i,v]: −y+i,v
End change: Pickup[i,v]: y−i,v

)

Parallel resource StationInventory[i](

Activities: Pickup[i,v], Delivery[i,v]

Level range: {0, . . . , Ci}
Initial value: s0i
Begin change: Delivery[i,v]: y+i,v
End change: Pickup[i,v]: −y−i,v

)

As before, constraints (23)–(24) impose the service level requirements
from Lemma 1. Constraints (25) are so-called alternative resource con-
straints, which limit the number of visits to one per station. That is, the
trucks fulfill the role of the alternative resources for visiting a station, and
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each station is allocated to at most one truck. Adding these constraints can
greatly improve the performance of the constraint propagation, but the op-
timal solution may be eliminated. Note that it may not always be possible
to impose the alternative resource constraints, for example due to limited
vehicle capacity. In such cases, the model can trivially be extended to allow
multiple visits by increasing the right-hand side. We can index the activities
and variables y−i,v, y

+
i,v correspondingly. However, our preliminary experimen-

tation showed strongly decreasing computational performance if we allowed
multiple visits per location. Therefore, we imposed the alternative resource
constraints in our experiments. Constraints (26)–(29) link the vehicle pres-
ence constraints with performing a pickup or delivery. Note that the if and
only if constraints enhance propagation.

For the optional activities Pickup[i,v] and Delivery[i,v] we set the
length equal to the (un)loading times d−y−i,v and d+y+i,v.

For each vehicle we introduce two types of resources. The first rep-
resent the no-overlap conditions with respect to the vehicle time, using a
Sequential resource named VehicleTime[v]. For each such resource, we
identify the discrete time horizon as its Schedule domain, while the key-
word Activities specifies which activities impact the resource. The arc-
dependent transition times model the travel distances via Transition.

The second resource associated with a vehicle is its inventory, modeled as
a Parallel resource named VehicleInventory[v]. In addition to spec-
ifying the set of activities in its scope, we define its Level range to be
{0, . . . , Qv}, which is initialized at q0v . Furthermore, we specify for each ac-
tivity in its scope how it impacts the level. For Delivery[i,v], the level
is changed at the start of the activity, with amount −y+i,v. Likewise, for
Pickup[i,v], the level is changed at the end of the activity with amount
y−i,v.

Lastly, for each station we define a Parallel resource representing the
station inventory, named StationInventory[i]. The range of this inventory
is {0, . . . , Ci} with initial value s0i . Level changes for pickups and deliveries
are exactly opposite to the vehicle inventory changes.

7. Computational Results

In this section we report on the performance of our routing costs approx-
imation and heuristics. Recall that we give a detailed overview of our data
sources in Appendix A.
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Figure 4: Computational results for the routing costs approximation.

Note. Routing costs H∗(Sv, {v}) are plotted against the approximation ĥv
for 82 two-vehicle instances of Hubway (Boston, MA). Each data point
corresponds to a cluster (i.e. 164 data points shown). The correlation of
H∗(Sv, {v}) and ĥv equals 91.2%. The correlation between the distance (di,j)
component of H∗(Sv, {v}) and MAXSPS(Sv) is 87.4%.

7.1. Approximation performance

In Section 5.1 we proved that MAXSPS(Sv) ≥ TSP∗0(Sv) to motivate
our intuition that MAXSPS(Sv) approximates H∗(Sv, {v}) ≥ TSP∗0(Sv) (as-
suming d− = d+ = 0). By adding an approximation for (un)loading costs
given that d− > 0 and d+ > 0, we establish the routing costs approximation
ĥv in Clustering Problem (P2). Figure 4 visualizes the relationship between
H∗(Sv, {v}) and ĥv with a scatterplot, in which equality is shown as reference
line.

While we established that H∗(Sv, {v}) ≥ TSP∗0(Sv), we note that the ad-
ditional feasibility constraints on the vehicle route imposed in (P1) do not
lead to routing costs higher than the approximation for any instance. Rather,
the Maximum Spanning Star approximation consistently overestimates the
routing costs. A linear regression on H∗(Sv, {v}) with an imposed zero in-
tercept estimates a .65 coefficient for ĥv yielding R2 = 98.0%. Nonetheless,
an approximation error is present. Next, we show how the improvement
scheme with elimination cuts overcomes this limitation of the Clustered MIP
heuristic.
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7.2. Heuristics performance

We report computational results comparing the exact MIP (P1), Clus-
tered MIP (Heuristic 1), Clustered MIP with Cuts (Heuristic 2), and CP
(P3) approaches to the Bike Sharing Rebalancing Problem. We consider
multiple families of instances based on real trip and inventory data provided
by Hubway (Boston, MA) and Capital Bikeshare (Washington, DC).

All experiments were performed on an Intel Xeon X3323 @ 2.50GHz with
16GB of memory, using AIMMS 4.2 x64 modeling software with MIP solver
GUROBI 6.0 (which outperformed CPLEX on test instances) and CP solver
IBM ILOG CP Optimizer 12.6.

Parameters

A family of instances is defined by a market (Hubway or Capital Bike-
share), observation period (e.g. 6–9AM), service level (we consistently use
85% in line with practice), and number of vehicles. We observe that the morn-
ing and afternoon commute are the most challenging rebalancing problems,
so use these as examples for our static rebalancing approach. Subsequently,
for each family we generate multiple problem instances by using different in-
ventory snapshots containing the starting inventory s0i for each station i ∈ S
at the beginning of the observation period.

We calculate Euclidian distances di,j = dj,i in meters based on the latitude
and longitude of stations. We use d+ = d− = 357 meters, by converting the
typical (un)loading time of 1 minute per bike to meters assuming an average
speed of 30 km/h when driving and dividing by a detour factor of 1.4 (since
our station distances are Euclidian, not road). We assume q0v = 0 to refrain
from random data generation. For MIP we set |T | = |S \ S0| (this ensures
feasibility for our instances) and for the Clustered MIP heuristics we set
|T | = |Sv|+ 1 (this allows a revisit).

We observed that the computation time for solving the exact MIP (P1) is
greatly impacted by the variables y−i,t,v and y+i,t,v being integer. We therefore
report here the results obtained when relaxing the integrality constraints on
these variables. When the objective is to minimize the total distance, or when
the (un)loading cost are ignored, relaxing the integrality does not impact the
optimal solution. However, since our objective is to minimize makespan, the
optimal solution may benefit from using fractional values for y−i,t,v and y+i,t,v.
We suggest a rounding heuristic to obtain a valid upper bound: start with the
vehicle with the shortest route and one or more fractional pickups/deliveries,
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round up while maintaining vehicle inventory feasibility, continue with next
vehicle until solution is integer.

Hubway (Boston, MA)

We restrict to |S| = 60 stations to obtain sufficient trip observations to
calibrate the service level requirements on 82 weekdays between November
1st 2011 and May 31st 2012. We use 41 inventory snapshots on weekdays
between June 1st and July 29th 2012. Hubway currently operates |V| = 3
vehicles with capacity Qv = 22 since opening an additional 40 stations in
Summer 2012. However, during our observations Hubway only operated
two vehicles. We investigate both truck fleet sizes to reveal the possible
implications for performance.

After extensive experiments we set the computational cut-offs (if un-
solved): MIP after 7200 seconds; Clustered MIP after 20 seconds for (P2)
and 120 seconds for (P1); Clustered MIP with Cuts after 300 seconds in to-
tal with 20 seconds for (P2) and 120 seconds for (P1); CP after 300 seconds.
For CP we set the schedule domain with MaxTime = 250000, which proved
necessary to quickly identify a feasible (but low-quality) solution.

Table 1 summarizes our computational results for Hubway. We show the
average solutions and computation times per instance family for the exact
MIP and our heuristics. For our improvement scheme (Clustered MIP with
Cuts), we also show the average number of iterations completed.

We observe that in 5 minutes our Clustered MIP with Cuts and CP
heuristics outperform the best found solution of the MIP after two hours
with 25–45% on average for the two-vehicle families. For the three-vehicle
families, the average improvement is 50–60%. In addition, we note that our
heuristics found feasible solutions in 5 minutes for 27 instances (out of 164)
for which the solver did not yield an integer MIP solution after two hours
(see Table 2).

We can see that for the Clustered MIP heuristic, computational com-
plexity is still in the routing problem, since solution times are shorter (and
number of iterations higher) for the three-vehicle instance families.

In Figure 5 we present a more detailed comparison of our dedicated Clus-
tered MIP with Cuts heuristic with the CP heuristic for the Hubway instance
families. We show how they perform in comparison to the best found MIP
solution after two hours (depicted as 100%). We note that the performance
of the full MIP model decreases strongly for the three vehicle families, with
our 5 minute heuristic solutions up to 75% better than the best found MIP
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Figure 5: Computational results for Hubway (Boston, MA).

Note. Instances are sorted with decreasing MIP LP bound to MIP best found
solution ratio, to approximate complexity. Here, the MIP best found solution
is shown as 100%. Instances without MIP solution not shown (see Table 2).

solutions after two hours.
CP performs very well for the Hubway instances, with solutions very close

to those of the Clustered MIP with Cuts heuristic. We believe that CP is
able to quickly identify a feasible solution which is subsequently improved.
CP performance appears better for the 6–9AM instances, which could be
driven by the higher number of insufficient stations, making the problem
more focused on scheduling.

Capital Bikeshare (Washington, DC)

We restrict to |S| = 135 stations to obtain 130 trip observations on week-
days between January 1st and June 30th 2012. We use 30 8AM and 28 4PM
inventory snapshots of weekdays obtained between December 17th 2012 and
January 30th 2013. Capital Bikeshare operated |V| = 5 vehicles withQv = 25
during the observation period.

With 135 stations and 5 vehicles, the Capital Bikeshare instances were
too complex to derive feasible solutions or even useful LP bounds from the
full MIP (P1) within a reasonable amount of time. Therefore, we report only
on the performance of our heuristics.
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Table 3: Results for Capital (Washington, DC).

Clustered MIP Clustered MIP with Cuts CP

Family |V| Inst. |S \ S0| Solution Time Solution Iterations Time Solution Time

6-8AM 5 22 27 28722 21 26914 14 300 47512 300
3-5PM 5 28 29 23812 23 21772 13 300 35675 300

Note. These results are averaged over the instances of each instance family
for which the solver was able to find a CP solution. The |S \ S0| column
shows the average number of insufficient stations of the instance family. For
results of the 8 instances without CP solution, see Table 4.

Table 4: Results for Capital (Washington, DC) instances without a CP solution.

Clustered MIP Clustered MIP with Cuts

Family |V| Inst. |S \ S0| Solution Time Solution Iterations Time

6-8AM 5 8 30 34939 21 32550 13 300

Note. These results are averaged over the instances of each instance family
for which the solver was unable to find a feasible CP solution in 5 minutes.

Table 3 summarizes our computational results for Capital. On average
the Clustered MIP with Cuts heuristic performs 40–45% better than CP. This
highlights where we believe our cluster-first route-second heuristic excels.

The polynomial-size Clustering Problem (P2) allows rapid decomposi-
tion of the multi-vehicle problem into reasonably good single-vehicle clusters.
Then, the single-vehicle Routing Problem (P1) can be quickly solved to op-
timality for each cluster. The subsequent improvement cuts mitigate both
the approximation error (see Figure 4) and potential sub-optimality incurred
from cutting off the Clustering Problem before the solver is finished.

In addition, we note that our Clustered MIP heuristics found solutions
for 8 Capital instances (out of 58) for which the solver did not yield a fea-
sible constraint programming solution after 5 minutes (see Table 4). This
is potentially because of the alternative resource constraint, which prevents
revisits.

In Figure 6 we present a more detailed comparison of our heuristics, with
the Clustered MIP heuristic shown as 100%. For some instances, even the
simple Clustered MIP heuristic is up to 50% better than CP. Figure 6 also
shows clearly how adding cuts in the Clustered MIP with Cuts heuristic can
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Figure 6: Computational results for Capital Bikeshare (Washington, DC).

Note. Instances are sorted with increasing CP solution to Clustered MIP
solution ratio, to approximate complexity. The Clustered MIP solution is
shown as 100%.

yield improvements of up to 15% over the simple Clustered MIP heuristic.
The results for Capital Bikeshare show that our dedicated Clustered MIP

(with Cuts) heuristic performs better than CP, especially for instances with
a larger vehicle fleet and a lower number of stations per vehicle. This implies
the polynomial-size Clustering Problem can handle large sets of insufficient
stations, when sufficient vehicles are available to divide the workload. When
an instance is more similar to a scheduling problem (i.e. lower number of
vehicles and longer routes, like for some Hubway instances), the techniques
embedded in CP show their strength. Combining a MIP clustering heuristic
with constraint programming for the single-vehicle routing (i.e. scheduling)
problems could be an interesting area for future research.

8. Conclusions

This paper is the first to unify dual-bounded service level constraints
(which add inventory flexibility) and vehicle routing for static rebalancing in
bike sharing systems. We represent the inventory at each station as a finite-
buffer single-server non-stationary queuing system and use the Kolmogorov
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forward equations to calculate service level requirements. We introduce the
notion of self-sufficient stations, which fulfill these requirements with their
starting inventory. Hence, self-sufficient stations do not necessarily need to
be visited by a vehicle, but may act as source or sink nodes.

We present a mixed-integer programming based Clustering Problem that
decomposes the multi-vehicle rebalancing problem into single-vehicle prob-
lems, while taking into account service level feasibility constraints (a cluster-
first route-second approach). We introduce a novel polynomial-size Maxi-
mum Spanning Star routing costs approximation for the Clustering Problem
to achieve fast computational performance. We develop an improvement
scheme based on elimination cuts to mitigate the approximation error. Fur-
thermore, we provide the first constraint programming formulation of the
bike sharing rebalancing problem.

Using empirical data from two bike sharing systems, we extensively test
the Clustered MIP heuristics against the classical full MIP model and the
constraint programming approach. Our Clustered MIP with Cuts heuristic
outperforms the constraint programming formulation as the number of vehi-
cles increases. Constraint programming performs well when the number of
vehicles is low and the number of stations per vehicle is high, which makes the
problem more focused on scheduling. Both the Clustered MIP and constraint
programming approaches identify better solutions within 5 minutes than the
often-used full MIP after two hours. We thus believe that our approach is
suitable for practical implementation in bike sharing systems.

The novel heuristics and our approximation may also be applicable to
other constrained routing problems, specifically to (extended) One-Commodity
Pickup-and-Delivery VRPs like the empty freight container rebalancing prob-
lem, as well as to other sharing systems.

Appendix A. Data sources

In order to produce the examples and computational results, we processed
two data sets from Hubway (Boston, MA) and Capital Bikeshare (Washing-
ton, DC), which have identical formatting. These data sets were made avail-
able through their websites thehubway.com and capitalbikeshare.com.
Each data set consists of three tables: Stations, Trips and Snapshots.

The Stations table contains the following fields for each station: id,
name, lat, lng, installed, locked and temporary. We use the id field to
create the relationship with the Trips and Inventory tables. We use the
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lat and lng fields to calculate the Euclidean distance matrix d in meters
with the spDists function of the sp package in R.

The Trips table has the following fields for each trip: id, start date,
end date, start station, end station, bike name, bike and member type.
We calculate the number of pickups at a station during the observation pe-
riod using start date and start station, and the number of returns using
end date and end station, to synchronize these events. As mentioned in
Section 7.2, we select a subset of the stations for calculating the service level
requirements, to ensure that sufficient trip observations are available.

The Snapshots table contains the following fields for each station/date
combination: id, bikes, docks and date. We calculate capacity = bikes+
docks for each snapshot, since reparations or extensions may lead to changes
in the station capacity over time. We set Ci equal to the maximum capacity

of station i ∈ S to prevent infeasibilities. We web scraped the Snapshots

table for Capital Bikeshare from
http://capitalbikeshare.com/data/stations/bikeStations.xml.
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