

Decision Diagrams for Discrete Optimization

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/

Acknowledgments:

David Bergman, Andre Cire, Samid Hoda, John Hooker, Brian Kell, Joris Kinable, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla Slusky, Tallys Yunes

Summary

What can MDDs do for discrete optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- Incorporation in branch-and-bound can be very effective

MDDs for constraint programming and scheduling

- MDD propagation natural generalization of domain propagation
- Orders of magnitude improvement possible

Decision Diagrams

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

Brief background

- Original application areas: circuit design, verification
- Usually *reduced ordered* BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Recent interest from optimization community
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Interesting variant
 - approximate MDDs

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]

- Exact MDDs can be of exponential size in general
- We can limit the size (width) of the MDD to obtain a relaxation [Andersen et al., 2007]
 - strength is controlled by the width
- Can provide bounds on objective function
- Can also be used for cut generation, constraint propagation, guiding search, ...

MDDs for Integer Optimization

- Bergman, Cire, v.H., Hooker: Optimization Bounds from Binary Decision Diagrams. INFORMS J. Computing 26(2): 253-268, 2014.
- Bergman, Cire, v.H., Yunes: BDD-Based Heuristics for Binary Optimization. *Journal of Heuristics* 20: 211-234, 2014.
- Bergman, Cire, v.H., Hooker. Discrete Optimization with Decision Diagrams. *Under review*, 2013.
- Bergman, Cire, Sabharwal, Samulowitz, Saraswat, and v.H. Parallel Combinatorial Optimization with Decision Diagrams. In *Proceedings of CPAIOR*, Springer LNCS, 2014.

- Conventional integer programming relies on branchand-bound based on continuous LP relaxations
 - Relaxation bounds
 - Feasible solutions
 - Branching
- We propose a novel branch-and-bound algorithm for discrete optimization based on decision diagrams
 - Relaxation bounds Relaxed BDDs
 - Feasible solutions Restricted BDDs
 - Branching Nodes of relaxed BDDs
- Potential benefits: stronger bounds, efficiency, memory requirements, models need not be linear

Case Study: Independent Set Problem

- Given graph G = (V, E) with vertex weights w_i
- Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

max
$$\sum_{i} w_{i} x_{i}$$

s.t. $x_i + x_j \le 1$ for all (i,j) in E x_i binary for all i in V

Exact top-down compilation

Tepper school of business

Merge equivalent nodes

X₅

Node Merging

19

Evaluate Objective Function

Restricted BDD

- Order of variables greatly impacts BDD size
 also influences bound from relaxed BDD (see next)
- Finding 'optimal ordering' is NP-hard

- Insights from independent set as case study
 - formal bounds on BDD size
 - measure strength of relaxation w.r.t. ordering

Exact BDD orderings for Paths

23

Many Random Orderings

For each random ordering, plot the exact BDD width and the bound from width-10 BDD relaxation

Graph Class	Bound on Width
Paths	1
Cliques	1
Interval Graphs	n/2
Trees	n/2
General Graphs	Fibonacci Numbers

(The proof for general graphs is based on a maximal path decomposition of the graph)

Width 3 relaxed decision diagram

Upper Bound = 4

- Novel branching scheme
 - Branch on **pools** of partial solutions
 - Remove **symmetry** from search
 - Symmetry with respect to feasible completions
 - Can be combined with other techniques
 - Use decision diagrams for branching, and LP for bounds
 - Immediate parallelization
 - Send nodes to different workers, recursive application
 - DDX10 (CPAIOR 2014)

- Compare with IBM ILOG CPLEX
 - State-of-the-art integer programming technology
- Use typical, strong formulations
 - Edge formulation and clique formulation for maximum independent set problem
 - O(n) variables, $O(n^2)$ constraints
- Random Erdös-Rényi G(n,p) graphs and DIMACS Clique graphs
 - Compare end gaps after 1,800 seconds

Random graphs: n=500

39

DIMACS Graphs: End Gap (1,800s)

Gap Ratio (UB/LB) Comparison

Parallelization: BDD vs CPLEX

CPLEX

- n = 170, each data point avg over 30 instances
- 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
- 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)
- BDDs scale to well to (at least) 256 workers

General Approach

- In general, our approach can be applied when problem is formulated as a dynamic programming model
 - We can build exact BDD from DP model using top-down compilation scheme (exponential size in general)
 - Note that we do not use DP to solve the problem, only to represent it
- Other problem classes considered
 - MAX-CUT, set covering, set packing, MAX 2-SAT, SAT, ...

MAX-CUT representation

• Value of a cut (S,T) is

 $\sum_{s,t \mid s \in S, t \in T} w(s,t)$

- Example: cut ({1,2}, {3,4)) has value 2
- MAX-CUT: Find a cut with maximum value
- How can we represent this in a BDD?
 - state represents vertices included in S?
 - we propose a state to represent the marginal cost of including vertex in S

MAX-CUT example BDD

 State: jth element is additional value of adding vertex j to S (if positive)

MAX-CUT example BDD

 State: jth element is additional value of adding vertex j to S (if positive)

- Compare with IBM ILOG CPLEX
- Typical MIP formulation + triangle inequalities
 O(n²) variables, O(n³) constraints
- Benchmark problems
 - g instances
 - Helmberg and Rendl instances, which were taken from Rinaldi's random graph generator
 - n ranges from 800 to 3000 very large/difficult problems, mostly open
 - Also compared performance with BiqMac

MIP vs BDD: 60 seconds (n=40)

49

MIP vs BDD: 1,800 seconds (n=40)

	BiqN	BiqMac BDD		D	Best known	
instance	LB	UB	LB	UB	LB	UB
g50	5880	5988.18	5880	5899*	5880	5988.18
g32	1390	1567.65	1410*	1645	1398	1560
g33	1352	1544.32	1380*	1536*	1376	1537
g34	1366	1546.70	1376*	1688	1372	1541
g11	558	629.17	564	567*	564	627
g12	548	623.88	556	616*	556	621
g13	578	647.14	580	652	580	645

MDDs for Constraint Programming

- Andersen, Hadzic, Hooker, Tiedemann: A Constraint Store Based on Multivalued Decision Diagrams. *CP* 2007: 118-132
- Hoda, v.H., Hooker: A Systematic Approach to MDD-Based Constraint Programming. *CP* 2010: 266-280
- Cire, v.H.: MDDs for Sequencing Problems. *Operations Research*, 61(6): 1411-1428, 2013.

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve discrete optimization problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$\begin{array}{l} x_{1} \in \{1,2\}, \, x_{2} \in \{1,2,3\}, \, x_{3} \in \{2,3\} \\ x_{1} < x_{2} & x_{2} \in \{2,3\} \\ all different(x_{1},x_{2},x_{3}) & x_{1} \in \{1\} \end{array}$$

Illustrative Example

AllEqual($x_1, x_2, ..., x_n$), all x_i binary $x_1 + x_2 + ... + x_n \ge n/2$

Drawback of domain propagation

- All structural relationships among variables are projected onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)
- We can communicate more information between constraint using MDDs [Andersen et al. 2007]
- Explicit representation of more refined potential solution space
- Limited width defines *relaxed* MDD
- Strength is controlled by the imposed width

MDD-based Constraint Programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

- Linear equalities and inequalities
- Alldifferent constraints
- *Element* constraints
- Among constraints

- [Hadzic et al., 2008] [Hoda et al., 2010]
- [Andersen et al., 2007]
- [Hoda et al., 2010]
- [Hoda et al., 2010]
- Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]
- Sequence constraints (combination of Amongs) [Bergman et al., 2013]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]

Case Study: Disjunctive Scheduling

Disjunctive Scheduling

- SCHOOL OF BUSINESS
- Sequencing and scheduling of activities on a resource

- Resource
 - Nonpreemptive
 - Process one activity at a time

Common Side Constraints

- Precedence relations between activities
- Sequence-dependent setup times
- Induced by objective function
 - Makespan
 - Sum of setup times
 - Sum of completion times
 - Tardiness / number of late jobs

— ...

- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation π

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$: activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

 $start_{\pi_{i}} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}}$ i = 2, ..., n

MDD Representation

Act	r _i	p _i	d _i
1	0	2	3
2	4	2	9
3	3	3	8

- Path $\{1\} \{3\} \{2\}$:
 - $0 \leq \text{start}_1 \leq 1$
 - $6 \leq \text{start}_2 \leq 7$
 - $3 \leq \text{start}_3 \leq 5$

We can apply several propagation algorithms:

- *Alldifferent* for the permutation structure
- Earliest start time / latest end time
- Precedence relations

Propagation (cont'd)

- State information at each node *i*
 - labels on *all* paths: A_i
 - labels on *some* paths: S_i
 - earliest starting time: E_i
 - latest completion time: L_i
- Top down example for arc (u,v)

Alldifferent Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - ► A_u = {3}
 - Thus eliminate {3} from (u,v)

Alldifferent Propagation

- Some-paths state: S_u
 - Labels belonging to some path from node r to node u
 - ► S_u = {1,2,3}
 - Identification of Hall sets
 - Thus eliminate {1,2,3} from (u,v)

Propagate Earliest Completion Time

SCHOOL OF BUSINESS

- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time

Propagate Earliest Completion Time

► E_u = 7

Eliminate 4 from (u,v)

Propagate Precedence Relations

- Arc with label *j* infeasible if *i* ≪ *j* and *i* not on some path from r
- Suppose $4 \ll 5$
 - ► S_u = {1,2,3}
 - Since 4 not in S_u, eliminate 5 from (u,v)
- Similarly: Bottom-up for $j \ll i$

Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *u*,
 - A_u^{\downarrow} : values in all paths from root to *u*
 - A[↑]_u: values in all paths from node u to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \not\in A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M
- Same technique applies to relaxed MDD

Communicate Precedence Relations

- 1. Provide precedence relations from MDD to CP
 - update start/end time variables in CP model
 - other inference techniques may utilize them
 - help to guide search
- 2. Filter the MDD using precedence relations from other (CP) techniques
- 3. In context of MIP, these can be added as linear inequalities

- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 - State-of-the-art constraint based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxation
 - MDD is added as user-defined propagator

Total Tardiness Results

total tardiness

total weighted tardiness

Sequential Ordering Problem (TSPLIB)

			CPO		CPO+MDD, width 2048	
instance	vertices	bounds	best	time (s)	\mathbf{best}	time (s)
br17.10	17	55	55	0.01	55	4.98
br17.12	17	55	55	0.01	55	4.56
$\mathrm{ESC07}$	7	2125	2125	0.01	2125	0.07
$\mathrm{ESC25}$	25	1681	1681	TL	1681	48.42
p43.1	43	28140	28205	TL	28140	287.57
p43.2	43	[28175, 28480]	28545	TL	28480	$279.18{}^{*}$
p43.3	43	[28366, 28835]	28930	TL	28835	177.29*
p43.4	43	83005	83615	TL	83005	88.45
ry48p.1	48	[15220, 15805]	18209	TL	16561	TL
ry48p.2	48	[15524, 16666]	18649	TL	17680	TL
ry48p.3	48	[18156, 19894]	23268	TL	22311	TL
ry48p.4	48	[29967, 31446]	34502	TL	31446	$96.91^{\boldsymbol{*}}$
ft 53.1	53	[7438, 7531]	9716	TL	9216	TL
ft 53.2	53	[7630, 8026]	11669	TL	11484	TL
ft 53.3	53	[9473, 10262]	12343	TL	11937	TL
ft 53.4	53	14425	16018	TL	14425	120.79

Summary

What can MDDs do for discrete optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- Incorporation in branch-and-bound can be very effective

MDDs for constraint programming and scheduling

- MDD propagation natural generalization of domain propagation
- Orders of magnitude improvement possible