
Hybrid Optimization Methods for Time-Dependent
Sequencing Problems

Joris Kinablea,b,∗, Andre A. Cirec, Willem-Jan van Hoevea

aTepper School of Business, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA
bRobotics Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA

cDepartment of Management, University of Toronto Scarborough
1265 Military Trail, Toronto, ON M1C 1A4, Canada

Abstract

In this paper we introduce novel optimization methods for sequencing prob-

lems in which the setup times between a pair of tasks depend on the relative

position of the tasks in the ordering. Our proposed methods rely on a hybrid

approach where a constraint programming model is enhanced with two distinct

relaxations: One discrete relaxation based on multivalued decision diagrams,

and one continuous relaxation based on linear programming. Both relaxations

are used to generate bounds and enhance constraint propagation. Experiments

conducted on three variants of the time-dependent traveling salesman problem

indicate that our techniques substantially outperform general-purpose methods,

such as mixed-integer linear programming and constraint programming models.

Keywords: Constraint Programming, Sequencing, Decision Diagrams,

Additive Bounding

1. Introduction

A large number of practical problems in manufacturing, transportation, and

distribution require the sequencing of activities over time. The activities may

represent jobs to be sequentially processed in an assembly line of a factory,

parcel orders of packages to be shipped to customers, or matches in a sports

∗Corresponding author; This research was partially carried out when the first author was
affiliated with KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC - Bel-
gium.

Email addresses: jkinable@cs.cmu.edu (Joris Kinable), acire@utsc.utoronto.ca
(Andre A. Cire), vanhoeve@andrew.cmu.edu (Willem-Jan van Hoeve)

Preprint; European Journal of Operational Research November 18, 2016



league, to name a few. Sequencing problems have been prominently studied

in operational research, in particular in the context of scheduling and routing

(Pinedo, 2008; Cook, 2012).

Often activities in a sequencing problem are subject to operational con-

straints and optimization criteria involving setup times, i.e., the minimum time

that must elapse between two consecutive activities in a sequence. A setup time

typically models the time to change jobs in an assembly line or the travel times

between cities in traveling salesman problems (TSPs). In classical sequencing

problems (Garey and Johnson, 1979; French, 1982; Pinedo, 2008), the setup

time is only defined between pairs of activities. However, in many practical

applications the setup time is also a function of the order of the activities in the

sequence. Such position-dependent setup times are useful in modeling different

states of a resource throughout a schedule, such as when aging and learning

effects are considered (Rudek, 2012). Aging effect takes place when the internal

components of a machine degrades after performing a number of tasks, or due

to fatigue of human resources throughout a day; see, e.g., Jeng and Lin (2004);

Yin et al. (2012); Huang and Wang (2015). Learning effect occurs when an

employee becomes more proficient in her tasks, or in highly automated manu-

facturing system when iterative control systems compensate for motion errors

after each job is completed (Arimoto et al., 1984; Biskup, 1999; Wu et al., 2007;

Yin et al., 2009).

Another well-known example of application is the traveling deliveryman prob-

lem (TDP), associated with several practical applications in operations research

(Blum et al., 1994; Simchi-Levi and Berman, 1991). Given a set of geograph-

ically dispersed customers and a central depot, the TDP asks for a tour that

starts at the depot and minimizes the total sum of times to arrive at each

customer. The TDP can be cast as a position-dependent scheduling problem

through a suitable transformation (Lucena, 1990), and spans a variety of exact

approaches in the literature; see, e.g., Fischetti et al. (1993); van Eijl (1995);

Méndez-Dı́az et al. (2008).

Introducing position-dependent setup times typically makes the problem

much more difficult to solve when compared to the position-independent coun-

terpart. While Applegate et al. (2006a) reports solving the classical TSP with

up to 100,000 nodes, only recent attempts were successful in solving 100-node

instances for the TSP variant with position-dependent travel times (Abeledo

et al., 2013). In addition, literature that considers typical real-world side con-

straints, such as precedence relations or time windows, is noticeably limited. In

2



this case, the majority of recent publications focus on dedicated solution tech-

niques or heuristics. We refer to the recent survey by Gendreau et al. (2015) for

more details.

In this paper we investigate efficient generic approaches to solve position-

dependent sequencing problems which can easily incorporate additional side

constraints, such as precedence constraints and time windows. Our techniques

are based on exact hybrid methods that combine linear programming (LP),

constraint programming (CP), and multivalued decision diagrams (MDDs), each

having complementary strengths that can be exploited in novel solution methods

for this class of problems.

Specifically, our proposed models are primarily solved within a CP frame-

work, which is well-suited for a variety of complex scheduling problems due

to its language expressiveness and specialized inference and search mechanisms

(Baptiste et al., 2006). However, classical CP approaches are typically ineffec-

tive when solving sequencing problems with setup times, in particular due to

the fact that the problem constraints are entirely decoupled from the objective

function, leading to ineffective bounds (Andersen et al., 2007). To counteract

these issues, we propose to enhance CP solution techniques with both a discrete

and a continuous relaxation, described as follows.

The discrete relaxation is obtained by using MDDs, a graphical structure

derived from a dynamic programming formulation of the problem and which

have recently been proven highly effective for scheduling (Cire and van Hoeve,

2013). MDDs provide a compact encoding of the solution space through which

both lower and upper bounds on the optimum solution value can be computed.

Specifically, MDDs enable computing bounds at each node of the CP search

tree, thereby providing a means to effectively prune and guide the search.

The continuous relaxation of the problem is motivated by the extensive lit-

erature on mixed-integer linear programming (MILP) formulations for sequenc-

ing problems (Queyranne et al., 1994; van den Akker et al., 1999; Keha et al.,

2009). Each formulation yields a continuous relaxation, i.e., the LP relaxation

obtained by relaxing the integrality constraints. The LP provides bounds as

well as dual information that can be exploited in a number of ways in opti-

mization techniques. Fischetti and Toth (1989) proposed an additive bounding

procedure which combines different LP relaxations to obtain a new valid opti-

mization bound for the problem at hand, generally stronger than the strongest

bound obtainable from the individual relaxations. In this work we demonstrate

how additive bounding can be used to incorporate dual information from LP

3



relaxations into the MDDs, which can substantially strengthen the MDD.

In order to demonstrate the effectiveness of our hybrid method and to sim-

plify exposition, we focus on three variants of the time-dependent traveling sales-

man problem (TD-TSP), the generalization of the TSP in which the travel time

between two cities depend on the order in which cities are visited. Several so-

lution approaches for the TD-TSP problem have been proposed, including a

number of techniques based on MILP (Picard and Queyranne, 1978; Gouveia

and Voss, 1995; Miranda-Bront et al., 2010; Abeledo et al., 2013). Moreover,

to exemplify the generality of our method, we also study the TD-TSP with

time windows (TD-TSPTW) and the time-dependent sequential ordering prob-

lem (TD-SOP). The TD-SOP is identical to the TD-TSP, except for the fact

that this problem also embodies precedence relations between tasks. We show

that our proposed approaches are consistently superior to other generic tech-

niques for both problems.

We note in passing that other related problems are also denoted by time-

dependent TSP in the literature. For instance, Cordeau et al. (2012) investigate

TSP problems with time-dependent travel speeds, while travel times in Albiach

et al. (2008) and Malandraki and Daskin (1992) are defined as a function of

the instant the tour leaves each city. In this paper we focus on the position-

dependent version.

Contributions. Our two main contributions are as follows.

1. As our major result, we advance the state of the art in general-purpose

position-dependent scheduling by proposing new solution methods to tackle

such a class of problems. One of the key benefits of our method is that it

can naturally incorporate a number of practical side constraints, such as

time windows and precedence constraints.

2. We propose a novel way on how discrete and continuous relaxations can be

integrated to speed up solution techniques, in particular using MDDs and

LP relaxations. This technique also reveals a number of opportunities to

integrate other well-studied relaxations for sequencing problems, such as

the Held-Karp relaxation (Held and Karp, 1970), assignment relaxations,

and Lagrangian relaxations.

A number of state-of-the-art solution approaches for each of the individ-

ual problems studied in this paper have appeared previously in the literature.

Abeledo et al. (2013) developed a highly efficient column generation approach

4



for TD-TSP, strengthened with valid inequalities. Similarly, Baldacci et al.

(2012) proposed a sophisticated method to solve the TSP-TW, a special case

of the TDTSP-TW, through a dynamic programming approach with various

state space relaxations. Gouveia and Ruthmair (2015) and Cire and van Hoeve

(2013) recently closed a number of long-standing SOP instances. Gouveia and

Ruthmair (2015) relies on a cutting plane algorithm embedded in a branch-

and-bound framework, whereas Cire and van Hoeve (2013) use MDDs. Because

exact methods for time-dependent versions of TSP-TW and SOP have not been

studied before, we compare our approach with other generic solution methods,

based on MIP and CP technology. As we will see in Section 6, our approach

substantially outperforms CP and MIP models, often by orders of magnitude im-

proved solving time, although on pure TD-TSP instances the specific approach

of Abeledo et al. (2013) generally outperforms our method.

In the remainder of this paper, Section 2 gives a formal description of the

TD-TSP and of the TD-SOP. Next, CP models for both problems are provided

in Section 3. Section 4 introduces MDDs and discusses how they are integrated

in a CP model for the TD-TSP. Then, Section 5 focuses on additive bound-

ing, and shows how to consolidate the bounds into an MDD. Computational

experiments conducted on the TD-TSP and TD-SOP are reported in Section 6,

where generic MILP and CP approaches are compared to our hybrid approach.

Finally, Section 7 concludes the paper.

2. The TD-TSP(TW) and TD-SOP Problem

The TD-TSP is a version of the TSP where travel times also depend on the

order in which each city is being visited. In this paper we treat the TD-TSP as

a scheduling problem. Let J = {1}∪{2, . . . , n− 1}∪{n} be a set of n jobs that

need to be sequenced on a single non-preemptive machine, where jobs 1 and n

must be the first and last job in the sequence, respectively. With each pair of

jobs i, j ∈ J and parameter t ∈ {1, . . . , n} we associate a setup time δti,j ∈ R.

The goal of the TD-TSP is to find a sequence of jobs (π1, . . . , πn) where π1 = 1,

πn = n, πt ∈ J for all t = 1, . . . , n, πt 6= πq for all t, q = 1, . . . , n, t 6= q, and

such that the total sum of setup times,

n−1∑
t=1

δtπt,πt+1
,

5



is minimized. We do not assume that δt is symmetric, i.e., we may have δti,j 6=
δtj,i for some t and pair of jobs i, j ∈ J .

The TD-TSPTW is an extension of the TD-TSP in which with each job j a

time window [aj , bj ] is associated during which the job must be executed.

Finally, the TD-SOP is a generalization of the TD-TSP in which a set P of

precedence relations between pairs of jobs must be observed. In particular, the

relation i ≺ j ∈ P denotes that job i must precede job j in any sequence, i.e.,

if πt = i and πq = j in a feasible sequence (π1, . . . , πn), then t < q.

3. Constraint Programming Models

The basis of our approach consists of formulating the problem as a CP model.

Constraint programming offers a flexible modeling language in which problem

structure is captured through special constructs denoted by global constraints.

A global constraint may indicate to solvers how to perform inference, decom-

pose the problem, or guide the search based on the substructure they represent

(Régin, 2011).

To formulate the TD-TSP as a CP model, we introduce variable πt repre-

senting the job performed at position t in the sequence, for t = 1, . . . , n. The

CP model is stated as follows.

minimize

n−1∑
t=1

δtπt,πt+1

s.t. alldifferent(π1, . . . , πn), (CP)

π1 = 1, πn = n,

πt ∈ {2, . . . , n− 1}, t = 2, . . . , n− 1.

The alldifferent global constraint imposes that variables π1, . . . , πn are pair-

wise distinct and ensures that each job is performed exactly once. Note that in

the objective function the term δtπt,πt+1
uses variables as subscripts. These are

efficiently handled by element constraints in CP (Hooker, 2012).

We can augment this model to the TD-TSPTW by introducing variables

ui representing the completion time of the job performed at position i of the

sequence. The following channeling constraints are added to link the ui and the

6



πt variables, and to enforce the time windows [aj , bj ] for each job j:

u1 = a1

ut = max{aπt , ut−1 + δt−1
πt−1πt

} t = 2, . . . , n− 1, (TD-TSPTW)

aπt ≤ ut ≤ bπt ∀t = 1, . . . , n

Finally, we can extend the TD-TSP model to the TD-SOP by introducing

variables li represent the position of job i in the sequence, for i = 1, . . . , n. The

following channeling constraints are added to link the li and πt variables, and

to impose the precedence constraints:

lπt = t, t = 1, . . . , n,

li ≤ lj − 1, ∀ i ≺ j ∈ P, (CP-SOP)

li ∈ {1, . . . , n} i = 1, . . . , n.

A CP model is typically solved by a backtracking search coupled with individual

constraint processing. Namely, at every CP search node the constraints are

processed one at a time, each eliminating values from the variable domains that

lead to infeasible or suboptimal solutions. This is denoted by filtering. Once

constraint processing is done, CP solution techniques branch on variables by

partitioning their domains. We refer to the book by Hooker (2012) for more

details on the CP search and inference mechanism.

3.1. Practical Difficulties

Despite the fact that the formulations above offer a valid formulation for the

TD-TSP(TW) and TD-SOP, traditional CP solution techniques are ineffective

for reasonably-sized problem instances. This can be attributed to the following

three causes:

1. Each constraint in CP is comparable to a black box, implementing its

own filtering mechanism. Communication between constraints is solely

achieved through the variable domains, which can lead to a significant

loss of structural information. Examples of this are presented by Andersen

et al. (2007).

2. The alldifferent constraint only ensures that each job is scheduled ex-

actly once, but does not take the objective function into consideration.

This limits the effectiveness of the domain filtering in identifying subop-

timal solutions.

7



3. CP solvers typically do not employ any type of problem relaxation and,

thus, have little to no means to derive strong bounds on the optimum so-

lution, prohibiting effective pruning of the CP search tree for optimization

problems.

The following sections describe two types of relaxations that can be incorpo-

rated into a CP solution technique to address the causes above. Each relaxation

provides a distinct and complementary global perspective of the problem, yield-

ing novel optimization bounds and filtering mechanisms.

4. Discrete Relaxation based on MDDs

An MDD for a sequencing problem is a graphical structure that encodes a set

of job sequences for a problem instance (Cire and van Hoeve, 2013). Specifically,

an MDD is a directed acyclic layered graph in which the nodes are partitioned

into n + 1 layers L1, . . . , Ln+1. Layers L1 and Ln+1 are singletons containing

the root node r and terminal node t, respectively. There is a one-to-one corre-

spondence between each layer Lt, t = 1, . . . , n, and the t-th job to be performed

on the machine (i.e., layer Lt corresponds with variable πt in the CP model

of Section 3). With each arc a in the graph we associate a label val(a) ∈ J .

An arc a with label val(a), leaving a node in layer Lt, corresponds to assigning

job val(a) to the t-th position of the machine (i.e., πt = val(a)). Thus, an

arc-specified path (a1, . . . , an) from the nodes r to t defines the job sequence

(π1, π2, . . . , πn) = (val(a1), val(a2), . . . , val(an)). Examples of MDDs are given

in Figure 1 for a set of jobs J = {1, 2, 3, 4, 5} (ignore for now the numbers in

parenthesis). Note, e.g., that the path through nodes (r, u1, u4, u7, u8, t) yields

the sequence (1, 4, 3, 2, 5). The number of nodes in a layer, |Lt|, is denoted by

the width of the layer. The width of the MDD is the maximum width among

all layers. For example, in Figure 1a the MDD width is 3.

An MDD is exact if each path from r to t corresponds to a feasible sequence,

and all feasible sequences are encoded by some path in the graph. Figure 1a

depicts an exact MDD for a TD-TSP instance with 5 jobs. An MDD is relaxed

if all feasible sequences are represented by some path in the graph, but not all

paths in the graph necessarily encode feasible sequences. In particular, a relaxed

MDD for the TD-TSP may contain sequences in which a job is performed more

than once, and for the TD-SOP it may also contain sequences that violate the

precedence constraints. For example, Figure 1b depicts a relaxed 2-width MDD

8



r

u1

u2 u3 u4

u5 u6 u7

u8

t

1 (0)

2 (2) 3 (2) 4 (2)

3 (8)

4 (9)

2 (10)

4 (11)

2 (12)

3 (13)

4 (18) 3 (19) 2 (22)

5 (23)

π1

π2

π3

π4

π5

(a) 3-width MDD (exact).

r

v1

v2 v3

v4 v5

v6

t

1 (0)

2 (2) 3 (2)

4 (2)

3 (8) 4 (9)
2 (10)

3 (13) 4 (11)

3 (17)

4 (18)

2 (22)

5 (22)

(b) 2-width MDD (relaxed).

Figure 1: Examples of MDD for a sequencing problem with jobs
J = {1, 2, 3, 4, 5}. The label of an arc a is read as val(a) (s(a)), where

val(a) ∈ J is the job the arc assigns and s(a), the number in parenthesis, is
computed according to relation (1).

which contains a path through nodes (r, v1, v2, v4, v6, t) encoding the infeasible

sequence (1, 2, 3, 3, 5).

Exact and relaxed MDDs can be used to compute optimization bounds for

typical scheduling objective functions (Cire and van Hoeve, 2013). Such bounds

are obtained by evaluating recursive relations over the graphical structure of the

MDD. In particular, given an exact or relaxed MDD for a TD-TSP instance, a

lower bound on the sum of setup times is computed as follows. Let in(u) be the

set of incoming arcs at a node u and `(a) the layer index of the source node of arc

a; e.g., in Figure 1a we have in(u5) = {(u2, u5), (u3, u5)} and `((u5, u8)) = 4.

Recall that δti,j represents the setup time between jobs i and j when job i

occurs at position t in the sequence. We define the setup of an arc a, s(a), as

the minimum sum of setup times of all subsequences identified by paths ending

at a. For an arc a = (u, v), this can be written recursively as

s(a) =


0 if u = r,

min
a′∈in(u),val(a)6=val(a′)

{s(a′) + δ
`(a′)
val(a′),val(a)} otherwise.

(1)

The validity of the recursive relation (1) follows from Bellman’s principle of

optimality, since the setup time to start a job i depends only on the previous

job and its position in the sequence. It follows that a lower bound on the sum

9



of setup times is given by

min
a∈in(t)

s(a), (2)

which corresponds to the optimal solution value if the MDD is exact. The

sequence that evaluates to the objective value given by (2) can be recovered

by traversing the diagram from node t to r, following back the arcs that were

selected in the minimization term of relation (1).

As an illustration, consider the instance with jobs J = {1, . . . , 5} depicted

by the MDDs in Figure 1. Let the setup times be defined by δti,j = δ(i,j) + t,

where δi,j is given by the following table.

1 2 3 4 5

1 - 1 1 1 -
2 - - 4 5 1
3 - 6 - 7 1
4 - 8 9 - 1
5 - - - - -

The number in parenthesis next to an arc in Figures 1a and 1b represents

the value of s(a) according to relation (1). The optimal solution in Figure 1a

is given by the sequence of jobs (1, 2, 3, 4, 5) and has value 23, obtained by the

path that traverses nodes (r, u1, u2, u5, u8, t). In the relaxed MDD of Figure 1b,

the optimal sequence is given by (1, 3, 2, 3, 5) and provides a lower bound of 22,

obtained the path that traverses nodes (r, v1, v3, v4, v6, t).

4.1. Constructing Relaxed MDDs

For practical instances, an exact MDD is often too large to process efficiently

or to fit into memory. Instead we use relaxed MDDs of limited width W to effi-

ciently calculate bounds on the optimal solution value and to perform inference,

e.g. to deduce precedence relations between jobs. The quality of the relaxation

is controlled by parameter W : larger values allow us to obtain stronger bounds,

albeit at a higher computational cost.

A relaxed MDD for a sequencing problem is compiled through an iterative

procedure denoted by incremental refinement (Andersen et al., 2007; Cire and

van Hoeve, 2013). Given a maximum width W ≥ 1, the procedure starts with a

trivial 1-width relaxed MDD that is valid for any sequencing problem, depicted

in Figure 2a. Except for the first and last job in the sequence, the 1-width MDD

encodes all possible sequences of jobs with repetitions. The compilation proce-

dure then performs two operations at each iteration, refinement and filtering :

10



• Refinement makes the diagram representation coarser by heuristically se-

lecting and splitting a node. The split of a node consists of partitioning

the incoming arcs of a node into two sets, redirecting the arcs of one of the

sets into a new node added to the same layer, and replicating the outgoing

arcs of the split node into the new node.

For example, Figure 2b depicts the split of node u2 from the MDD in

Figure 2a. The incoming arcs of node u2 are partitioned into two sets, one

having label {2} and the other with {3, 4}. The arcs with labels {3, 4} are

redirect to u′2, and the outgoing arcs from u2 are replicated in u′2. Note

that the set of solutions does not change after a node splitting.

• Filtering strengthens the relaxation represented by the MDD by remov-

ing infeasible arcs. An arc is infeasible if all paths traversing the arcs

identify infeasible sequences (or suboptimal solutions, if an upper bound

to the problem is known). Removing an arc can potentially eliminate an

exponential number of infeasible sequences from the MDD.

For example, in Figure 2b the shaded arc from node u2 to u3 is infeasible,

since the paths traversing that arc identify sequences for which job 2 is

performed at least twice. The same arc is not infeasible in Figure 2a.

Refinement and filtering are performed iteratively until no more nodes can

be split (otherwise the maximum width W would be violated) and filtering is

unable to remove any arcs. In general sequencing problems, identifying sufficient

conditions for the infeasibility of arcs is NP-Hard, hence we restrict our attention

to necessary infeasibility tests. Moreover, node splitting operation is mainly

heuristic, as often there are more candidate nodes to refine than the width of

the MDD permits.

In this work, we use the same refinement and filtering operations proposed

by Andersen et al. (2007) and specialized for sequencing problems in Cire and

van Hoeve (2013). The intuition is to perceive the diagram as a state-transition

graph for a valid dynamic programming formulation of the problem, and elimi-

nate arcs that correspond to infeasible state transitions. Moreover, we can also

split nodes that implicitly represent two or more states merged together. For-

mally, this is done as follows. With each node u of the MDD we associate two

states, All(u) and Some(u), representing the jobs that appear in all paths from

r to u and those that appear in at least one path from r to u, respectively. For

example, in Figure 2b we have Some(u′2) = {1, 3, 4} and All(u′2) = {1}. Intu-

11



r

u1

u2

u3

u4

t

1

2 3 4

2 3 4

2 3 4

5

π1

π2

π3

π4

π5

(a) 1-width MDD.

r

u1

u2 u′2

u3

u4

t

1

3
2

4

2
3

4 2
3

4

2 3 4

5

(b) After refinement.

Figure 2: Example of refinement and filtering. The shaded arc in Figure 2b
represents an infeasible arc identified by filtering, and can be removed from

the graph.

itively, each state indicates jobs that were necessarily performed or that may

have been performed in the subsequences so far.

A number of filtering tests based on the states above are described in the

work by Andersen et al. (2007). For instance, in Figure 2b the arc with label

2 from u2 to u3 can be removed because 2 ∈ All(u2) (i.e., the job has already

been performed in all subsequences up to u2). For refinement, Cire and van

Hoeve (2013) show that, in any exact MDD for a sequencing problem, we have

Some(u) = All(u) for all nodes u. A refinement heuristic then tries to satisfy

this condition by splitting the first node where this condition is violated.

We refer to the work of Cire and van Hoeve (2013) for a complete description

of the filtering tests and the refinement heuristics, as well as filtering tests for

precedence constraints and time windows.

4.2. CP model with MDD

To incorporate an MDD relaxation into a CP solver, we add a new global

constraint to the models described in Section 3, namely

MDDConstraint(π1, . . . , πn,W, δ, P, T ).

The constraint takes as input the variables π1, . . . , πn, the maximum allowed

width W of the MDD, the position-dependent setup times δ, the set of prece-

dence relations P , the time windows T . We note that, although the constraint

12



above suffices to enforce that the variables π are pairwise distinct, it is compu-

tationally advantageous for the CP solver to have the alldifferent constraint

redundantly in the model. This is due to the fact that classical CP filtering tech-

niques for the alldifferent enforce arc consistency (Régin, 1994) in low-order

polynomial time, and thus are capable of efficiently identifying and removing

all infeasible variable-value assignments with respect to this constraint.

The MDDConstraint is processed at every search node of the CP search

tree. First, the domains of the variables π1, . . . , πn are synchronized with the

MDD, thereby possibly removing arcs from the MDD. For example, if a job

j ∈ J is fixed to position t in the sequence, i.e., πt = j, then all arcs a with

label val(a) 6= j leaving nodes in layer Lt are removed. The MDD then goes

through the process of filtering and refinement described in Section 4.1. A lower

bound is then computed and provided to the solver, which will be used to prune

suboptimal branches.

In addition, if an upper bound z∗ is provided by the solver, then we re-

move all arcs in the MDD which are necessarily traversed by suboptimal paths.

According to relation (1), these are the arcs a such that s(a) > z∗.

5. Continuous Relaxation and Additive Bounding

For most optimization problems, several relaxations exist based on differ-

ent underlying (combinatorial) problem structures. For instance, common re-

laxations for the TSP are the Held and Karp (1970) bound, the assignment

problem relaxation, and strengthened LP relaxations (Applegate et al., 2006b).

To obtain a valid bound on the optimum solution, one could simply compute

a bound from each relaxation, and return the strongest resulting bound. The

disadvantage of such an approach is that the structural information of only one

relaxation is used. To resolve this issue Fischetti and Toth (1989) proposed

an additive bounding procedure which aggregates the information from different

relaxations to obtain a bound at least as strong as the tightest relaxation. We

show how this procedure can be used to incorporate information from an LP

relaxation into the structure of an MDD, though other relaxations may be used

as well. The resulting approach provides a number of merits:

• Integrating information from different problem relaxations into the struc-

ture of the MDD enables additional filtering conditions.

13



• The MDD provides an interface to incorporate structural information from

various problem relaxations into the CP model.

• MDDs provide a discrete relaxation of the solution space, while LPs pro-

duce a continuous relaxation. Projecting structural information from a

continuous relaxation onto a discrete structure potentially improves the

overall strength of the relaxation.

5.1. Additive bounding

The additive bounding procedure proposed by Fischetti and Toth (1989) of-

fers a means to compute valid optimization bounds for a problem by combining

multiple bounding procedures. Namely, let P := {min cx : x ∈ X} for some

cost vector c and X ⊆ Rn∗ . Suppose that, for an arbitrary cost vector c, r dis-

tinct lower bound procedures L1(c), L2(c), . . . , Lr(c) are available. Each Lk(c)

produces a lower bound µk on the optimal value of P as well as a residual cost

ck ≥ 0 satisfying µk + ckx ≤ cx for all x ∈ X.

The additive bounding procedure starts by calculating bound µ1 and residual

cost vector c1 through bounding procedure L1(c), where c is the original cost

vector in the problem instance. Next, Lk(ck−1) for k = 2, . . . , r can be solved

recursively, thereby obtaining bounds µ2, . . . , µr. Fischetti and Toth (1989)

prove that µ = µ1 + · · · + µr is a valid lower bound for problem P , which is

potentially stronger than each individual bound.

The use of additive bounding in the context of Constraint Programming is

not new. Lodi et al. (2006) use additive bounding to accelerate the proof of

optimality in a Discrepancy Based Search framework. Furthermore, Benchimol

et al. (2012) present a global weighted circuit constraint; the filtering mechanism

for the weighted circuit constraint relies on a number of problem relaxations,

which are combined through the aforementioned additive bounding procedure.

5.2. Strengthening MDD Relaxations

After solving the additive bounding procedure with k lower bounding proce-

dures, one obtains a bound µk and a final residual cost vector ck. Assume that

we have such a lower bound µ for TD-TSP and TD-SOP, and corresponding

residual costs ∆t
i,j for jobs i, j ∈ J , and positions t = 1, . . . , n. Recall that for

the residual cost vector, the following relation must hold: µk + ckx ≤ cx. In

case of TD-TSP/SOP, and for some path (π1, . . . , πn), this becomes:

µ+

n−1∑
t=1

∆t
πt,πt+1

≤
n−1∑
t=1

δtπt,πt+1
(3)

14



Similar to relation 1 in Section 4, we can calculate a lower bound on the sum

of residual costs incurred on a path ending with an arc a = (u, v) as

s(a) =


0 if u = r,

min
a′∈in(u),

val(a)6=val(a′)

{s(a′) + ∆
`(a′)
val(a′),val(a)} otherwise. (4)

A bound on the sum of residual costs on a path from r to t can be obtained

by evaluating mina∈in(t) s(a). Substituting this into equation (3) yields the fol-

lowing valid condition: µ+ mina∈in(t) s(a) ≤ z∗, where z∗ is the objective value

of any feasible solution to our problem. In other words, µ + mina∈in(t) s(a)

is a valid lower bound on our problem. Additionally, if, in the relaxed MDD,

there exists an arc a such that any path from r to t through arc a violates

the aforementioned condition, then this arc may be filtered from the MDD. To

implement this filtering rule, we use the same technique used to filter objective

function bounds presented by Cire and van Hoeve (2013). In this work, z∗ is

directly obtained from the CP solver; the residual costs are the reduced costs

corresponding with the variables in the Linear Programming relaxation pre-

sented in the next subsection. Note that only the reduced costs of the variables

which are not at their upper bound are used; for the remaining variables the

reduced cost is set equal to zero.

Finally, note that the additive bounding procedure can be executed as a pre-

processing step at the root node of the CP search tree, since the bounds are

independent of the MDD or the CP model. Consequently, the computational

overhead is very limited if the lower bound procedure is efficient.

5.3. LP Relaxation

We now present the LP relaxations for the three applications investigated in

this paper.

5.3.1. TDTSP

In this work we consider a single bounding procedure for the TD-TSP and

TD-SOP: the LP relaxation of the MILP model by Vander Wiel and Sahinidis

(1995) which is a linearization of the quadratic assignment problem presented by

Picard and Queyranne (1978). The formulation is based on a time-space network

as depicted in Figure 3, where each node (i, t) represents a job i performed at

position t. The notation is made consistent with Miranda-Bront et al. (2014).

15



0

1,1

2,1

3,1

4,1

1,2

2,2

3,2

4,2

1,3

2,3

3,3

4,3

1,4

2,4

3,4

4,4

5

Figure 3: Time Space Network for the TD-TSP on five cities Picard and
Queyranne (1978). State (i, t) represents visiting city i in position t.

MILP: min

n−1∑
j=1

δ00,jy
0
0,j +

n−1∑
i=1

n−1∑
j=1
j 6=i

n−2∑
t=1

δtijy
t
ij +

n−1∑
i=1

δn−1
i,n yn−1

i,n (5)

s.t.

n−1∑
t=1

xit = 1 ∀i = 1, . . . , n− 1 (6)

n−1∑
i=1

xit = 1 ∀t = 1, . . . , n− 1 (7)

y00j = xj1 ∀j = 1, . . . , n− 1 (8)

n−1∑
i=1
i 6=j

ytij = xit ∀j = 1, . . . , n− 1, t = 1, . . . , n− 2 (9)

yn−1
in = xi,n−1 ∀i = 1, . . . , n− 1 (10)

n−1∑
i=1
i 6=j

yt−1
ij = xjt ∀j = 1, . . . , n− 1, t = 2, . . . , n− 1 (11)

n−1∑
j=1

y00j = 1 (12)

n−1∑
j=1

xn−1
jn = 1 (13)

xit ∈ {0, 1} (14)

ytij ≥ 0 (15)

In this model transition variables ytij represent whether job j ∈ J is performed

immediately after job i ∈ J , which is performed at time t. Assignment variables

xit denote whether job i ∈ J is performed at time t. Vander Wiel and Sahinidis

(1995) prove that ytij = 1 if and only if xi,txj,t+1 = 1.

Constraints (6) and (7) ensure resp. that each job is performed only once,

and that at any given point in time only one job is performed. Constraints (8)-

16



(11) link the xit and ytij variables. Moreover, Constraints (8)-(11) implement

flow conservation on the time-space network. Finally, Constraints (12), (13)

ensure that exactly one unit of flow resp. leaves the source node and enters the

sink node. Consistent with the models from the previous sections, we enforce

that job 0 starts at time 0, and job n starts at time n. Consequently variables

x00 and xnn are fixed to 1.

Several possible approaches to strengthen this model are presented by Gou-

veia and Voss (1995) and Abeledo et al. (2013). Most notably, the time-

dependent TSP can be mapped to the traditional time-independent TSP through

the following relation:

zij =

n∑
t=1

(ytij + ytji) ∀i, j = 0, . . . , n (16)

Consequently, all valid inequalities known for the TSP can also be used to

strengthen this TD-TSP model. Furthermore, for any cyclic sequence of unique

jobs C = [v1, v2, . . . , vl, vl+1 = v1], vi ∈ J , Miranda-Bront et al. (2014) show

that the following time-dependent cycle inequalities, also known as k-cycle in-

equalities for k = |C|, are valid for the MILP model of the TD-TSP:

ytv1v2 + yt+1
v2v3 + · · ·+ yt+k−2

vlv1 ≤ xtv1 + xt+1
v2 + · · ·+ xt+k−2

vl 0 < t < n− k (17)

For the residual costs in the additive bounding procedure, we directly use the

reduced costs of the ytij (ytij) and xit (xit) variables which are not at their upper

bound, by setting ∆t
ij = ytij + xit in Equation (4).

We note in passing that other formulations for the TDTSP have been de-

scribed in the literature, such as the one proposed by Godinho et al. (2014).

We consider the MILP model above due to the strengthening procedure by

Miranda-Bront et al. (2014) and since they can be more easily adapted to con-

sider additional side constraints.

5.3.2. TDTSP-TW

In the TDTSP-TW, a time-window [ai, bi] is associated with each job i ∈ J ,

during which the job has to be performed. The MILP model presented in Section

5.3.1 can be adapted to incorporate time windows, thereby obtaining a model

for TDTSP-TW. Let the variable ui denote the completion time of a job i ∈ J .

17



Then the following constraints enforce the time-windows:

u0 + δ00jy
j
0j ≤ uj ∀i = 1, . . . , n− 1 (18)

ui + δn−1
i,n yn−1

i,n ≤ un ∀i = 1, . . . , n− 1 (19)

ui +

n−2∑
t=1

δti,jy
t
i,j −Mij(1−

n−2∑
t=1

yti,j) ≤ uj ∀i, j = 1, . . . , n− 1, i 6= j (20)

ai ≤ ui ≤ bi, (21)

where Mij = maxt{0, bi + δtij − aj}.
Constraints (20)-(21) are strengthened as follows (Desrochers and Laporte,

1991):

uj ≥ aj +

n−1∑
t=0

n−1∑
i=0
i 6=j

max{0, ai + δtij − aj}ytij ∀j = 1, . . . , n (22)

ui ≤ bi −
n−1∑
t=0

n∑
j=1
i 6=j

max{0, bi + δtij − bj}ytij ∀i = 0, . . . , n− 1 (23)

uj ≥ ui +

n−2∑
t=1

δti,jy
t
i,j −Mij(1−

n−2∑
t=1

yti,j)+ ∀i, j = 1, . . . , n− 1, i 6= j (24)

n−2∑
t=1

(Mij − δti,j −max{δtji, bi − bj})ytji (25)

For the residual costs in the additive bounding procedure, we use ∆t
ij = ytij+xit

(Equation (4)), where ytij , xit are respectively the reduced costs corresponding

with the ytij , xit variables which are not at their upper bound.

We note in passing that the TDTSP-TW shares some similarities with the

delivery man problem with time windows (DMP-TW), as studied by Heilporn

et al. (2010). The objective of the DMP-TW is to minimize the sum of the

travel durations to each city, i.e., the differences between the times each city

is visited and when the salesperson left the depot. While the classical delivery

man problem without time windows can be written as an instance of the TDTSP

(Blum et al., 1994), the same is not true between the DMP-TW and the TDTSP-

TW, in particular since the release date of the depot also becomes a variable in

the case of the DMP-TW.

5.3.3. TDSOP

To accommodate precedence relations for the TD-SOP, we add constraints

from a MILP model by Sarin et al. (2005) for the asymmetric TSP (ATSP) with

18



precedence constraints. The model by Sarin et al. (2005) is known to provide a

strong LP relaxation. To accommodate the precedence constraints, pij variables

are used, indicating whether job i precedes job j somewhere, but not necessarily

immediately, in the sequence.

pij ≥
n−1∑
t=0

ytij ∀i, j = 1, . . . , n− 1, i 6= j (26)

pij + pji = 1 ∀i 6= j (27)

pij + pjk + pki ≤ 2 ∀i 6= j 6= k (28)

ytik = 0 iff i ≺ j ≺ k, ∀t = 1, . . . , n− 1 (29)

xj0 = xi,n−2 = 0 iff i ≺ j (30)

pij = 1 iff i ≺ j, (31)

pij ≥ 0 otherwise (32)

Constraints (26)-(28) link the ytij and pij variables, prevent subtours and enforce

the precedence relations. Redundant Constraints (29) are used to strengthen the

formulation. These constraints are valid because if i ≺ j ≺ k then ytik = 0 since

job j must be executed in between jobs i and k (Sarin et al., 2005). Redundant

Constraints (30) follow a similar reasoning: if i needs to precede j, than i cannot

be the last job in the sequence and j cannot be the first job.

The number of constraints in this model is cubic in the number of jobs

(Constraint (28)). Preliminary computational experiments revealed that the

model becomes inhibitively large for practical applications: just solving the LP

relaxation of instances with less than 50 vertices could take 5-10 hours. Similar

conclusions are drawn by Sarin et al. (2005). To improve the scalability of this

model, we developed a simple separation routine for inequalities (28) (Algorithm

1). In this routine, we initialize the values p∗ij , for all i, j, to the values attained

by the pij variables in the LP relaxation. Each time a violated inequality is

encountered for a given i, j, k, we add the following cut to the model:

pij + pjk + pki +

n−1∑
t=1

ytji ≤ 2 (33)

Cuts of the form (33) are shown to be valid and stronger than inequalities (28)

(Sarin et al., 2005). Compared to the original work by Sarin et al. (2005), when

solving the LP relaxation, this separation routine realizes an average speedup

of one order of magnitude.

For the residual costs in the additive bounding, the reduced costs ytij , xij and

pij for resp. the ytij , xij , and pij variables are used. This time however, we

19



Algorithm 1: Separation of inequalities (28).

1 forall i, j : p∗ij >
2
3

2 forall k = 1, . . . , n− 1; k 6= i 6= j
3 if p∗ij + p∗jk + p∗ki > 2 then

4 generateCut()

5 p∗ij ← 0 (Prevents duplicate cuts)

cannot set ∆t
ij = ytij +xij +pij , because the costs pij must be counted for every

job i that precedes job j in the solution. Instead we modify Equation (4) to:

s(a) =


0 if u = r,

min
a′∈in(u),

val(a)6=val(a′)

{s(a′) + ∆
`(a′)
val(a′),val(a) +

∑
j∈All(v),
val(a)6=j

pval(a),j} otherwise. (34)

where ∆t
ij = ytij + xij . Notice that this modification is straightforward as all

information required to make this calculation is already present in the MDD.

6. Computational Experiments

We now report our empirical findings on a set of TD-TSP, TD-TSP-TW,

and TD-SOP instances. Experiments were conducted on an Intel Core I-7-4790

2.6GHz CPU, 16GB RAM, using CPLEX and CP Optimizer v. 12.6.3.

For the TD-TSP, TD-TSP-TW and TD-SOP, both Dantzig-Fulkerson-Johnson

subtour elimination constraints, as well as 4-cycle inequalities (Equation (17))

are separated. For the separation of the 4-cycle inequalities we use the sepa-

ration routine described in Miranda-Bront et al. (2014). At most ten rounds

of separation are performed per node for TD-TSP(TW) instances, and at most

four rounds for TD-SOP instances. At each round, all violated 4-cycle con-

straints as well as 30 of the most violated subtour inequalities are added to the

model. Finally, it should be noted that no solutions for pure CP models relying

solely on an alldifferent constraint have been included (Section 3), due to

the low quality of these solutions. Hence, our primary comparison is based on

the CP approach augmented with MDDs (CPMDD), its extension with additive

bounding (CP abMDD), and the MIP models for each problem class. In addition,

for the TD-TSP we compare with the approaches by Abeledo et al. (2013) and

Miranda-Bront et al. (2010).

20



6.1. TDTSP

Analogous to Abeledo et al. (2013), the TD-TSP instances are derived from

the TSPLib.1 The setup times δti,j are defined as (n − t)δ̇(i,j), where δ̇(i,j) is

the distance between cities i and j as specified in the TSPLib instance. For

the TDTSP experiments, all instances reported in Abeledo et al. (2013) and

Miranda-Bront et al. (2014) with less than 80 nodes have been used (43 instances

in total). Detailed results for each of the 43 instances are available in Appendix

A, Supplemental Material.

We first analyze the performance CP abMDD, CPMDD, and MIP: A perfor-

mance plot comparing these methods is provided in Figure 4a. The plot is

divided in two parts: the left half shows the number of instances that a method

has solved within t seconds (the horizontal axis shows the time from 0 up to

1,800s). That is, each of these instances is solved within t seconds. To compare

instances that were not solved to optimality, we depict on the right half the

number of instances that have an optimality gap of at most k%, for increasing

values of k. The gap (percentage) for a particular instance is computed as:

100× UB−LB
UB , where UB is a feasible solution, and LB the strongest available

lower bound. More precisely, the LB is the strongest available bound: the opti-

mal solution (whenever available), LP bound, CP abMDD and CPMDD root node

bounds, or MIP bound. Note that some instances lie directly on the division

line (1,800s/0% gap), indicating that an optimal solution was found, but opti-

mality could not be proven within the time limit of 1,800 seconds. As can be

observed from Figure 4a, both MDD approaches outperform MILP. A larger

number of instances was solved within the time limit, and the optimality gap

of the unsolved instances is smaller. Similarly, CP abMDD outperforms CPMDD.

Despite the overhead introduced by the additive bounding procedure, CP abMDD

outperforms CPMDD for instances up to 52 vertices. Beyond that point, the

relaxation used in the experiments is either weak or requires excessive compu-

tational effort.

Miranda-Bront et al. (2010, 2014) compare the formulations proposed by

Picard and Queyranne (1978) and Vander Wiel and Sahinidis (1995), analyzing

the relationship between them and deriving valid inequalities and facets. Com-

putational results are also presented for a branch-and-cut algorithm that uses

these inequalities. The largest instance from Miranda-Bront et al. (2014) solved

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

21

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


0

5

10

15

20

25

30

35

40

45

0 450 900 1350 1800/0 ≤25 ≤50 ≤75 ≤100

In
st
a
n
ce
s(
#
)

time(s) — gap(%)

MIP
MDD(1024)

MDD(1024)-AB

(a) Performance plot

−60

−40

−20

0

20

40

60

bu
rm
a1
4
gr
17
gr
21
gr
24

ba
ys
29

ba
yg
29

dT
SP
40
.0

dT
SP
40
.1

dT
SP
40
.2

dT
SP
40
.3

dT
SP
40
.4

da
nt
zi
g4
2

sw
iss
42

at
t4
8
gr
48
hk
48

dT
SP
50
.0

dT
SP
50
.1

dT
SP
50
.2

dT
SP
50
.3

dT
SP
50
.4
ei
l5
1

be
rli
n5
2

br
az
il5
8
st
70
ei
l7
6
pr
76

B
ou

n
d
Im

p
ro
v
em

en
t(
%
)

Instance

CP-MDD(128)
CP-MDD(10000)

LP(subtour,4-cycle)
LP(4-cycle)
LP(subtour)

CP-MDD(128)-AB(4-cycle,subtour)
CP-MDD(10000)-AB(4-cycle,subtour)

CP-MDD(128)-AB
CP-MDD(10000)-AB

(b) Bound comparison

Figure 4: TDTSP

to optimality is eil51 (51 vertices) which took 90.55s. This is also the largest

instance solved to optimality by our CP abMDD approach. While our method can

be regarded competitive with Miranda-Bront et al. (2010), both methods are

generally outperformed by the approach of Abeledo et al. (2013), as shown in

22



Table 1, Appendix A, Supplemental Material.

Figure 4b provides a detailed comparison of the bounds derived from the

various methods. For readability, the results are depicted for a subset of 27 out

of 37 instances. As a base line, represented by the 0% line in Figure 4b, the

TDTSP LP relaxation without extra inequalities is used. For each bounding

procedure, Figure 4b shows how much stronger (or weaker) the derived bounds

are, compared to the LP relaxation. When comparing the pure CPMDD root

node, it can be observed that the LP bound is generally stronger, except for

very small instances. The larger the MDD width, the stronger the bound. When

the MDD is strengthened with the simple LP relaxation, the resulting bound is

consistently stronger than both the LP and pure MDD root node bounds for all

instances.

Next, we investigate what happens if we strengthen the LP bound through

valid inequalities, e.g., by adding (1) subtour inequalities, (2) 4-cycle inequali-

ties, or (3) both. Regardless of which inequalities we add, the resulting LP relax-

ation (LP(4-cycle), LP(subtour), LP(4-cycle,subtour)) is consistently stronger

than the bound derived from the MDD strengthened with the simple LP (CP-

MDD(·)-AB). If we use the strengthened LP in the additive bounding pro-

cedure (CP-MDD(·)-AB(4-cycle,subtour)), we observe only a very small im-

provement over LP(4-cycle,subtour). Interestingly, the CP-MDD(·)-AB yielded

a much bigger improvement over both the LP and CP-MDD(·) approaches,

than CP-MDD(·)-AB(4-cycle,subtour) yields over LP(4-cycle,subtour). This

phenomenon can be explained by the fact that the LP, strengthened with valid

inequalities, captures a significant amount of problem structure. When this is

projected onto the MDD, the resulting combined relaxation has approximately

the same strength. In contrast, when a weaker relaxation is projected onto the

MDD, the MDD adds more of the problem structure to the relaxation, resulting

in a proportionally larger increase in strength of the relaxation.

6.2. TDTSP-TW

For the TDTSP-TW, 270 instances have been randomly generated following

a procedure related to Dumas et al. (1995). Specifically, we fixed the number

of vertices to n ∈ {30, 35, 40}, and generated asymmetrical travel distances for

each vertex pair (i, j) drawing uniformly at random from the set {5, 100}. To

ensure the instances were feasible, the time windows were set as follows. Once

a distance matrix has been created, we would generate a permutation of cities

uniformly at random, and compute the shortest travel distance to arrive at each

23



city according to the given permutation. For each city i in the permutation and

the resulting arrival time ti, the release date and deadlines were then drawn

uniformly at random from {tj , . . . , ti} and {ti, . . . , tj′}, respectively, where j =

max{0, i − w} and j′ = min{n, i + w}, for some w (i.e., larger w have longer

time windows, on average). For each n ∈ {30, 35, 40}, we considered w ∈
{10, . . . , 90, 95} and generated 5 different instance according to this procedure,

resulting in 270 instances in total (90 per each n). Detailed results for each of

the 270 instances are available in Appendix B, Supplemental Material.

Figures 5a, 5b compare the impact of the CP abMDD and CPMDD approaches.

Lower bounds for these instances are obtained by taking the maximum over: LP,

CP abMDD root node, strongest MIP bound, optimal solutions for MIP, CP abMDD,

CPMDD. Interestingly, MIP was unable to find a feasible solution for any

of the instances. Hence, for clarity, a line for MIP has been omitted from

Figures 5a, 5b. In contrast, both CP abMDD and CPMDD found feasible solutions

for all instances. Furthermore, CP abMDD significantly outperforms CPMDD for

these instances. Figures 5a and 5b also indicate that when the MDD width is

small (Figure 5a), the Additive Bounding significantly strengthens the model.

When the width of the MDD increases (Figure 5b), the impact of the Additive

Bounding decreases, since the MDD is more expressive.

Figure 6 plots the performance of CP abMDD, CPMDD for the three different

instance sizes: 30, 35 and 40 vertices. For the 30-vertex instances, the pure

CPMDD outperforms CP abMDD. These instances are relatively easy, and as such,

can be solved through the pure CPMDD which does not suffer from the extra

computational overhead present in the CP abMDD approach. However, when the

size of the instances increases, CP abMDD clearly starts to outperform CPMDD, as

can be observed for both n35 and n40. When the instances continue to grow in

size, the quality of the CP abMDD solutions will gradually reduce to the point where

there is no benefit of using the Additive Bounding procedure. This behavior

can directly be explained by the fact that the quality of the LP relaxation used

in the Additive Bounding procedure reduces when the instances become bigger.

To resolve this issue, a stronger bounding procedure would be required.

6.3. TDSOP

For TDSOP, 29 instances with 7 to 100 vertices are derived from the SOP

dataset in the TSPLib. The instances are transformed into their time-dependent

equivalents in the same way as considered for the TD-TSP. Detailed results for

each instance are available in Appendix C, Supplemental Material. Experiments

24



0

50

100

150

200

250

0 450 900 1350 1800/0 ≤25 ≤50 ≤75 ≤100

In
st
an

ce
s(
#
)

time(s) — gap(%)

MDD(32)
MDD(32)-AB

(a) MDD width 32

0

50

100

150

200

250

0 450 900 1350 1800/0 ≤25 ≤50 ≤75 ≤100

In
st
an

ce
s(
#
)

time(s) — gap(%)

MDD(1024)
MDD(1024)-AB

(b) MDD width 1024

Figure 5: Performance plot TDTSP-TW

revealed that it was too expensive to evaluate equation (4) during each filtering

loop of the MDD. Instead equation (1) was used, thereby ignoring the reduced

costs associated with the pij variables. The impact of this decision on the quality

of the bounds turned out to be negligible, since the vast majority of reduced

25



0

20

40

60

80

100

0 450 900 1350 1800/0 ≤25 ≤50 ≤75 ≤100

In
st
a
n
ce
s(
#
)

time(s) — gap(%)

MDD(1024); n30
MDD(1024)-AB; n30

MDD(1024); n35
MDD(1024)-AB; n35

MDD(1024); n40
MDD(1024)-AB; n40

Figure 6: performance plot TDTSP-TW for different instance sizes

costs associated with the pij variables were equal to zero.

A performance plot is again provided in Figure 7a. Similar to the TDTSP

and TDTSP-TW results, both MDD methods significantly outperform MIP. In

fact, for most instances, the MILP model failed to find a single feasible solution.

However, when comparing CP abMDD and CPMDD mutually, the differences are

much less profound than in the foregoing experiments. These results are directly

explained by a weak LP relaxation used in the AB procedure. Even though the

model by Sarin et al. (2005) is known to provide strong bounds for the ATSP

with precedence constraints, we do not obtain similar high-quality results for

TDSOP. Moreover, even though we separate inequalities (28), we still had to

limit the number of rounds of separation to four due to excessive computation

times. For reference purposes, for an instance with 100 vertices and ten rounds

of separation, computation times for the LP relaxation could easily exceed 24

hours. By limiting the number of rounds of separation, the quality of the LP

bound reduced, and consequently the performance of CP abMDD degraded. These

findings seem to be in agreement with the conclusion of Sarin et al. (2005):

‘While the relative tightness of this formulation does not generally translate to

a competitive performance for ATSP problems without precedence relationships

due to the size and structure of the LP relaxations, it is hoped that with advances

26



0

5

10

15

20

25

30

0 450 900 1350 1800/0 ≤25 ≤50 ≤75 ≤100

In
st
a
n
ce
s(
#
)

time(s) — gap(%)

MIP
MDD(1024)

MDD(1024)-AB

(a) Performance plot

-100

-10

0

10

100

1000

ES
C
63

ES
C
47

pr
ob
.4
2

pr
ob
.1
00

ft7
0.
1

ft7
0.
2

ry
48
p.
1

ft7
0.
3

ES
C
78

ry
48
p.
2

ft5
3.
1

ES
C
25

ft5
3.
2

ry
48
p.
3

ES
C
11

ES
C
07

rb
g0
50
c

ES
C
12

rb
g0
48
a

ft7
0.
4

ft5
3.
3

ry
48
p.
4

ft5
3.
4

br
17
.1
0

br
17
.1
2

p4
3.
1

p4
3.
2

p4
3.
4

p4
3.
3

B
ou

n
d
Im

p
ro
v
em

en
t(
%
)

Instance

CP-MDD(1024)
CP-MDD(1024)-AB(4-cycle,subtour)

Upper Bound
LP(4-cycle,subtour) base line

(b) Bound comparison

Figure 7: TDSOP

in LP technology, it might prove to be more favorable in the future.’ Indeed,

instances in their experiments do not exceed 30 vertices.

Figure 7b compares the LP bound, and the CPMDD and CP abMDD root node

bounds mutually. As a base line, the TDSOP LP relaxation strengthened with

27



all inequalities is used. The graph depicts how the root node bounds of CPMDD

and CP abMDD compare against the LP bound: a positive and a negative value

indicates that the bound is stronger and weaker, respectively. The ”Upper

Bound” line represents the maximum possible improvement over the LP bound,

derived from the best primal solutions. To compensate for the large differences

in y-values, we applied a log-modulus transformation (L(x) = sgn(x)× log(|x|+
1)) (John and Draper, 1980). For the first instances (left side of the graph), the

CPMDD root node is significantly weaker than the LP relaxation. Nevertheless,

through the Additive Bounding procedure, the root node can be strengthened

significantly. In fact, for a number of instances, the CP abMDD root node bound

gets very close to the optimal solution. Finally, for instances where the LP

bound is really weak, the root node bounds of CPMDD and CP abMDD coincide.

7. Conclusion

In this work, the TDTSP(-TW) and TDSOP problems have been solved

through a novel hybrid approach that combines constraint programming, lin-

ear programming, and MDDs. Since CP models are often ineffective in solving

sequencing problems like the TSP, MDDs are incorporated to strengthen the

model. By integrating the MDDs, significantly more information about the

problem structure and solution space are consolidated into the CP model. Fur-

thermore, since bounds on the optimal solution can be computed through the

MDDs, domain propagation is improved, the search tree can be pruned more

effectively, and computational effort required to prove optimality is reduced.

Finally we show how structural information from different problem relaxations

can be incorporated into the MDD through additive bounding.

Computational experiments clearly show that the hybrid approach outper-

forms traditional MILP and CP formulations for both sequencing problems in

terms of time and solution quality. For a number of instances, the traditional

CP approach was able to find the optimal solution, but failed to prove optimal-

ity in a reasonable amount of time. Due to the bounds calculated by the MDD

propagator, the integrated approach could attest optimality for these instances

orders of magnitude faster.

The approach presented in this work is generic in the sense that it hardly re-

lies on problem-specific information. Therefore, future research could be aimed

at expanding this work to related sequencing problems. Alternatively, one could

28



attempt to include existing dedicated solution approaches for the TD-TSP and

TD-SOP into the current framework to improve its overall performance.

Bibliography

H. G. Abeledo, R. Fukasawa, A. A. Pessoa, and E. Uchoa, “The time dependent

traveling salesman problem: polyhedra and algorithm,” Math. Program. Comput.,

vol. 5, no. 1, pp. 27–55, 2013.

J. Albiach, J. M. Sanchis, and D. Soler, “An asymmetric TSP with time windows and

with time-dependent travel times and costs: An exact solution through a graph

transformation,” European Journal of Operational Research, vol. 189, no. 3, pp. 789

– 802, 2008.

H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, “A constraint store based

on multivalued decision diagrams,” in Proceedings of the 13th International Confer-

ence on Principles and Practice of Constraint Programming, ser. CP’07. Springer-

Verlag, 2007, pp. 118–132.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman

Problem. Princeton University Press, 2006.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman

Problem: A Computational Study. Princeton University Press, 2006.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learn-

ing,” Journal of Robotic Systems, vol. 1, no. 2, pp. 123–140, 1984.

R. Baldacci, A. Mingozzi, and R. Roberti, “New state-space relaxations for solving the

traveling salesman problem with time windows,” INFORMS Journal on Computing,

vol. 24, no. 3, pp. 356–371, 2012.

P. Baptiste, P. Laborie, C. L. Pape, and W. Nuijten, Handbook of Constraint Program-

ming, 1st ed. Elsevier, 2006, ch. 22: Constraint-Based Scheduling and Planning,

pp. 761–799.

P. Benchimol, W.-J. v. Hoeve, J.-C. Régin, L.-M. Rousseau, and M. Rueher, “Improved

filtering for weighted circuit constraints,” Constraints, vol. 17(3), pp. 205–233, 2012.

D. Biskup, “Single-machine scheduling with learning considerations,” European Jour-

nal of Operational Research, vol. 115, no. 1, pp. 173 – 178, 1999.

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan,

“The minimum latency problem,” in Proceedings of the Twenty-sixth Annual ACM

29



Symposium on Theory of Computing, ser. STOC ’94. New York, NY, USA: ACM,

1994, pp. 163–171.

A. Cire and W. J. van Hoeve, “Multivalued decision diagrams for sequencing prob-

lems,” Operations Research, vol. 61, no. 6, pp. 1411–1428, 2013.

W. Cook, In Pursuit of the Traveling Salesman: Mathematics at the Limits of Com-

putation. Princeton University Press, 2012.

J.-F. Cordeau, G. Ghiani, and E. Guerriero, “Analysis and branch-and-cut algo-

rithm for the time-dependent travelling salesman problem,” Transportation Science,

vol. 48, no. 1, pp. 46–58, 2012.

M. Desrochers and G. Laporte, “Improvements and extensions to the miller-tucker-

zemlin subtour elimination constraints,” Operations Research Letters, vol. 10, no. 1,

pp. 27 – 36, 1991.

Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon, “An optimal algorithm for

the traveling salesman problem with time windows,” Operations Research, vol. 43,

no. 2, pp. 367–371, 1995.

M. Fischetti and P. Toth, “An additive bounding procedure for combinatorial opti-

mization problems,” Operations Research, vol. 37, no. 2, pp. 319–328, 1989.

M. Fischetti, G. Laporte, and S. Martello, “The delivery man problem and cumulative

matroids,” Oper. Res., vol. 41, no. 6, pp. 1055–1064, Nov. 1993.

S. French, Sequencing and Scheduling. John Wiley & Sons, 1982.

M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.

M. Gendreau, G. Ghiani, and E. Guerriero, “Time-dependent routing problems: A

review,” Computers & Operations Research, vol. 64, pp. 189 – 197, 2015.

M. T. Godinho, L. Gouveia, and P. Pesneau, “Natural and extended formulations for

the time-dependent traveling salesman problem,” Discrete Applied Mathematics,

vol. 164, Part 1, pp. 138 – 153, 2014.

L. Gouveia and M. Ruthmair, “Load-dependent and precedence-based models for

pickup and delivery problems,” Computers & Operations Research, vol. 63, pp.

56 – 71, 2015.

L. Gouveia and S. Voss, “A classification of formulations for the (time-dependent)

traveling salesman problem,” European Journal of Operational Research, vol. 83,

no. 1, pp. 69 – 82, 1995.

30



G. Heilporn, J.-F. Cordeau, and G. Laporte, “The delivery man problem with time

windows,” Discrete Optimization, vol. 7, no. 4, pp. 269 – 282, 2010.

M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning

trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.

J. N. Hooker, Integrated Methods for Optimization (International Series in Operations

Research & Management Science), 2nd ed. Secaucus, NJ, USA: Springer-Verlag

New York, Inc., 2012.

X. Huang and J.-J. Wang, “Machine scheduling problems with a position-dependent

deterioration,” Applied Math. Modelling, vol. 39, no. 1011, pp. 2897 – 2908, 2015.

A. A. K. Jeng and B. M. T. Lin, “Makespan minimization in single-machine schedul-

ing with step-deterioration of processing times,” The Journal of the Operational

Research Society, vol. 55, no. 3, pp. pp. 247–256, 2004.

J. A. John and N. R. Draper, “An alternative family of transformations,” Journal

of the Royal Statistical Society. Series C (Applied Statistics), vol. 29, no. 2, pp.

190–197, 1980.

A. B. Keha, K. Khowala, and J. W. Fowler, “Mixed integer programming formula-

tions for single machine scheduling problems,” Computers & Industrial Engineering,

vol. 56, no. 1, pp. 357 – 367, 2009.

A. Lodi, M. Milano, and L.-M. Rousseau, “Discrepancy-based additive bounding pro-

cedures,” INFORMS J. on Computing, vol. 18, no. 4, pp. 480–493, Jan. 2006.

A. Lucena, “Time-dependent traveling salesman problem–the deliveryman case,” Net-

works, vol. 20, no. 6, pp. 753–763, 1990.

C. Malandraki and M. Daskin, “Time dependent vehicle routing problems: Formula-

tions, properties and heuristic algorithms,” Transportation Science, vol. 26, no. 3,

pp. 185–200, 1992.

I. Méndez-Dı́az, P. Zabala, and A. Lucena, “A new formulation for the traveling de-

liveryman problem,” Discrete Appl. Math., vol. 156, no. 17, pp. 3223–3237, 2008.

J. J. Miranda-Bront, I. Méndez-Dı́az, and P. Zabala, “An integer programming ap-

proach for the time-dependent tsp,” Electronic Notes in Discrete Mathematics,

vol. 36, pp. 351–358, 2010.

J. J. Miranda-Bront, I. Mndez-Daz, and P. Zabala, “Facets and valid inequalities for

the time-dependent travelling salesman problem,” European Journal of Operational

Research, vol. 236, no. 3, pp. 891 – 902, 2014.

31



J. C. Picard and M. Queyranne, “The Time-dependent Traveling Salesman Problem

and its Application to the Tardiness Problem in One-machine Scheduling,” Opera-

tions Research, vol. 26, no. 1, pp. 86–110, 1978.

M. Pinedo, Scheduling: Theory, Algorithms and Systems, 3rd ed. Prentice Hall, 2008.

M. Queyranne, M. Queyranne, and A. S. Schulz, “Polyhedral approaches to machine

scheduling,” Technical University of Berlin, Department of Mathematics, Berlin,

Germany, Tech. Rep. 408/1994, 1994.

J.-C. Régin, “A Filtering Algorithm for Constraints of Difference in CSPs,” in Pro-

ceedings of AAAI, vol. 1. AAAI Press, 1994, pp. 362–367.

J.-C. Régin, “Global constraints: A survey,” in Hybrid Optimization, ser. Springer Op-

timization and Its Applications, P. van Hentenryck and M. Milano, Eds. Springer

New York, 2011, vol. 45, pp. 63–134.

R. Rudek, “Scheduling problems with position dependent job processing times: com-

putational complexity results,” Annals of Operations Research, vol. 196, no. 1, pp.

491–516, 2012.

S. C. Sarin, H. D. Sherali, and A. Bhootra, “New tighter polynomial length formula-

tions for the asymmetric traveling salesman problem with and without precedence

constraints,” Operations Research Letters, vol. 33, no. 1, pp. 62 – 70, 2005.

D. Simchi-Levi and O. Berman, “Minimizing the total flow time of n jobs on a net-

work,” IIE Transactions, vol. 23, no. 3, pp. 236–244, 1991.

J. van den Akker, C. van Hoesel, and M. Savelsbergh, “A polyhedral approach to

single-machine scheduling problems,” Mathematical Programming, vol. 85, no. 3,

pp. 541–572, 1999.

C. van Eijl, “A polyhedral approach to the delivery man problem,” 1995.

R. J. Vander Wiel and N. V. Sahinidis, “Heuristic bounds and test problem genera-

tion for the time-dependent traveling salesman problem,” Transportation Science,

vol. 29, no. 2, pp. 167–183, 1995.

C.-C. Wu, W.-C. Lee, and T. Chen, “Heuristic algorithms for solving the maximum

lateness scheduling problem with learning considerations,” Computers & Industrial

Engineering, vol. 52, no. 1, pp. 124 – 132, 2007.

Y. Yin, D. Xu, K. Sun, and H. Li, “Some scheduling problems with general position-

dependent and time-dependent learning effects,” Information Sciences, vol. 179,

no. 14, pp. 2416 – 2425, 2009, including Special Section Linguistic Decision Making

Tools and Applications.

32



Y. Yin, M. Liu, J. Hao, and M. Zhou, “Single-machine scheduling with job-position-

dependent learning and time-dependent deterioration,” Systems, Man and Cyber-

netics, Part A: Systems and Humans, IEEE Transactions on, vol. 42, no. 1, pp.

192–200, Jan 2012.

33


	Introduction
	The TD-TSP(TW) and TD-SOP Problem
	Constraint Programming Models
	Practical Difficulties

	Discrete Relaxation based on MDDs
	Constructing Relaxed MDDs
	CP model with MDD

	Continuous Relaxation and Additive Bounding
	Additive bounding
	Strengthening MDD Relaxations
	LP Relaxation
	TDTSP
	TDTSP-TW
	TDSOP


	Computational Experiments
	TDTSP
	TDTSP-TW
	TDSOP

	Conclusion

