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What can MDDs do for discrete optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for integer optimization

e MDD relaxations provide upper bounds

e MDD restrictions provide lower bounds

e |ncorporation in branch-and-bound can be very effective

MDDs for constraint programming and scheduling
e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible
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e Binary Decision Diagrams were introduced to compactly
represent Boolean functions  [Lee, 1959], [Akers, 1978], [Bryant, 1986]

e BDD: merge isomorphic subtrees of a given binary decision tree

e MDDs are multi-valued decision diagrams (i.e., for discrete
variables)
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e Original application areas: circuit design, verification

e Usually reduced ordered BDDs/MDDs are applied
— fixed variable ordering
— minimal exact representation

e Recent interest from optimization community
— cut generation [Becker et al., 2005]
— 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
— post-optimality analysis [Hadzic & Hooker, 2006, 2007]

e |nteresting variant

— approximate MDDs
[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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Approximate MDDs "Tepper

e Exact MDDs can be of exponential size in
general

e We can limit the size (width) of the MDD to
obtain a relaxation [Andersen et al., 2007]

— strength is controlled by the width

e Can provide bounds on objective function

e Can also be used for cut generation, constraint
propagation, guiding search, ...
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MDDs for Integer Optimization

e Bergman, Cire, v.H., Hooker: Optimization Bounds from Binary Decision
Diagrams. INFORMS J. Computing 26(2): 253-268, 2014.

e Bergman, Cire, v.H., Yunes: BDD-Based Heuristics for Binary Optimization.
Journal of Heuristics 20: 211-234, 2014.

e Bergman, Cire, v.H., Hooker. Discrete Optimization with Decision Diagrams.
Under review, 2013.

e Bergman, Cire, Sabharwal, Samulowitz, Saraswat, and v.H. Parallel

Combinatorial Optimization with Decision Diagrams. In Proceedings of
CPAIOR, Springer LNCS, 2014. 11
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e Conventional integer programming relies on branch-
and-bound based on continuous LP relaxations
— Relaxation bounds
— Feasible solutions
— Branching

e \We propose a novel branch-and-bound algorithm for
discrete optimization based on decision diagrams
— Relaxation bounds — Relaxed BDDs
— Feasible solutions — Restricted BDDs
— Branching — Nodes of relaxed BDDs

e Potential benefits: stronger bounds, efficiency,
memory requirements, models need not be linear

12
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e Given graph G = (V, E) with vertex weights w.

e Find a subset of vertices S with maximum total weight
such that no edge exists between any two vertices in S

max 2 W X

s.t. x+x<1 forall(ij)inE

x. binary  foralliinV
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Restricted MDD (width < 3)

-:0
— D—@
" {1,2,3,4,5}
\ Pe
Xl \\\\\ 6 e
(3.4} “_{2,3,4,5)
X2 | \
3,4} . {5} \{3,4,5)
X3 \ \
o 14k (5} 4,5}

®

21



Variable Ordering "lepper

SCHOOL OF BUSINESS

e Order of variables greatly impacts BDD size

— also influences bound from relaxed BDD (see next)

e Finding ‘optimal ordering” is NP-hard

e Insights from independent set as case study

— formal bounds on BDD size
— measure strength of relaxation w.r.t. ordering

22



SCHOOL OF BUSINESS

Exact BDD orderings for Paths "Tepper
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Many Random Orderings "Tepper
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Formal Results for Independent Set lepper
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Graph Class Bound on Width

Paths 1

Cliques 1
Interval Graphs n/2

Trees n/2
General Graphs Fibonacci Numbers

(The proof for general graphs is based on a maximal path
decomposition of the graph)
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Width 3 relaxed decision diagram

Upper
Bound =4
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New Branching Scheme lepper
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e Novel branching scheme
— Branch on pools of partial solutions
— Remove symmetry from search
e Symmetry with respect to feasible completions

— Can be combined with other techniques

e Use decision diagrams for branching, and LP for bounds

— Immediate parallelization
e Send nodes to different workers, recursive application
e DDX10 (CPAIOR 2014)
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e Compare with IBM ILOG CPLEX
— State-of-the-art integer programming technology

e Use typical, strong formulations

— Edge formulation and cligue formulation for
maximum independent set problem

e O(n) variables, O(n?) constraints

e Random Erdos-Rényi G(n,p) graphs and
DIMACS Clique graphs

— Compare end gaps after 1,800 seconds




Random graphs: n=250
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Random graphs: n=1500 Tpper
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Gap Ratio (UB/LB) Comparison
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General Approach Tepper

e |n general, our approach can be applied when problem
is formulated as a dynamic programming model

— We can build exact BDD from DP model using top-down
compilation scheme (exponential size in general)

— Note that we do not use DP to solve the problem, only to
represent it

e Other problem classes considered
— MAX-CUT, set covering, set packing, MAX 2-SAT, SAT, ...
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MAX-CUT representation "Tepper
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e Value of a cut (S,T) is

Z s,t|seS, teT W(S't)

e Example: cut ({1,2}, {3,4) ) has value 2
e MAX-CUT: Find a cut with maximum value

e How can we represent thisin a BDD?
— state represents vertices included in S?

— we propose a state to represent the
marginal cost of including vertexin S

45
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MAX-CUT example BDD Tepper

e State: jt" element is additional
value of adding vertex jto S
(if positive)

0 v,
® (0,49)
0.
//// v2
(0,0,17)g,
V3
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MAX-CUT example BDD Tepper
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e State: jt" element is additional
value of adding vertex jto S
(if positive)

(r) (0,0,0)
0

@ (0,4,9)
0. 4 + min{8,9}
/// v
(0,0,17) @ (0,0,1) 2

v

47



Computational Results Tepper

SCHOOL OF BUSINESS

e Compare with IBM ILOG CPLEX
e Typical MIP formulation + triangle inequalities

— 0O(n?) variables, O(n?) constraints
e Benchmark problems
— g instances

— Helmberg and Rendl instances, which were taken
from Rinaldi’s random graph generator

— n ranges from 800 to 3000 — very large/difficult
problems, mostly open

— Also compared performance with BigMac
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Number of MCP Instances Solved in 60 Seconds (n=40)
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MIP vs BDD: 1,800 seconds (n=40)
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BigMac vs BDD ‘lepper
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BigMac BDD Best known
instance LB UB LB UB LB UB
g50 5880 5988.18 5880  5899* 5880 5988.18
g32 1390 1567.65  1410%* 1645 1398 1560
g33 1352 1544.32  1380*  1536* 1376 1537
g34 1366 1546.70  1376* 1688 1372 1541
gll 558 629.17 564 567* 564 627
gl2 548 623.88 556 616* 556 621

gl3 578 647.14 580 652 580 645
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MDDs for Constraint Programming

e Andersen, Hadzic, Hooker, Tiedemann: A Constraint Store Based on
Multivalued Decision Diagrams. CP 2007: 118-132

e Hoda, v.H., Hooker: A Systematic Approach to MDD-Based Constraint
Programming. CP 2010: 266-280

e Cire, v.H.: MDDs for Sequencing Problems. Operations Research, 61(6):

1411-1428, 2013. e
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Constraint Programming applies
e systematic search and
e inference techniques

to solve discrete optimization problems

Inference mainly takes place through:
e Filtering provably inconsistent values from variable domains
e Propagating the updated domains to other constraints

X; € 11,2}, x, € {1,2,3}, x; € {2,3}

Xl < XZ \‘Xz S {213}

alldifferent(x,,x,,X;) \\Xl e {1}

53
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AllEqual(x,, X,,..., X,), all x, binary

X{+ X, + ... +X.2n/2

O O

o X, Cy x
O

{0,1} X, {O}I {1}
O O O
O O O

{0,1} Xn-1 {0} {1}
O O O

w N A
a X, {0} {1}

-

domain representation, size 2" MDD representation, size 2 >
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Drawback of domain propagation lepper
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e All structural relationships among variables are
projected onto the domains

e Potential solution space implicitly defined by Cartesian
product of variable domains (very coarse relaxation)

We can communicate more information between
constraint using MDDs [Andersen et al. 2007]

e Explicit representation of more refined potential
solution space

e Limited width defines relaxed MDD
e Strength is controlled by the imposed width

55
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e Maintain limited-width MDD

— Serves as relaxation
— Typically start with width 1 (initial variable domains)
— Dynamically adjust MDD, based on constraints

e Constraint Propagation

— Edge filtering: Remove provably inconsistent edges (those
that do not participate in any solution)

— Node refinement: Split nodes to separate edge information

e Search
— As in classical CP, but may now be guided by MDD
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e Linear equalities and inequalities  [Hadzic et al., 2008]
[Hoda et al., 2010]

® Alld/fferent constraints [Andersen et al., 2007]
e Flement constraints [Hoda et al., 2010]
e Among constraints [Hoda et al., 2010]

e Disjunctive scheduling constraints [Hoda etal., 2010]
[Cire & v.H., 2011, 2013]

e Sequence constraints (combination of Amongs)
[Bergman et al., 2013]

e Generic re-application of existing domain filtering
algorithm for any constraint type [Hoda et al., 2010]
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Disjunctive Scheduling "Tepper
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e Sequencing and scheduling of activities on a resource

. ') o 0 1 2 3 4
e Activities
— Processing time: p, Activity 1 _ j
— Release time: r, Activity 2 E
— Deadline: d.
i Activity 3 [ ﬁ
e Resource

— Nonpreemptive

— Process one activity at a time

59
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e Precedence relations between activities

e Sequence-dependent setup times

e Induced by objective function
— Makespan
— Sum of setup times
— Sum of completion times
— Tardiness / number of late jobs

60
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e Natural representation as ‘permutation MDD’

e Every solution can be written as a
permutation i

. activity sequencing in the resource

Ty, Ty, Ty, ooy T

e Schedule is implied by a sequence, e.g.:

starty, = starty,  +p . 1=2,..,n

61
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O Act r, p; di
" 1 0 2 3
3 !
2 4 2 9
12} {3} T, 3 3 3 8

Path {1} —{3}—{2}:
3} 2y Ty 0 <start,; €1
6 <start, <7
3 Sstart; €5
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We can apply several propagation algorithms:
o Alldifferent for the permutation structure
e Earliest start time / latest end time

e Precedence relations
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Propagation (cont’d) Tppér

e State information at
each nodej

— labels on all paths: A,
— labels on some paths: S,

— earliest starting time: E,
— latest completion time: L,

{1,2,3,4,5} T,

e Top down example for
arc (u,v)
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Alldifferent Propagation lepper
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All-paths state: A

» Labels belonging to all paths
from node r to node u

» A, = {3}
» Thus eliminate {3} from (u,v)

1,2}

(12385,
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Alldifferent Propagation Tepper
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Some-paths state: S,

» Labels belonging to some
path from node r to node u

» S, =11,2,3}
» Identification of Hall sets

» Thus eliminate {1,2,3} from
(u,v)

4345y @,
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Propagate Earliest Completion Time lepper
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Earliest Completion Time: E,

» Minimum completion time (123
of all paths from root to
node u

Similarly: Latest Completion
Time

67



Propagate Earliest Completion Time  1epper
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Act I, d. p;
1 0 4 2
2 3 7 3
3 1 3 3
4 5 6 1
5 2 10 3

» Eliminate 4 from (u,Vv)
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Propagate Precedence Relations leppeér
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Arc with label j infeasible if

[ < jandinotonsome path fromr

Suppose 4 K 5
» S, ={1,2,3}

» Since 4 notin S, eliminate 5
from (u,v)

Similarly: Bottom-up forj «< i

69
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Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

For a node u,
» A} values in all paths from root to u

> AL: values in all paths from node u to terminal

Precedence relation i < j holds if and only if
(J & Aﬁ) or (i & AI!) for all nodes uin M

Same technique applies to relaxed MDD
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Communicate Precedence Relations Tépper
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1. Provide precedence relations from MDD to CP
— update start/end time variables in CP model
— other inference techniques may utilize them
— help to guide search

2. Filter the MDD using precedence relations from
other (CP) techniques

3. In context of MIP, these can be added as linear
inequalities
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e MDD propagation implemented in IBM ILOG CPLEX
CP Optimizer 12.4 (CPO)
— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation
— MDD is added as user-defined propagator

72



TSP with Time Windows "lepper
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Total Tardiness Results lepper
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Sequential Ordering Problem (TSPLIB)
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CPO CPO+MDD, width 2048
instance vertices bounds best  time (s) best time (s)
br17.10 17 55 55 0.01 55 4.98
brl17.12 17 55 55 0.01 55 4.56
ESCO07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 28175, 28480 28545 TL 28480 279.18*
p43.3 43 28366, 28835] 28930 TL 28835 177.29%*
pd3.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 15220, 15805] 18209 TL 16561 TL
ry48p.2 48 (15524, 16666 18649 TL 17680 TL
ry48p.3 48 (18156, 19894] 23268 TL 22311 TL
ry48p.4 48 29967, 31446] 34502 TL 31446 96.91 *
ft53.1 53 (7438, 7531] 9716 TL 9216 TL
ft53.2 53 (7630, 8026] 11669 TL 11484 TL
ft53.3 53 9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79
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* solved for the first time



Summary Tpper

SCHOOL OF BUSINESS

What can MDDs do for discrete optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for integer optimization

e MDD relaxations provide upper bounds

e MDD restrictions provide lower bounds

e |ncorporation in branch-and-bound can be very effective

MDDs for constraint programming and scheduling
e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible
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