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Bike sharing systems have been installed in many cities around the world and are increasing in popularity. A

major operational cost driver in these systems is rebalancing the bikes over time such that the appropriate

number of bikes and open docks are available to users. We combine two aspects that have previously been

handled separately in the literature: determining service level requirements at each bike sharing station, and

designing (near-)optimal vehicle routes to rebalance the inventory. Since finding provably optimal solutions

is practically intractable, we propose a new cluster-first route-second heuristic, in which the polynomial-

size Clustering Problem simultaneously considers the service level feasibility constraints and approximate

routing costs. Extensive computational results on real-world data from Hubway (Boston, MA) and Capital

Bikeshare (Washington, DC) are provided, which show that our heuristic outperforms a pure mixed integer

programming formulation and a constraint programming approach.

Key words : vehicle routing and scheduling, inventory, queues: applications, programming: integer,

programming: constraints, heuristics

1. Introduction

Bike sharing systems are experiencing wide-spread adoption in major cities around the world,

with over 300 active systems and more than 200 in planning (Meddin and DeMaio 2012). In these

systems, users can pickup and return bikes at designated bike sharing stations with a finite number

of docks. Unfortunately, user behavior results in spatial imbalance of the bike inventory over time.

The system equilibrium is often characterized by unacceptably low availability of bikes or open

docks, for pickups or returns respectively (Fricker et al. 2012, p. 375).

Therefore, operators deploy a fleet of trucks to rebalance the bike inventory. We focus on the

efficiency of these rebalancing operations, a major cost driver for operators (DeMaio 2009, p. 50).

This problem consists of two main components. First, determining the desired inventory level at

each bike station, which is typically done by an analysis of historic user data. Second, designing

truck routes that will perform the necessary pickups and deliveries in order to reach the target

* This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI

#1055832.
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inventory levels. In the literature, these two aspects have been mainly considered separately (see

Section 2 for a literature review). However, in practice operators often face a tradeoff between

user satisfaction and the cost of rebalancing. Moreover, as will be shown in this paper, it may be

advantageous to include stations in a route even though their inventory is already satisfactory, in

order to satisfy the service level requirements at a nearby location. For these reasons, we propose

to consider the inventory balancing problem and the routing problem simultaneously.

We model the stochastic demand by viewing the inventory at each station as a queuing system

with finite capacity and derive closed-form service level requirements on the transient distribution

of the availability of bikes and docks (Section 3). We recognize that service level requirements can

be met when the inventory is between a lower and upper bound. We then introduce the notion of

self-sufficient stations. Self-sufficient stations meet the service level requirements with their starting

inventory and hence should not necessarily be visited by a vehicle.

Next, we consider the routing of vehicles to achieve the service level requirements. Observe that

the pickup and delivery of bikes is unpaired, i.e., our situation corresponds to an extended One-

Commodity Pickup-and-Delivery Vehicle Routing Problem (1-PDVRP, see Hernández-Pérez and

Salazar-González 2003). However, while preventing unnecessary vehicle visits, the inventory flexi-

bility at each station adds another layer of complexity to the classical Routing Problem (Section 4).

Since exact mixed integer programs (MIPs) for vehicle routing problems become intractable for

realistic instances, we present a new cluster-first route-second heuristic in Section 5. We incorpo-

rate the service level feasibility constraints in a polynomial-size Clustering Problem (modeled as

a MIP). The routing costs are incorporated into the clustering problem via a new approximation

based on maximum spanning stars. Lastly, we present an improvement scheme based on elimination

cuts to mitigate the approximation error.

In addition, we present a Constraint Programming (CP) formulation in Section 6, acting both

as an effective (exact) solution method for smaller instances and a benchmark for our dedicated

clustered routing heuristics.

Computational experiments (Section 7) using data from Hubway (Boston, MA) and Capital

Bikeshare (Washington, DC) show that our heuristics strongly outperform the classical MIP model.

Within seconds, we identify a feasible solution with a reasonable optimality gap. In a minute, we

find better solutions for almost all instances than the best MIP solution after 2 hours. Moreover,

our dedicated Clustered MIP heuristic outperforms Constraint Programming on larger instances.

We summarize the main contributions of this paper as follows. First, we present a novel formula-

tion of the rebalancing problem using dual-bounded service level constraints. Second, we present a

new polynomial-size Clustering Problem with service level feasibility constraints. Third, we develop

heuristics that are fast and accurate for large instances, and outperform state-of-the-art existing

methods.
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2. Related Work

The study of bike sharing systems is increasing in popularity. DeMaio (2009) and Shaheen et al.

(2010) provide a history of bicycle sharing, starting with the first generation ‘white bikes’ in Ams-

terdam as early as 1965. From 1995 onwards, the third generation IT-based systems incorporate

‘advanced technologies for bicycle reservations, pickup, drop-off, and information tracking’ (Sha-

heen et al. 2010, p. 7). We identify four research substreams in bike sharing literature: strategic

design, demand analysis, service level analysis, and rebalancing operations.

Strategic design. Since most major cities have planned or considered implementation of

bike sharing systems, and existing systems are often expanded, several studies present models

dedicated to strategic design. Dell’Olio et al. (2011) develop a comprehensive methodology for

implementation, from estimating potential demand to optimizing locations. Martinez et al. (2012)

and Prem Kumar and Bierlaire (2012) present MIP models for the location problem. Lin and Yang

(2011) create a model trading off the interests of both users and investors. We note that none of

the studies include a notion of expected inventory imbalance costs.

Demand analysis. The purpose of demand analysis is twofold: forecasting future demand (e.g.

for service level requirements) and understanding the explaining factors for managerial decision

making. Kaltenbrunner et al. (2010) predict the system inventory state and suggest making such

information available to users. Froehlich and Oliver (2008), Borgnat and Abry (2009), Borgnat

et al. (2011), and Lathia et al. (2012) identify a temporal demand pattern and forecast the number

of rentals. Hampshire and Marla (2012) seek land use and socio-economic factors that explain

the use of bike sharing systems. Vogel et al. (2011) construct clusters of stations with similar

demand patterns. These studies could provide insights that are helpful in improving the service

level requirements developed in this paper.

Service level analysis. Several studies focus on service levels in bike sharing systems. We

recall that service level requirements are typically two-sided: for available bikes and docks. Most

notably, Nair and Miller-Hooks (2011) and Nair et al. (2013) decompose system-wide reliability

into a set of dual-bounded chance constraints for each station. We adapt their dual-bounded service

level constraints, but use a more realistic Markov chain to model the station inventory over time, as

opposed to observing the total net demand (see Section 3). Raviv et al. (2011a) present a queuing

system with finite capacity to model expected user dissatisfaction at each station, similar to our

approach. However, we assume time-independent user arrival rates to derive closed-form solutions.

Leurent (2012) models bike sharing stations as a dual Markovian waiting system, but contrary to

their assumption of waiting customers, we assume immediate lost sales.
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Rebalancing operations. Using mean field analysis, Fricker et al. (2012) conclude that the

equilibrium system performance collapses under heterogeneity of user behavior and that a pressing

need for rebalancing operations exists. Vogel and Mattfeld (2010) motivate rebalancing activities

using a system dynamics model. Shu et al. (2010) estimate rebalancing operations can lead to an

additional 15-20% of trips supported system-wide.

We identify two modes of rebalancing: providing user incentives and deploying a truck fleet.

While Fricker and Gast (2012) and Waserhole and Jost (2012) develop a pricing strategy, and

some active systems have already implemented incentive schemes (e.g. V+ for Vélib’, see Fricker

and Gast 2012, p. 20), we observe that every bike sharing system still operates a vehicle fleet for

rebalancing. Therefore, the underlying vehicle routing problem has received most attention.

Most studies use an exact target inventory for each station, which implies their routing problem

is more closely related to the 1-PDVRP than ours, which adds inventory flexibility. Routing costs

to attain exact target inventories will always be higher than strictly necessary to maintain appro-

priate service levels (see Section 3). We note that our models can be parameterized to solve the

target inventory problem. Caggiani and Ottomanelli (2012) construct a decision support system for

routing. Chemla et al. (2012) present a branch-and-cut algorithm for the single-vehicle problem,

with results on instances of up to 100 stations. Approximation algorithms for the same problem are

given by Benchimol et al. (2011). The work of Contardo et al. (2012) can be considered state of the

art for the multi-vehicle target inventory problem, using Dantzig-Wolfe and Benders decomposition

to derive lower bounds and feasible solutions with low computing times (approximately 5 minutes)

for instances of 5 vehicles and up to 100 stations.

Raviv et al. (2011a) present an alternative approach: the expected system-wide user dissatisfac-

tion is minimized subject to a time limit. Their arc-, time-, and sequence-indexed MIP models are

intractable for systems of reasonable size, however we rely strongly on these models in Section 4

to present the Bike Sharing Rebalancing Problem in its pure MIP form. As mentioned, the dual-

bounded chance constraints from Nair et al. (2013) inspire our service level requirements, but their

paper presents a swapping-based rebalancing model and no explicit vehicle routing.

Lin and Chou (2012) propose an optimization method taking road conditions, traffic regulations,

and geographical factors into account, rather than simply using Euclidian distance. Their actual

distance path calculation is used to implement a heuristic for the VRP. Naturally, using actual

distances would lead to decreased costs in practice.

3. Service Level Requirements

In general, inventory rebalancing efforts are made in order to improve customer service. Contrary

to traditional inventory theory, where the service level increases as inventory increases, bike sharing
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systems are subject to a net demand process, with an empty station preventing users from picking

up bikes and a full station preventing returns. For the remainder of the paper, we let S represent

the set of bike sharing stations. Let Ci denote the capacity (i.e. number of docks) of station i∈ S.

Net demand implies that after a pickup and a return occur, the inventory is unchanged. Previous

studies (Nair et al. 2013) observe the total net demand (pickups minus returns during observation

period) at each station i ∈ S. However, we note that while observing a net demand of zero, we

often still need bikes and docks. We view the net demand as a stochastic process which needs to

be satisfied during the entire observation period, not only at the end. In Appendix A we motivate

why observing the total net demand is insufficient.

3.1. Service Level Definition

Operators can benefit greatly from measuring their service level (Gunasekaran et al. 2001). But

due to censoring, it is nontrivial to observe lost sales in bike sharing systems. Therefore, operators

commonly measure the (fraction of) time that their stations are full or empty. Some operators are

even penalized by the local government in proportion to such a time measure (e.g. Vélib’ in Paris).

In the next section, we show that the number of dissatisfied customers is proportional to this

time measure under the assumption of Poisson demand. Therefore, we can implement a measurable

type 2 service level: the fraction of demands satisfied directly should be larger than β−i for pickups

and larger than β+
i for returns. We assume no backorders, i.e., the effect of waiting customers

is negligible. Customers often choose alternative stations in case of stock outs, we assume this

behavior is implicit in the (independent) demand processes.

Definition 1. The service level requirements at station i∈ S are

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
≥ β−i

E[Satisfied bike return demands]

E[Total bike return demands]
≥ β+

i

for given β−i , β
+
i ∈ [0,1].

3.2. Markov Chain Formulation

The inventory at station i ∈ S can be modeled as an M/M/1/K queuing system (Kendall 1953),

with the number of customers in the queue representing the inventory. This implies that the

customer inter-arrival times (for bike returns) and service times (i.e. inter-arrival times for bike

pickups) are exponentially distributed with rates λi and µi, respectively, at each station i ∈ S.

We implicitly assume that user behavior during the observation period is stationary. While some

users (e.g. tourists) arrive simultaneously (compound Poisson process), we assume this effect is
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negligible. There is 1 server and there are K = Ci waiting spaces in the system for station i ∈ S.

The M/M/1/K queue is well-studied (Morse 1958) and closed-form expressions for the transient

probabilities given a starting state are available.

Figure 1 Markov chain for the inventory Si(t) at station i∈ S.

0 1 · · · Ci − 1 Ci

λi λi λi λi

µi µi µi µi

Note. Users arrive with rate λi to return bikes and with rate µi to pickup bikes.

Denote by {Si(t) : t≥ 0} the stochastic process on state space {0, . . . ,Ci} representing the inven-

tory of station i∈ S at time t≥ 0. Define pi(s,σ, t)≡Pr(Si(t) = σ | Si(0) = s), the transient proba-

bility that the inventory at station i∈ S equals σ ∈ {0, . . . ,Ci} at time t≥ 0 given starting inventory

s∈ {0, . . . ,Ci}. Define gi(s,σ)≡ 1
T

∫ T
0
pi(s,σ, t)dt as the expected fraction of the observation period

[0, T ] for which the inventory at station i∈ S equals σ given starting inventory s.

Then, in order to meet both the pickup and return service level from Definition 1 during the

observation period [0, T ], we calculate the expected values:

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
=

∫ T
0
µi (1− pi(s,0, t)) dt

µiT

= 1−
∫ T

0
pi(s,0, t)dt

T

= 1− gi(s,0)

and similarly

E[Satisfied bike return demands]

E[Total bike return demands]
= 1− gi(s,Ci).

Thus, inventory level s satisfies the service level requirements at station i∈ S when 1−gi(s,0)≥ β−i
and 1− gi(s,Ci)≥ β+

i .

Lemma 1. A closed-form expression for gi(s,σ) exists.

Proof of Lemma 1. Morse (1958, p. 64) presents a transient solution for the M/M/1/N queue

(note that N =Ci):

pi(s,σ, t) = πi(σ) +
2ρ

1
2 (σ−s)
i

Ci + 1

Ci∑
m=1

Ki,me
−ki,mt
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with

ρi =
λi
µi

πi(σ) =

{
1

Ci+1
if ρi = 1

1−ρi
1−ρCi+1

i

ρσi otherwise

Ki,m =

(
µi
ki,m

)(
sin

msπ

Ci + 1
−√ρi sin

m(s+ 1)π

Ci + 1

)(
sin

mσπ

Ci + 1
−√ρi sin

m(σ+ 1)π

Ci + 1

)
ki,m = λi +µi− 2

√
λiµi cos

(
mπ

Ci + 1

)
The antiderivative Ps,σ(t) follows naturally:

Pi(s,σ, t) =

∫
pi(s,σ, t)dt

= πi(σ)t− 2ρ
1
2 (σ−s)
i

Ci + 1

Ci∑
m=1

Ki,m

e−ki,mt

ki,m
.

Thus, gi(s,σ) = 1
T

∫ T
0
pi(s,σ, t)dt= 1

T
(Pi(s,σ,T )−Pi(s,σ,0)). �

Intuitively, as the starting inventory increases, the bike pickup service level increases and the

bike return service level decreases. We note that indeed

gi(s+ 1,0)− gi(s,0)≤ 0 and

gi(s+ 1,Ci)− gi(s,Ci)≥ 0

for s∈ {0, . . . ,Ci− 1}, which gives us Lemma 2.

Lemma 2. To meet the service level requirements from Definition 1 at station i ∈ S, it must hold

that si ≥ smin
i and si ≤ smax

i with

smin
i = min

{
s∈ {0, . . . ,Ci} : 1− gi(s,0)≥ β−i

}
smax
i = max

{
s∈ {0, . . . ,Ci} : 1− gi(s,Ci)≥ β+

i

}
and gi(s,σ) = 1

T

∫ T
0
pi(s,σ, t)dt.

Hence, vehicles should rebalance the starting inventory s0
i such that smin

i ≤ si ≤ smax
i for each

station i ∈ S, in order to meet the service levels β−i , β
+
i . Denote by S0 = {i ∈ S : smin

i ≤ s0
i ≤ smax

i }
the set of self-sufficient stations which satisfy the service level requirements with their starting

inventory.

Note that the service level requirements could theoretically be infeasible, e.g. during peak hours.

We identify three types of infeasibility:
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Figure 2 Example of Service Level Requirements for Hubway (Boston, MA).
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Note. Observation period 8–9AM on weekdays with β−
i = β+

i = 95%. The range [smin
i , smax

i ] is displayed solid with

[0,Ci] displayed dotted. For reference, we show the starting inventory s0i for each station as a solid marker, based on

a snapshot of the system taken at 8AM on Friday June 1st 2012.

• smax
i < smin

i requires the operator to prioritize the service level requirement for either pickups

or returns at station i∈ S, or choose a weighted average. We observe that most operators prioritize

returns, to prevent users incurring unintended late-return fees.

• 1−gi(Ci,0)<β−i or 1−gi(0,Ci)<β+
i implies the inventory always violates (one of) the service

level requirements. This requires the operator to choose the best possible inventory bounds.

• ∑i∈S s
0
i <
∑

i∈S s
min
i or

∑
i∈S s

0
i >
∑

i∈S s
max
i implies a system-wide shortage or excess (ignoring

vehicle inventory and capacity for the sake of simplicity).

All types of infeasibility would require the operator to take alternative measures in case service

level problems persist, e.g., increase station capacity, influence user behavior, or introduce or remove

bikes from the system. However, we encountered no infeasibilities in processing any of our data.

Using Lemma’s 1 and 2, we are able to efficiently calculate the service level requirements at each

station using closed-form expressions.

Example 1. For this example, we use trip data provided by Hubway (Boston, MA) for the 60

stations that were active between November 1st 2011 and May 31st 2012. In Appendix B, we give

a detailed overview of the data sources used for our examples and computational results. The

observation period is 8–9AM (T = 1) on weekdays, for which we have 82 observations. We estimate

λ and µ by the mean (Maximum Likelihood Estimator for Poisson variables) number of returns

and pickups, respectively, per observation period.

By requiring a β−i = β+
i = 95% service level at each station i∈ S, we calculate smin

i and smax
i using

Lemma 2. The service level requirements for each station are depicted as bounds in Figure 2. We
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observe that there is a lot of flexibility in the target inventory, with most stations having relatively

wide service level bounds. For one of the stations, smin
i is relatively high, but this is paired with a

higher than average smax
i , in anticipation of bike pickups clearing sufficient docks.

4. Routing Problem

Recall that vehicles should rebalance the starting inventory s0
i such that smin

i ≤ si ≤ smax
i for each

station i ∈ S, in order to meet the service level requirements. We define the Routing Problem, a

pure MIP approach to the Bike Sharing Rebalancing Problem, inspired by Raviv et al. (2011a). The

bike sharing system is represented as a complete directed graph with vertex set S and distances

di,j for all i, j ∈ S. We observe that using a model that is both arc- and sequence-indexed increases

the size, but yields much stronger relaxations than the sequence-indexed model.

Several objectives could be applied to this routing problem, e.g. minimizing the total distance.

However, to maximize user satisfaction it is usually desired to finish the rebalancing operations

as soon as possible. For this reason, we minimize the maximum tour length of the vehicles, i.e.

the makespan of the schedule. Denote by hv the routing costs (distance traveled) of vehicle v ∈ V.

Then, our objective is to minimize the makespan H = maxv∈V hv of rebalancing the bike inventory

such that service level requirements at each station are met. We assume user activity during the

rebalancing operations is negligible. We allow arbitrary route start and end points (no closed tour)

to implement the model on a rolling horizon.

We use a set T = {1, . . . , T} for sequence indexing. We introduce binary decision variables xi,j,t,v

to indicate whether vehicle v ∈ V traverses arc (i, j) in time step t∈ T . Decision variables y−i,t,v, y
+
i,t,v

indicate bike pickup or delivery, respectively, by vehicle v ∈ V. We use q0
v and Qv for the initial

inventory and capacity of vehicle v ∈ V, respectively. The formulation then becomes:

minimize H (P1)

s.t.

s0
i +
∑
t∈T

∑
v∈V

(y+
i,t,v − y−i,t,v)≥ smin

i ∀i∈ S (1)

s0
i +
∑
t∈T

∑
v∈V

(y+
i,t,v − y−i,t,v)≤ smax

i ∀i∈ S (2)∑
i∈S

∑
j∈N

xi,j,1,v ≤ 1 ∀v ∈ V (3)∑
j∈N

xi,j,t,v ≤
∑
j∈S

xj,i,t−1,v ∀i∈ S, t∈ T \ {1}, v ∈ V (4)∑
i∈S

∑
t∈T

∑
v∈V

xi,i,t,v = 0 (5)
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y−i,t,v ≤Qv

∑
j∈N

xi,j,t,v ∀i∈ S, t∈ T , v ∈ V (6)

y+
i,t,v ≤Qv

∑
j∈S

xj,i,t,v ∀i∈ S, t∈ T , v ∈ V (7)∑
t∈T

∑
v∈V

y−i,t,v ≤ s0
i ∀i∈ S (8)∑

t∈T

∑
v∈V

y+
i,t,v ≤Ci− s0

i ∀i∈ S (9)

q0
v +
∑
i∈S

∑
t̄∈T :t̄≤t

(y−i,t,v − y+
i,t,v)≥ 0 ∀t∈ T , v ∈ V (10)

q0
v +
∑
i∈S

∑
t̄∈T :t̄≤t

(y−i,t,v − y+
i,t,v)≤Qv ∀t∈ T , v ∈ V (11)

hv =
∑
i,j∈S

∑
t∈T

di,jxi,j,t,v ∀v ∈ V (12)

H ≥ hv ∀v ∈ V (13)

xi,j,t,v ∈ {0,1} ∀i∈ S, j ∈N , t∈ T , v ∈ V

y−i,t,v, y
+
i,t,v ∈N0 ∀i∈ S, t∈ T , v ∈ V

H,hv ≥ 0 ∀v ∈ V

Constraints (1)-(2) impose the service level requirements from Lemma 2. Constraints (3)-(7) take

care of vehicle routing. Constraints (3) imply that each vehicle starts at most one route. Constraints

(4) take care of flow conservation. Constraints (5) prevent dwelling. Constraints (6)-(7) ensure

pickup or delivery can only take place when leaving from or arriving at a station, respectively. Note

that N ≡S ∪{0} extends the station set with an artificial vertex 0 to allow picking up bikes at the

final stop without incurring routing costs. Constraints (8)-(9) limit the amount of transshipments,

because of the model’s inability to track station inventory over time (cf. Raviv et al. 2011a, p. 10).

Constraints (10)-(11) ensure that the vehicle inventory remains non-negative and within vehicle

capacity at all times. Constraints (12) define the routing costs for each vehicle. Finally, constraints

(13) linearize the objective H = maxv∈V hv. Note that the integrality constraints on y−i,t,v, y
+
i,t,v can

be relaxed without implications.

Denote by H∗(S,V) the optimal solution obtained by solving (P1) for station set S and vehicle

set V. Solving (P1) gives an optimal solution for the Bike Sharing Rebalancing Problem (apart from

the limited transshipments). However, we observe that(P1) is practically intractable for realistic

station sets with |S| ≥ 50 and vehicle fleets with |V| ≥ 3. Therefore, we introduce Clustered Routing

heuristics in Section 5 and a Constraint Programming heuristic in Section 6 as alternatives to find

high quality solutions in a short amount of time.
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5. Clustered Routing

We formulate a Clustering Problem to decompose the Routing Problem (P1) into separate single-

vehicle Routing Problems, thereby reducing combinatorial complexity.

A feasible clustering solution assigns disjoint clusters of stations Sv ⊆ S to vehicles v ∈ V such

that the service level requirements can be satisfied using only within-cluster vehicle routing. Imple-

menting these feasibility constraints in existing clustering algorithms, e.g. the Fisher-Jaikumar

algorithm (Fisher and Jaikumar 1981), is non-trivial (see Section 5.3). Therefore, we propose to

formulate the Clustering Problem as an extended Set Partitioning Problem. The core of the model

is a set of binary decision variables:

zi,v =

{
1 if station i∈ S is assigned to vehicle v ∈ V,

0 otherwise.

These variables assign a cluster of stations Sv = {i∈ S : zi,v = 1} to each vehicle v ∈ V.

The objective of the Clustering Problem is to find a feasible solution while minimizing makespan

H = maxv∈V hv, i.e., rebalance the system as soon as possible and divide the workload between

vehicles. Optimally, stations are clustered with known exact routing costs for any (feasible) com-

bination of stations Sv. However, the computational complexity (see Section 4) requires us to use

approximations to estimate the routing costs. Therefore, we are interested in non-algorithmic rout-

ing costs approximations that correlate highly with the exact vehicle routing costs within a cluster,

with a consistent over- or underestimation.

5.1. Routing Costs Approximation

It is not straightforward to approximate the optimal routing costs for a cluster, because feasibility

constraints on the vehicle route may require (many) revisits. However, assuming that all stations

in Sv need to be visited, the within-cluster routing costs H∗(Sv,{v}) are bounded from below by

the optimal solution of a Traveling Salesman Problem with an added artificial zero-distance depot

(to model the open tour for rolling horizon implementation). If we impose the triangle inequality,

then this lower bound equals the length of the shortest Hamiltonian path over Sv.
TSP approximations are widely studied, see e.g. Laporte (1992). However, exponential approxi-

mations do not scale well in MIPs and, as mentioned, we refrain from algorithmic approximations

because of the feasibility constraints. For example, the MIP formulation of the Held-Karp relaxation

(Held and Karp 1970, Charikar et al. 2004) would require constraints for each non-empty subset

of S. Furthermore, the polynomial-size Assignment Problem relaxation (Dantzig et al. 1954) has

limited applicability, because it does not satisfy monotonicity, i.e., adding stations to a cluster may
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actually decrease the routing costs approximation. Since sub-tours are not eliminated, our experi-

mentation with the Assignment Problem resulted in the undesirable assignment of geographically

separated groups of stations to the same cluster.

Instead, we introduce the Maximum Spanning Star approximation (we note that Wu et al.

(1998, p. 2) introduce the algorithmic minimum k-star approximation). Denote by SPSi(Sv) =∑
j∈Sv di,j the cost of the spanning star (spanning tree with depth one) of Sv rooted at station

i∈ Sv. The routing costs are approximated by the maximum-cost spanning star maxi∈Sv SPSi(Sv).
In Section 5.3 we show that the Maximum Spanning Star can be implemented using a polynomial

number of binary assignment variables and constraints. Moreover, the Maximum Spanning Star is

an upper bound on the shortest Hamiltonian path over the cluster. Most importantly, the Maximum

Spanning Star satisfies monotonicity, such that stations are only assigned to a cluster if this is

necessary for feasibility of the service level requirements.

5.2. Properties Maximum Spanning Star

Next, we prove the monotonicity and upper bound of the Maximum Spanning Star approximation,

to motivate our intuition that MAXSPS(Sv) and H∗(Sv,{v}) correlate. Namely, both H∗(Sv,{v})
and MAXSPS(Sv) are bounded from below by the shortest Hamiltonian path over Sv, given that

the Maximum Spanning Star satisfies monotonicity (which ensures all stations are visited).

Lemma 3. The Maximum Spanning Star approximation satisfies monotonicity:

MAXSPS(Sv ∪{i})≥MAXSPS(Sv).

Proof of Lemma 3. Assume without loss of generality that MAXSPS(Sv) is rooted at station

j ∈ Sv. Then, MAXSPS(Sv) = SPSj(Sv)≤ SPSj(Sv) + dj,i ≤MAXSPS(Sv ∪{i}). �

Denote by TSP∗0(Sv) the length of the shortest Hamiltonian path over Sv, which, under the

triangle inequality, equals the optimal solution of a Traveling Salesman Problem with an artificial

zero-distance depot.

Lemma 4. The Maximum Spanning Star approximation is an upper bound on the length of the

shortest Hamiltonian path:

MAXSPS(Sv)≥TSP∗0(Sv).

Proof of Lemma 4. Denote by C(Sv) =
∑

i,j∈Sv di,j the cost of the directed clique on Sv. Denote

by n= |Sv| the number of stations in a candidate cluster. Then:∑
i∈Sv

SPSi(Sv) =C(Sv), which yields

MAXSPS(Sv)≥
C(Sv)
n

.
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Akiyama et al. (2004, p. 40) present the Walecki decomposition of a complete undirected graph

Kn with odd n≥ 3 into (n− 1)/2 Hamiltonian cycles. It follows that Kn with even n≥ 2 can be

decomposed into n/2 Hamiltonian paths. This result gives us:

Case 1: n≥ 2 is even. The complete directed graph on Sv can be decomposed into n directed

Hamiltonian paths. Hence,

TSP∗0(Sv)≤
C(Sv)
n

.

Case 2: n≥ 3 is odd. The complete directed graph on Sv can be decomposed into n− 1 directed

Hamiltonian cycles. We can remove one of the n edges in any of these n− 1 Hamiltonian cycles to

obtain a Hamiltonian path. Thereby,

TSP∗0(Sv)≤
n− 1

n

C(Sv)
n− 1

=
C(Sv)
n

.

Thus, for both even and odd n≥ 2 we have

TSP∗0(Sv)≤
C(Sv)
n
≤MAXSPS(Sv). �

We report on the approximation performance of the Maximum Spanning Star in Section 7.1. In

particular, we show that the Maximum Spanning Star approximation is highly correlated with the

actual routing distance for our data sets (correlation of more than 85%).

5.3. Clustering Problem

Next, we implement the Maximum Spanning Star approximation in our Clustering Problem. The

objective is to minimize the estimated makespan Ĥ such that service level requirements can be

satisfied using only within-cluster vehicle routing.

minimize Ĥ (P2)

s.t. ∑
v∈V

zi,v = 1 ∀i∈ S \S0 (14)∑
v∈V

zi,v ≤ 1 ∀i∈ S0 (15)

q0
v +
∑
i∈S

s0
i zi,v ≥

∑
i∈S

smin
i zi,v ∀v ∈ V (16)

−(Qv − q0
v) +

∑
i∈S

s0
i zi,v ≤

∑
i∈S

smax
i zi,v ∀v ∈ V (17)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1) ∀i∈ S, v ∈ V (18)

Ĥ ≥ ĥv ∀v ∈ V (19)

zi,v ∈ {0,1} ∀i∈ S, v ∈ V

Ĥ, ĥv ≥ 0 ∀v ∈ V
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Figure 3 Example of a solution of the Clustering Problem (P2) for Hubway (Boston, MA).
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Constraints (14)-(17) ensure feasibility of the clustering solution. Insufficient stations must be

visited by a vehicle (14) and self-sufficient stations can be visited (15). A vehicle cluster must contain

enough bikes, possibly using the vehicle starting inventory q0
v, such that service level requirements

can be met through within-cluster repositioning (16). Constraints (17) are similar but then for the

maximum inventory in the cluster, possibly using vehicle surplus capacity Qv − q0
v.

Constraints (18) impose SPSi(Sv) as a lower bound on the estimated routing costs ĥv if station i∈
S is assigned to vehicle v ∈ V. Since ĥv is indirectly minimized, ĥv ≥MAXSPS(Sv). The estimated

makespan Ĥ = maxv∈V ĥv is linearized through constraints (19).

Note that we have formulated a compact clustering model with routing costs approximation,

which guarantees that the service level requirements can be satisfied at each station while using

only within-cluster vehicle routing.

Example 2. Figure 3 shows the assignment of stations to the two Hubway vehicles obtained by

solving the Clustering Problem (P2) for the service level requirements from Example 1. We use

real inventory data, based on a snapshot of the system taken at 8AM on Friday June 1st 2012.

5.4. Heuristics

Having presented MIP formulations for the Clustering Problem and the Routing Problem, we now

formally introduce our Clustered Routing heuristics.

Heuristic 1 (Clustered MIP). Subsequently:

1. Solve the Clustering Problem (P2).
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2. For each v ∈ V solve the Routing Problem (P1) with S = Sv and V = {v} to obtain H∗(Sv,{v}).
3. H∗ = maxv∈VH

∗(Sv,{v}).

Since the routing costs approximation is imperfect and may therefore lead to sub-optimal clusters,

the Clustered MIP heuristic has an optimality loss. However, we can use the information obtained

from routing the individual clusters to add cuts to the Clustering Problem.

Assume that an unknown optimal solution exists with makespan HOPT strictly less than our best

found solution H∗. This implies that all clusters Sv with known optimal routing costs H∗(Sv,{v})≥
H∗ are not part of the optimal solution. Thereby, these clusters can be eliminated from the solution

space of the Clustering Problem. Note that, contrary to problems in which total routing costs are

minimized, these cuts do not need to be removed later.

Heuristic 2 (Clustered MIP with Cuts). Subsequently:

1. Define a cut set C ⊆ 2S of subsets of S. Initialize C = ∅.
2. Solve the Clustering Problem (P2) with additional constraints:

∑
i∈c

zi,v −
∑
i∈S\c

zi,v ≤ |c| − 1 ∀c∈ C, v ∈ V (20)

3. For each v ∈ V solve the Routing Problem (P1) with S = Sv and V = {v} to obtain H∗(Sv,{v}).
(a) If maxv∈VH

∗(Sv,{v})<H∗ or C = ∅ then (re)define H∗ and store the routing solution.

(b) For each v ∈ V with H∗(Sv,{v})≥H∗ redefine C = C ∪ {Sv}
4. Go to step 2.

Note that H∗ is only redefined if an improvement is found (3a), in which case at least one

cut is added per iteration (we have H∗(Sv, v) = H∗ for at least one v ∈ V). If no improvement

is found, then H∗ is not redefined and at least one cluster has actual costs strictly larger than

the best found solution H∗. We add a cut for all non-improving clusters (3b), and continue. Note

that any strict subset or superset of a cut c ∈ C is not eliminated by constraints (20). The cuts

force the Clustering Problem to iteratively adjust the assignment of stations to vehicles, thereby

mitigating the approximation error. After finitely, but possibly exponentially many steps, the

heuristic identifies the optimal solution.

Unfortunately, to our knowledge no stronger terminating condition for Clustered MIP with Cuts

heuristic than an exhaustive search of the Clustering Problem solution space exists. However,

Table 1 in Section 7.2 shows how quickly improvements over the Clustered MIP heuristic are

attained.
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6. Constraint Programming

In this section we present our Constraint Programming (CP) model for the Bike Sharing Rebalanc-

ing Problem. Constraint Programming is among the state of the art for solving complex routing

and scheduling problems, even though it applies a generic modeling and solving approach. In par-

ticular, CP has been applied before to constrained routing problems (Kilby and Shaw 2006). Most

industrial CP solvers combine constraint propagation with large neighborhood search for solving

routing problems (Shaw 1998).

In order to take advantage of the strengths of CP, it is common to represent routing problems as

scheduling problems, by representing the visit of a location as an activity. An activity is a high-level

CP modeling structure that implicitly defines integer variables for its start time, duration, and

end time, and a Boolean variable for its presence. Activities for which the presence is not fixed to

true are called optional activities. Traveling the distance between two locations is represented by

sequence-dependent setup times between the respective activities (for each pair of locations), i.e.,

if station j is visited directly after station i, we need to respect the distance di,j as ‘setup’ time.

In CP, activities impact resources which, in case of routing problems, correspond to the vehicles.

For example, for each vehicle, we must ensure that no two activities overlap.

We next specify the details of our CP model, following the AIMMS notation for activities and

resources (Roelofs and Bisschop 2012). In particular, each activity A induces the variables A.Start,

end time A.End, and presence A.Present, as explained above. For each station i ∈ S and vehicle

v ∈ V, we define optional activities Pickup[i,v] and Delivery[i,v] with duration 0. That is,

each station may be visited by any of the vehicles. Variables y+
i,v and y−i,v represent the pickup,

respectively delivery, amount for vehicle v at station i, as in our models above. Our CP model then

becomes:

minimize max

{
max
i∈S
v∈V

{Pickup[i,v].End} ,max
i∈S
v∈V

{Delivery[i,v].End}
}

(P3)

s.t.

s0
i +
∑
v∈V

y+
i,v − y−i,v ≥ smin

i ∀i∈ S (21)

s0
i +
∑
v∈V

y+
i,v − y−i,v ≤ smax

i ∀i∈ S (22)∑
v∈V

Pickup[i,v].Present+ Delivery[i,v].Present≤ 1 ∀i∈ S (23)

Pickup[i,v].Present= 1⇔ y−i,v ≥ 1 ∀i∈ S, v ∈ V (24)

Pickup[i,v].Present= 0⇔ y−i,v = 0 ∀i∈ S, v ∈ V (25)

Delivery[i,v].Present= 1⇔ y+
i,v ≥ 1 ∀i∈ S, v ∈ V (26)
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Delivery[i,v].Present= 0⇔ y+
i,v = 0 ∀i∈ S, v ∈ V (27)

y−i,v, y
+
i,v ∈ {0, . . . ,Qv} ∀i∈ S, v ∈ V

with resources

Sequential resource VehicleTime[v](

Schedule domain: {0, ...,MaxTime}
Activities: Pickup[i,v], Delivery[i,v]

Transition: di,j

)

Parallel resource VehicleInventory[v](

Activities: Pickup[i,v], Delivery[i,v]

Level range: {0, . . . ,Qv}
Initial value: q0

v

Begin change: Delivery[i,v]: −y+
i,v

End change: Pickup[i,v]: y−i,v

)

Parallel resource StationInventory[i](

Activities: Pickup[i,v], Delivery[i,v]

Level range: {0, . . . ,Ci}
Initial value: s0

i

Begin change: Delivery[i,v]: y+
i,v

End change: Pickup[i,v]: −y−i,v
)

As before, constraints (21)-(22) impose the service level requirements from Lemma 2. Constraints

(23) are so-called alternative resource constraints, which limit the number of visits to one per sta-

tion. Adding these constraints can greatly improve the performance of the constraint propagation,

but the optimal solution may be eliminated. Note that it may not always be possible to impose

the alternative resource constraints, for example due to limited vehicle capacity. In such cases,

the model can trivially be extended to allow multiple visits by increasing the right-hand side. We

can index the activities and variables y−i,v, y
+
i,v correspondingly. However, our preliminary exper-

imentation showed strongly decreasing computational performance if we allowed multiple visits

per location. Therefore, we imposed the alternative resource constraints in our experiments. Con-

straints (24)-(27) link the vehicle presence constraints with performing a pickup or delivery. Note

that the if and only if constraints enhance propagation.
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For each vehicle we introduce two types of resources. The first represent the no-overlap conditions

with respect to the vehicle time, using a Sequential resource named VehicleTime[v]. For each

such resource, we identify the discrete time horizon as its Schedule domain, while the keyword

Activities specifies which activities impact the resource. The arc-dependent transition times

model the travel distances via Transition.

The second resource associated with a vehicle is its inventory, modeled as a Parallel resource

named VehicleInventory[v]. In addition to specifying the set of activities in its scope, we define

its Level range to be {0, . . . ,Qv}, which is initialized at q0
v. Furthermore, we specify for each

activity in its scope how it impacts the level. For Delivery[i,v], the level is changed at the start

of the activity, with amount −y+
i,v. Likewise, for Pickup[i,v], the level is changed at the end of

the activity with amount y−i,v.

Lastly, for each station we define a Parallel resource representing the station inventory, named

StationInventory[i]. The range of this inventory is {0, . . . ,Ci} with initial value s0
i . Level changes

for pickups and deliveries are exactly opposite to the vehicle inventory changes.

7. Computational Results

In this section we report on the performance of our routing costs approximation and heuristics.

Recall that we give a detailed overview of our data sources in Appendix B.

7.1. Approximation performance

In Section 5.2 we proved the monotonicity and upper bound MAXSPS(Sv) ≥ TSP∗0(Sv) of the

Maximum Spanning Star to motivate our intuition that MAXSPS(Sv) approximates H∗(Sv,{v})≥
TSP∗0(Sv). Figure 4 visualizes this relationship with a scatterplot, in which the line H∗(Sv,{v}) =

MAXSPS(Sv) is shown for reference.

While we established that H∗(Sv,{v})≥TSP∗0(Sv), we note that the additional feasibility con-

straints on the vehicle route imposed in (P1) do not lead to routing costs higher than the MAXSPS

approximation for any instance. Rather, the Maximum Spanning Star consistently overestimates

the routing costs, which is reflected in the high correlation of 87.99%. A linear regression on

H∗(Sv,{v}) with an imposed zero intercept estimates a .4238 coefficient for MAXSPS(Sv) yielding

R2 = 94.28%. Nonetheless, a small approximation error is present. Next, we show how the improve-

ment scheme with elimination cuts overcomes this limitation of the Clustered MIP heuristic.

7.2. Heuristics performance

We report computational results comparing the exact MIP (P1), Clustered MIP (Heuristic 1),

Clustered MIP with Cuts (Heuristic 2), and CP (P3) approaches to the Bike Sharing Rebalancing
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Figure 4 Computational results for the Maximum Spanning Star routing costs approximation.
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Note. Routing costs H∗(S,{v}) are plotted against the approximation MAXSPS(Sv) for all 82 two-vehicle instances

of Hubway (Boston, MA). Each data point corresponds to a cluster. The correlation equals 87.99%.

Problem. We consider multiple families of instances based on real trip and inventory data provided

by Hubway (Boston, MA) and Capital Bikeshare (Washington, DC).

All experiments were performed on an Intel Xeon X3323 @ 2.50GHz with 4GB of memory, using

AIMMS 3.13 FR1 modeling software with MIP solver GUROBI 5.0 (which outperformed CPLEX

12.4 on test instances) and CP solver IBM ILOG CP Optimizer 12.4.

Parameters. A family of instances is defined by a market (Hubway or Capital Bikeshare),

observation period (8–9AM or 4–5PM), service level (consistently 95%) and number of vehicles.

We observe that the morning and afternoon commute are the most challenging rebalancing prob-

lems. Furthermore, different service levels (90%, 99%) did not substantially impact our findings.

Subsequently, for each family we generate multiple instances by using different inventory snapshots

containing the starting inventory s0
i for each station i ∈ S at the beginning of the observation

period.

We calculate Euclidian distances di,j = dj,i in meters based on the latitude and longitude of

stations. We assume qv = 0 to refrain from random data generation. For MIP we set |T |= |S \ S0|
(this ensures feasibility for our instances) and for the Clustered MIP heuristics we set |T |= |Sv|+1

(this allows a revisit).

Hubway (Boston, MA). We restrict to |S|= 60 stations to obtain sufficient trip observations

to calibrate the service level requirements on 82 weekdays between November 1st 2011 and May

31st 2012. We use 41 inventory snapshots on weekdays between June 1st and July 29th 2012.

Hubway currently operates |V|= 3 vehicles with capacity Qv = 22 since opening an additional 40

stations in Summer 2012. However, during our observations Hubway only operated two vehicles.

We investigate both truck fleet sizes to reveal the possible implications for performance.
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Table 1 Computational results for Hubway (Boston, MA).

MIP Clustered MIP Clustered MIP with Cuts CP

Family |V| LP bound Best found Time Solution Time Solution Iterations Time Solution Time

8–9AM 2 3228.18 4625 5220.51 4495 0.66 4229 82 60.05 4310 58.56
8–9AM 3 1660.29 3758 6139.66 3097 0.55 2669 57 60.09 2727 60.08
4–5PM 2 3347.55 4674 5787.08 4656 0.88 4429 76 60.03 4393 55.69
4–5PM 3 1674.90 3399 6558.48 3285 0.53 2699 51 60.14 2673 60.07

These results are averaged over the 41 instances of each instance family. The mean number of insufficient stations was equal to |S \ S0|= 10.
The MIP solver was unable to find a solution of the full model for three instances. These are excluded from this summary and shown in Appendix C.

Figure 5 Computational results for Hubway (Boston, MA).
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Note. Instances are sorted with decreasing MIP LP bound to MIP best found solution ratio, to approximate com-

plexity. Here, the MIP best found solution is shown as 100%. If the LP bound equals the best found solution (100%),

then the solver was able to solve the exact MIP to optimality.

After extensive experiments we set the computational cut-offs (if unsolved): MIP after 7200

seconds; Clustered MIP after 20 seconds for both (P2) and (P1); Clustered MIP with Cuts after

60 seconds in total with 20 seconds for (P2) and (P1); CP after 60 seconds. For CP we set the

schedule domain with MaxTime= 50000, which proved necessary to quickly identify a feasible (but

low-quality) solution.

Table 1 summarizes our computational results for Hubway. We show the average solutions and

computation times per instance family for the exact MIP and our heuristics. For our improvement

scheme (Clustered MIP with Cuts), we show the number of iterations.

We observe that in 1 minute, our Clustered MIP with Cuts and CP heuristic outperform the best

found solution of the MIP after 2 hours with 5–10% on average for the two-vehicle families. For

the three-vehicle families, the improvement is 15–25%. Note that our Clustered MIP heuristic can,

on average, even generate better solutions than the MIP model within 1 second. This allows more
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Table 2 Computational results for Capital (Washington, DC).

Clustered MIP Clustered MIP with Cuts CP

Family |V| |S \ S0| Solution Time Solution Iterations Time Solution Time

8–9AM 5 25 7573 32.61 6594 3 120.20 12123 120.39
4–5PM 5 11 2970 11.64 2548 13 120.18 2736 120.36

The |S \ S0| column shows the mean number of insufficient stations per instance family.

than 60 iterations of the Clustered MIP with Cuts heuristic in 1 minute, yielding an improvement

of approximately 10% over the Clustered MIP heuristic.

In Figure 5 we present a more detailed comparison of our dedicated Clustered MIP with Cuts

heuristic with the CP heuristic for the Hubway instance families. We show how they perform in

comparison to the best found MIP solution after two hours (depicted as 100%). We note that the

performance of the full MIP model decreases strongly for the three vehicle families, with our 1

minute heuristic solutions up to 75% better than the best found solutions after two hours.

CP performs very well for the Hubway instances. We believe that due to the low number of

insufficient stations, on average 10 out of 60, CP is able to quickly identify a feasible solution

which is subsequently improved. We observe that the Routing Problem (P1), when applied to the

individual clusters, becomes intractable when there are more than 15 stations in a cluster. For

instances on which CP outperformed the Clustered MIP heuristics, indeed one vehicle was assigned

more than 15 stations. In these situations, we suggest a hybrid cluster-first, CP-second approach

would leverage both strengths, because CP performed well on single-vehicle test instances.

Capital Bikeshare (Washington, DC). We restrict to |S|= 135 stations to obtain 130 trip

observations on weekdays between January 1st and June 30th 2012. We use 27 8AM and 25 4PM

inventory snapshots of weekdays obtained between December 17th 2012 and January 25th 2013.

Capital Bikeshare currently operates |V|= 5 vehicles with Qv = 25.

We increase the computational cut-offs of Clustered MIP with Cuts and CP to 120 seconds to

accommodate the increased complexity. For CP we increase MaxTime to 75000. Other cut-offs are

identical to those used for Hubway.

With 135 stations and 5 vehicles, the Capital Bikeshare instances were too complex to derive

feasible solutions or even useful LP bounds from the full MIP (P1) within a reasonable amount of

time. Therefore, we report only on the performance of our heuristics.

Table 2 summarizes our computational results for Capital. The 8–9AM instances are more com-

plex than the 4–5PM instances, with on average 25 insufficient stations per instance instead of

11 (see column |S \ S0|. The Clustered MIP with Cuts heuristic is 45% better than CP for the

8–9AM family of instances. This highlights exactly where we believe our cluster-first route-second
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Figure 6 Computational results for Capital Bikeshare (Washington, DC).
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Note. Instances are sorted with increasing CP solution to Clustered MIP solution ratio, to approximate complexity.

The Clustered MIP solution is shown as 100%.

heuristic excels. The polynomial-size Clustering Problem (P2) allows rapid decomposition of the

multi-vehicle problem into reasonably good single-vehicle clusters. Then, the Routing Problem

(P1) can be solved to optimality for individual clusters in under a second. The improvement cuts

mitigate both the approximation error and (possibly) sub-optimality incurred from cutting off the

Clustering Problem before the solver is finished.

In Figure 6 we present a comparison of the heuristics, with the Clustered MIP heuristic shown

as 100%. For some instances, even the simple Clustered MIP heuristic is up to 65% better than

CP. Figure 6 also shows clearly how adding cuts in the Clustered MIP with Cuts heuristic can

yield improvements of up to 40% over the simple Clustered MIP heuristic.

The results for Capital Bikeshare show that our dedicated Clustered MIP (with Cuts) heuristic

performs better than CP, especially for instances with a large vehicle fleet and a low number of

stations per vehicle. This implies the polynomial-size Clustering Problem can handle large sets

of insufficient stations, given that enough vehicles are available to divide the workload. When an

instance is more similar to a scheduling problem (i.e., a lower number of vehicles and longer routes,

like for some Hubway instances), the techniques embedded in CP show their strength.

8. Conclusions

This paper is the first to unify dual-bounded service level constraints, which add inventory flexi-

bility, and vehicle routing in bike sharing systems. We represent the inventory at each station as

a finite-buffer single-server queuing system and use closed-form analysis of the transient proba-

bilities to calculate service level requirements. We introduce the notion of self-sufficient stations,

which fulfill these requirements with their starting inventory. Hence, self-sufficient stations do not

necessarily need to be visited by a vehicle, but may act as source or sink nodes.
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We present a mixed integer programming based Clustering Problem that decomposes the multi-

vehicle rebalancing problem into separate single-vehicle problems, while taking into account ser-

vice level feasibility constraints (a cluster-first route-second approach). We introduce a novel

polynomial-size Maximum Spanning Star routing costs approximation for the Clustering Prob-

lem to achieve high computational performance. We develop an improvement scheme based on

elimination cuts to mitigate the approximation error. Furthermore, we provide the first constraint

programming formulation of the bike sharing rebalancing problem.

Using empirical data from two bike sharing systems, we extensively test the Clustered MIP

heuristics against the classical full MIP model and the constraint programming approach. Our

Clustered MIP with Cuts heuristic outperforms the constraint programming formulation as the

number of vehicles (and correspondingly, the number of stations) grows. Constraint programming

performs well when the number of vehicles is low and the number of stations per vehicle is high.

Both the Clustered MIP and constraint programming approaches identify better solutions within

one or two minutes, than the often-used full MIP after two hours. We thus believe that our approach

is suitable for practical implementation in bike sharing systems.

The novel heuristics and our approximation may be applicable to other constrained routing

problems, specifically to (extended) One-Commodity Pickup-and-Delivery VRPs like the empty

freight container rebalancing problem, as well as to other sharing systems.

Appendix A: Net demand process

Figure 7 motivates why we adapt a process view to net demand for bikes, instead of observing total

net demand.

Appendix B: Data sources

In order to produce the examples and computational results, we processed two data sets

from Hubway (Boston, MA) and Capital Bikeshare (Washington, DC), which have identical

formatting. These data sets were made available through their websites thehubway.com and

capitalbikeshare.com. Each data set consists of three tables: Stations, Trips and Snapshots.

The Stations table contains the following fields for each station: id, name, lat, lng, installed,

locked and temporary. We use the id field to create the relationship with the Trips and Inventory

tables. We use the lat and lng fields to calculate the Euclidean distance matrix d in meters with

the spDists function of the sp package in R.

The Trips table contains the following fields for each trip: id, start date, end date,

start station, end station, bike name, bike and member type. We calculate the number of

pickups at a station during the observation period using start date and start station, and the

number of returns using end date and end station, to synchronize these events. As mentioned
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Figure 7 Net demand during observation period 8–9AM for two popular stations of Hubway (Boston, MA).

South Station - 700 Atlantic Ave. TD Garden - Legends Way

Maximum

Minimum

Net demand

-20 0 20 40 -20 0 20 40
Observation

Note. We show both the total net demand at the end of the observation period [0, T ] and the minimum and maximum

value of the net demand process. For the TD Garden station, we observe that the total net demand and the process

extremes are almost identical, in accordance with previous studies (Nair et al. 2013). However, for South Station, the

negative total net demand might suggest that we do not need bikes (i.e. positive net demand). Yet, the maximum

implies that at some moment during most observation periods, the net demand is positive, which requires a positive

starting inventory.

in Section 7.2, we select a subset of the stations for calculating the service level requirements, to

ensure that sufficient trip observations are available.

The Snapshots table contains the following fields for each station/date combination: id, bikes,

docks and date. We calculate capacity= bikes+ docks for each snapshot, since reparations or

extensions may lead to changes in the station capacity over time. We set Ci equal to the maximum

capacity of station i∈ S to prevent infeasibilities. We web scraped the Snapshots table for Capital

Bikeshare from http://capitalbikeshare.com/data/stations/bikeStations.xml.

Appendix C: Instances without MIP solution

Table 3 shows the three Hubway instances for which the solver was unable to identify a feasible

solution of the full MIP within two hours.

Table 3 Hubway (Boston, MA) instances without a MIP solution.

MIP Clustered MIP Clustered MIP with Cuts CP

Family |V| |S \ S0| LP bound Time Solution Time Solution Iterations Time Solution Time

8–9AM 2 17 4599.00 7201.91 9251 20.62 8553 5 60.47 8413 60.06
4–5PM 3 14 1778.00 7202.25 3873 0.94 3873 41 60.00 3873 60.08
4–5PM 2 17 3632.00 7201.71 5937 5.54 4980 4 60.00 5862 60.05

The |S \ S0| column shows the number of insufficient stations of the instance.
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Systems: Analysis of Vélib’. International Journal of Sustainable Transportation 7(1) 85–106. doi:

10.1080/15568318.2012.660115.

Prem Kumar, V., Michel Bierlaire. 2012. Optimizing Locations for a Vehicle Sharing System. Swiss Transport

Research Conference. 1–30.

Raviv, Tal, Michal Tzur, Iris A. Forma. 2011a. Static Repositioning in a Bike-Sharing System: Models and

Solution Approaches. ODYSSEUS IV, Izmir .

Roelofs, Marcel, Johannes Bisschop. 2012. AIMMS 3.13 – The Language Reference. Paragon Decision

Technology.

Shaheen, Susan A., Stacey Guzman, Hua Zhang. 2010. Bikesharing in Europe, the Americas, and Asia: Past,

Present, and Future. Tech. rep., Institute of Transportation Studies (UCD), UC Davis, Davis.

Shaw, Paul. 1998. Using constraint programming and local search methods to solve vehicle routing problems.

M. Maher, J.-F. Puget, eds., Proceedings of the Fourth International Conference on Principles and

Practice of Constraint Programming . Springer-Verlag, 417–431.

Shu, Jia, Mabel Chou, Q Liu. 2010. Bicycle-sharing system: deployment, utilization and the value of re-

distribution. Technical report.

Vogel, Patrick, Torsten Greiser, Dirk C. Mattfeld. 2011. Understanding Bike-Sharing Systems using Data

Mining: Exploring Activity Patterns. Procedia - Social and Behavioral Sciences 20 514–523. doi:

10.1016/j.sbspro.2011.08.058.

Vogel, Patrick, Dirk C. Mattfeld. 2010. Modeling of repositioning activities in bike-sharing systems. World

Conference on Transport Research 1–13.

Waserhole, Ariel, Vincent Jost. 2012. Vehicle Sharing System Pricing Regulation: Transit Optimization of

Intractable Queuing Network. Working paper.

Wu, Bang Ye, Giuseppe Lancia, Vineet Bafna, Kun-Mao Chao, R. Ravi, Chuan Yi Tang. 1998. A polyno-

mial time approximation scheme for minimum routing cost spanning trees. Proceedings of the ninth

annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA, USA, 21–32.


