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What are Decision Diagrams?

Discrete Optimization with Decision Diagrams
— Modeling, Relaxation/Restriction, Search

« Constraint Programming with Decision Diagrams
— Constraint Propagation, Scheduling Applications

 Integer Programming with Decision Diagrams
— Integrate Decision Diagrams in Branch-and-Bound
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* Graphical representation of — 1
Boolean functions

flx) = (x1 @xz) A (x3 <:>x4)
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* Graphical representation of

o X
Boolean functions '
f(x) — (x1 e xz) N (Xg & X4) X2
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* Graphical representation of —
X
Boolean functions '
f(X) — (x1 = xz) N (X3 — X4) X
X3
 BDD: binary decision diagram
e MDD: multi-valued decision diagram
X4

Tepper School of Business ¢ William Larimer Mellon Founder



Brief Historic Background "Tepper
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Widely used in computer science [Lee, 1959; Akers, 1978; Bryant, 1986]
— original application areas: circuit design, verification

Usually reduced ordered BDDs/MDDs are applied

— fixed variable ordering; minimal exact representation

First applications to discrete optimization problems

— BDD-based IP solver [Lai et al., 1994]

— set bounds propagation in CP [Hawkins, Lagoon, Stuckey, 2005]

— |IP cut generation [Becker et al., 2005] [Behle & Eisenbrand, 2007] [Behle, 2007]
— post-optimality analysis [Hadzic & Hooker, 2006, 2007]

Relaxed Decision Diagrams [Andersen, Hadzic, Hooker & Tiedemann, CP 2007]

Tepper School of Business * William Larimer Mellon Founder




Decision Diagrams: Optimization View lepper
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-_——— 0

* Graphical representation of — 1
. X
Boolean functions '
f(X) — (x1 = xz) N (X3 — X4) X2
X3
* Optimization perspective:
- literals - variables
X4

- arcs - assignments
- paths = solutions
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Decision Diagrams: Optimization View lepper
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max 2X; + X, - 4X3 + X, — )
subject to 1
X;—X,=0
X3—X,=0 X

X1, X5, X3, X, €10,1}
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Decision Diagrams: Optimization View lepper
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-_——— 0

max 2X; + X, - 4X3 + X, !
: X1
subject to
X;—X,=0
X3—X,=0 X
X1, X5, X3, X, €10,1}
X3
e Maximizing a linear (or separable) function:
X4

* Arclengths: contribution to the objective
* Longest path: optimal solution
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e
max 2X; + X, - 4X3 + X, ! ,
. X4
subject to d/
X;—X,=0
X3—X,=0 X
X1, X5, X3, X, €10,1}
X3
e Maximizing a linear (or separable) function:
X4

* Arclengths: contribution to the objective
* Longest path: optimal solution
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Towards Generic Discrete Optimization lepper
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Relaxation

Methods

Modelin MIP: Linear Programming Relaxation .
gk DD: Relaxed Decision Diagram Primal
Framewor Heuristics
MIP: Linear Inequalities MIP: Feasibility Pump, RINS, ...
DD: Dynamic Programming DD: Restricted Decision Diagrams
Generic Optimization
Techniques

E.g., MIP, MINLP, CP, SAT, ...

Inference Search

MIP: Valid linear cuts MIP: Branch and bound (variable-based)
DD: Propagation, cuts DD: Branch and bound (state-based)

Tepper School of Business * William Larimer Mellon Founder



Modeling Framework lepper

SCHOOL OF BUSINESS

Example: Maximum Independent Set Problem

« Classical combinatorial optimization problem

5
® (equivalent to maximum cligue)
« Wide applications, ranging from scheduling to
social network analysis
o)
RO
/
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Example: Maximum Independent Set Problem

Integer Programming Formulation:

5

@ max 5x; + 4x, + 2x5 + 6x, + 8X:

subjectto x; +x,<1

X+ X =1

(5) X, +X3=< 1

8 X, + X, <1

X3+ X, <1

X+ X< 1

X1, X5, X3, X4, Xs € {0,1}
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Example: Maximum Independent Set Problem

Our Model: Dynamic Programming

5 . .
(1) e Exploit recursiveness
* Model is formulated through states
* Decisions (or controls): define state transitions
(5) Decision diagram: State-Transition Graph
8

* Nodes corresponds to states
* Arcs are state transitions
* Arc weights are transition costs
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 DP model for the maximum independent set
— State: vertices that can be added to an independent set (eligible vertices)
— Decision: select (or not) a vertex i from the eligibility set

* Formal model:

max {V,i_ (S\ {i}),Vi_i(S\N@)) +w;}, (€S

Vil =1y (), 0. w.

V(@) =0 i=1,..,n

( N(i) =i + its neighbors )

Tepper School of Business ¢ William
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-:0
1,2
—:1 { 2,345} —— eligible vertices 5
X4 5 N 1
\\\{\2)3)4)5} O
{34} O
X5
5
8
X3
X4
Xg
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=10
—:1 \{\1’2’3’4’5}\ eligible vertices 5
X4 5 N 1
\\\{\2)3)4)5} O
13,4} (
Xy 0 4 0
i \\{31415}
© 3.4} o} o ©
X3
X4
X5
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-:0
1,2
—:1 \{ 23,43 — eligible vertices 5
X, 5 0 @
\\\{\2'3’4'5} L/
{34} (
X, 0 4 0
| \\{31415}
) (3,4} {5} ‘ (5)
: 5 8
X3 2 .0 ) 2/ M0

o Ble B 04,5}
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Maximum Independent Set Problem lepper
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----:0
—:1 \{\1’2’3’4’5}\ eligible vertices 5
X4 5 N 1
\\\{\2)31415} O
{3,4} (
Xy 0 4 0
i \\{31415}
) (3,4} {5} ‘ RO
Xs 2 \\\o 0 2/ N0
4 e
% ® Blg ) @45}
X4
Merge equivalent nodes
X5
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Maximum Independent Set Problem lepper
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-0

—:1 \{\1’2’3’4’5}\ eligible vertices 5
X4 5 N 1

\\\{\2)3)4)5} O
3,4} (
Xy 0 4 0
| \\{3’4’5}

) (3,4} {5}

8
X3
y Theorem: This procedure generates a
* reduced exact BDD
[Bergman, Cire, vH, Hooker, 1JOC 2013]
Xs
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* In general, decision diagrams grow exponentially large

 Variable ordering impacts size of diagrams
— Closely connected to treewidth and bandwidth

— Independent Set: polynomial for certain classes of graphs
[Bergman, Cire, vH, Hooker, 1JOC 2014]

— TSP: parameterized-size depending on precedence relations
[Cire & VH, OR 2013]
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Towards Generic Discrete Optimization lepper

Relaxation
Methods
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Modeling MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram
Framework

MIP: Linear Inequalities
DD: Dynamic Programming

Generic Optimization
Techniques

Tepper School of Business * William Larimer Mellon Founder
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 How to handle exponential size of diagram?

« Explicitly limit the size (e.g., the width) ®\
— while ensuring that no solution is lost Wi?t}/\\} \,]
— over-approximation of the solution space /
— provides discrete relaxation: | ,/”]
Relaxed Decision Diagram ) Vol

— strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]
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* Model Is augmented with a state aggregation operator
— Defines how to merge nodes so that no feasible solution is lost
— Example for maximum independent set:

max {V;i_;y(S\ {i}),Vi_.i(S\N@)) +wi}, {€S

Vi(S) = V_.(S), o.W.

VL(Q) = O, [ = 1, e,

@D (51,52) =51 US,




Independent Set Problem: Relaxed DD rIépper
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{1,2,3,4,5}

\\\ {213;4/5}

{3,4}

X5 0

*{3,4,5) o)

\ 8(/
X3 % 0
\({;1,5} Maximum width = 3

Xy
X5
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Independent Set Problem: Relaxed DD rIépper
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{112I3I4I5}

X1 > 0 @

{3’4} N {2131415}

X, 0 4 0

*_{3,4,5) o)

| RO
X3

Maximum width = 3

X4
Xs
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Independent Set Problem: Relaxed DD rIépper

SCHOOL OF BUSINESS
0 {1,2,3,4,5)
. ) .
X1 > 0 @
{3 4} . {2131415}

X, 0 4 0

*_{3,4,5) o)

| 8@
X3

Maximum width = 3

X4
X5
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Exact vs. Relaxed Decision Diagrams lepper
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Exact Relaxed
.. (width < 3)
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Exact Relaxed

(0,0,0,1,0)
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Exact Relaxed

X, (width < 3)
X, :

|
X3 \\ (

\
X4
X5
(1,0,0,0,1)
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Exact vs. Relaxed Decision Diagrams lepper
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Exact Relaxed
- . . -
. 0 X, 5 .0 (width < 3)
0 4 0 Xy 0 4 0
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Exact vs. Relaxed Decision Diagrams lepper
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Exact Relaxed
5 N o X, 5 ~ 0 (width < 3)
N ~
~\ ~
0 4 0 Xy 0 4 0

x=(0,1,0,0,1)
Solution value = 12
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Exact vs. Relaxed Decision Diagrams lepper
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Exact Relaxed
- . : -
. 0 X, 5 .0 (width < 3)
|
0 4 0 . 0, 4 0
|
.
\ N
B X3 2 \0 0 .-~
' x=(1,0,0,0,1)

Upper bound = 13
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Relaxation Bound: Independent Set lepper
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28 .
LP only — ' ' Compare with LP bound
LP4+cuts = CPLEX
26 - BDD 100 — ( )
BDD 1000 ———
2.4 -BDD 10000 i

2.2

2

1.8

1.6

Bound / Optimal Value

1.4

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

1
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Towards Generic Discrete Optimization lepper
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Modelin MIP: Linear Programming Relaxation .
F gk DD: Relaxed Decision Diagram Primal
Sk Heuristics

MIP: Linear.lnequalities. MIP: Feasibility Pump, RINS, ...
DD: Dynamic Programming DD: Restricted Decision Diagrams

Generic Optimization
Techniques
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Restricted Decision Diagrams lepper
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----:0
« Under-approximation of the feasible set s —:1
™0 X1
. \
@
0 4 \0 X,

2 X
) :
8
. . O\\\\ Xy
Maximum width = 3
X5

[Bergman, Cire, vH, Yunes, J Heur. 2014]
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Restricted Decision Diagrams lepper
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----:0
« Under-approximation of the feasible set PR —:1
~0 X4
N
5
@
0 4 N0 X5
o 2 0 o: 2 X3
8@ |
o ' Xq
Maximum width = 3 ‘ :o
Q ®
x=(0,1,0,0, 1) o, 8 A X
Lower bound = 12

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Tepper School of Business * William Larimer Mellon Founder



Average Optimality Gap (%)

Primal Bound: Set Covering Problem

T Carnegie Mellon
epper
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60 1000 -
35 7 100 | <
50 — . 10 k _
= : .
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£
45 - n = 1l -
40 +~ — 0.1 _
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35 | | | | | | | | 0.01 | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

n

n

Tepper School of Business * William Larimer Mellon Founder




Towards Generic Discrete Optimization lepper
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Relaxation

Methods

Modelin MIP: Linear Programming Relaxation .
gk DD: Relaxed Decision Diagram Primal
Framewor Heuristics
MIP: Linear Inequalities MIP: Feasibility Pump, RINS, ...
DD: Dynamic Programming DD: Restricted Decision Diagrams
Generic Optimization
Techniques

Inference

MIP: Valid linear cuts
DD: Propagation, cuts
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Inference Techniques from DDs lepper

SCHOOL OF BUSINESS

Cut generation for general MIPs
— ldea first proposed in [Becker et al., 2005] [Behle, PhD 2007]
— Facet-defining cuts [Tjandraatmadja & vH, I1JOC to appear]
— Extension to MINLP [Davarnia & vH]

Clause learning for SAT [Kell et al., CPAIOR 2015]

Problem-specific cuts
— Precedence constraints for scheduling problem [Cire&vH, OR 2013]

Constraint Propagation in Constraint Programming

— Several constraint types: Alldiff, Among, Sequence, Markov, Statistical, ...
[Hoda, vH, Hooker, CP 2010] [Bergman, Cite, vH, JAIR 2014]
[Perez & Regin, IJCAI2015, CP2016, AAAI2017, CPAIOR 2017]
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Towards Generic Discrete Optimization lepper
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Relaxation

Methods

Modelin MIP: Linear Programming Relaxation .
gk DD: Relaxed Decision Diagram Primal
Framewor Heuristics
MIP: Linear Inequalities MIP: Feasibility Pump, RINS, ...
DD: Dynamic Programming DD: Restricted Decision Diagrams
Generic Optimization
Techniques

Inference

MIP: Valid linear cuts MIP: Branch and bound (variable-based)
DD: Propagation, cuts DD: Branch and bound (state-based)
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Exact Search Method Tepper
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* Novel decision diagram branch-and-bound scheme
— Relaxed diagrams play the role of the LP relaxation
— Restricted diagrams are used as primal heuristics

* Branching is done on the nodes of the diagram
— Branching on pools of partial solutions
— Eliminate search symmetry

[Bergman, Cire, vH, Hooker, 1JOC 2016]
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Branch and Bound lepper
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Relaxed BDD (width < 3)

X
X, \
) ) @ ] Last Exact Layer
X4
X5

N 1
N
1
N /
\ ’
S ’
N
: ‘ Bou d 13
’ rl
N . —
N
N ’
’
N o
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Node Queue
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Q:

X1

3,4}

{&4}55

{1,2,3,4,5}

\\\\\ {2;3/415}

5} /a4 0.3,4,5)

)

\ -7
\ -
-
-

N 1
N 1
N
N [
N /
N ’
o ‘ Bou d 13
’ "
N , —
N
N ’
.
AN 2

Relaxed BDD (width < 3)

Upper bound =13

Last Exact Layer
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Node Queue lepper
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{3,4} 5 {5} 4 o {3,4,5}
Q: o) ® o)
Upper bound =13
{3,4} 5 PP
Lower bound =11
X3
Xy

Exact solution: 11
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Node Queue lepper
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{5} 4 o {345}
Q: ® O

Upper bound =13

F 4 Lower bound = 12

Exact solution: 12
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Node Queue lepper
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0 {3,4,5}

Q: o
0 {3,4,5} Upper bound =13

Lower bound =12

Exact solution: 10
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Node Queue lepper
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Q:

Optimal solution: 12
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New Branching Scheme lepper
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 Novel branching scheme
— Branch on pools of partial solutions

— Remove symmetry from search
« Symmetry with respect to feasible completions

— Can be combined with other techniques
« Use decision diagrams for branching, and LP for bounds
* Define CP search with MDD inside global constraint

— Immediate parallelization

« Send nodes in the queue to different workers, recursive application
« DDX10 [Bergman et al. CPAIOR 2014]
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Maximum Independent Set: 500 variables rIépper
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320 | CPLEX

BDD

300
250
200
150 |

100

Average Percent Gap

50

Density
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Maximum Independent Set: 1500 variables rIépper
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1200

CPLEX
BDD

1000

800

600

400

Average Percent Gap

200

Density
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Parallelization: Centralized Architecture lepper
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Master maintains a pool of BDD

- _ nodes to process
et I - —nodes with larger upper bound
NG = el have higher priority
- / \ - Workers receive BDD nodes,

- generate restricted & relaxed BDDs,
and send new BDD nodes and
bounds to master

—they also maintain a local pool

of nodes
[Bergman et al. CPAIOR 2014]
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Parallelization: BDD vs CPLEX Tépber
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D1g —+— D19 —+—
D21 —x—-
L D23 ---%--- | 1000
1000 [ D25 f E
D27 ——®&
D29 --&--
) E m 100 -
cé 100 . :n?a L
o 5]
5 g
— o -
£ 7_—+ £ o -a o - -
= g = ~ -
N @
T g . -
10 | 4 10 |
r ] [ o o
7 [ e
1 1 . . . . I T | . . 1 1 L L L . TR -
1 10 1 10
Number of Cores Number of Cores

« n =170, each data point avg over 30 instances
« 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
« 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)
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Parallelization: BDD vs CPLEX rIé]erel“
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T D1g T ] [T T T T T L T T T T L | B;? '+
D21 —x—- e
1000 |- D23 x| 1000 | D23
L D27 - m - ] E X D27 ] E
D29 ---c-- | F D29 o -
%‘ 100 %‘ 100 Fom
c L [ -
§ 3
L E o
: S —— :
F =W =
"*-—'.i_.___.
10 | 7 10 ¢
L ] “m. T
] r (=
7 i <]
1 | 1 1 1 1 L | n n n L L Lo s " " " " PR |
1 10 1 10 100
Number of Cores Number of Cores

« n =170, each data point avg over 30 instances

« 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
« 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)
 BDDs scale to well to (at least) 256 workers
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MAX-CUT Results lepper
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 Compare with IBM ILOG CPLEX and BigMac

« Typical MIP formulation + triangle inequalities
— O(n?) variables, O(n3) constraints
« Benchmark problems

— g instances

— Helmberg and Rendl instances, which were taken from Rinaldi's
random graph generator

— n ranges from 800 to 3000 — very large/difficult problems, mostly open

BDD search
— Last Exact Layer (LEL) or Frontier Cut (FC)

Tepper School of Business * William Larimer Mellon Founder



MIP vs BDD: 60 seconds (n=40) "Tepper
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Number of MCP Instances Solved in 60 Seconds (n=40)

10 F ' | | "BDD (LEL) —— _
BDD (FC) =-=-X%---
IP (presolve-off) ---%:--
IP (presolve-on) -E}--
8 |- -
% 6f + .
0
w
©
o]
S 4 .
e
2 | -
0+ ...:7_:._ - H -
] ] ] ] ]
0.2 0.4 0.6 0.8 1

density
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MIP vs BDD: 1,800 seconds (n=40) Tepper
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Number of MCP Instances Solved in 1800 Seconds (n=40)

| | | | |
10 H - 5 —a—H—H + + -
8 B “1l ‘-.'-.‘ -
““ .‘E""‘
o \
e 6f =. g 1
3 \ . \
wn \ .
53 ‘1. '.‘
O ) ]
5 4 B ‘1\‘ ’.,a"x\\ * 7
2 [ ‘x ________ ¥\ LY 7]
\\ l" \\\ -
BDD (LEL) —— N S R
BDD (FC) ---%--- N
IP (presolve-off) ---3%--- N i
0 IP(prlesolve-on) ------ EI----I- | \Ik’ --------- £ ERREEREE II -
0.2 0.4 0.6 0.8 1
density
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BigMac vs BDD lepper
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BigMac BDD Best known
instance LB UB LB UB LB UB
g50 5880 5988.18 5880  5899* 5880 5988.18
g32 1390 1567.65  1410* 1645 1398 1560
g33 1352 1544.32  1380*  1536* 1376 1537
g34 1366 1546.70  1376* 1688 1372 1541
gll 558 629.17 564 567* 564 627
gl2 548 623.88 556 616* 556 621

gl3 578 647.14 580 652 580 645
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Optimality Gap Improvements lepper
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* Reduced optimality gap for several benchmark instances

m old % gap

11.17 0.53 95.24
g50 1.84 0.32 32.44
g32 11.59 10.64 8.20
gl12 11.69 10.79 7.69
g33 11.70 11.30 3.39

g34 12.32 11.99 2.65
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Constraint Programming with Decision Diagrams
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Motivation lepper
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* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
— Propagate updated domains to other constraints

X{ > X,

X+ X, = Xg

alldifferent(x,,X,,X3 ,X,)

X, € {1,2}, x, € {0,1,2,3}, x5 € {2,3}, x, € {0,1}
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Motivation lepper
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* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
— Propagate updated domains to other constraints

X+ X, = Xg
alldifferent(x,,X,,X3 ,X,)
X, € {1,2}, x, € {0,1,2,3}, x5 € {2,3}, x, € {0,1}
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Motivation lepper
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* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
— Propagate updated domains to other constraints

X+ Xy = X3
alldifferent(x,,X,,X3 ,X,)
X1 S {112}1 X2 S {Olllzt,é}l X3 S {213}1 X4 S {011}
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Motivation lepper
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* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
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* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
— Propagate updated domains to other constraints

X{ > X,
X+ X, = Xg
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Motivation lepper

SCHOOL OF BUSINESS

* Constraint Programming applies constraint propagation
— Remove provably inconsistent values from variable domains
— Propagate updated domains to other constraints

X, > X, domain propagation
X, + X, = X, can be weak, however...

alldifferent(x,,X,,X3 ,X,)

X, € {1,2}, %, € {B,LLA}, x; € {Z,3}, x, € (0,1}
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x. € {1,2,3,4}
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List of all solutions to alldifferent:
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alldifferent(x,,x,,X3,%,) (1) List of all solutions to alldifferent:
X;+ X, +X329 (2) Xy Xy X3 X4
. v 2 3 41
X €11,2,3,4} " Suppose we could
v 2 4 31 -
evaluate (2) on this list
(1) and (2) are both v3 241
domain consistent
v 4 3 2 1

(i.e., no propagation)

domain projection: D(x,) = {1}
D(x,) = D(x,) = D(x;3) = {2,3,4}
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List of all solutions to alldifferent:

X; Xy X3 Xg4

v 2 3 4 1 X1
v 2 4 3 1

v 32 41 &
v 4 3 2 1

X4

Use MDD!
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Motivation for MDD propagation lepper

SCHOOL OF BUSINESS

« Conventional domain propagation: all structural relationships among
variables are lost after domain projection

« Potential solution space is implicitly defined by Cartesian product of
variable domains (very coarse relaxation)

We can communicate more information between constraint using
MDDS [Andersen et al. 2007]

« EXxplicit representation of more refined potential solution space
« Limited width defines relaxed MDD
« Strength is controlled by the imposed width
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MDD-based Constraint Programming rIéppel“

SCHOOL OF BUSINESS

e Maintain limited-width MDD
— Serves as relaxation
— Typically start with width 1 (initial variable domains)
— Dynamically adjust MDD, based on constraints

« Constraint Propagation

— Edge filtering: Remove provably inconsistent edges (those that do not participate in any
solution)

— Node refinement: Split nodes to separate edge information

e Search
— As in classical CP, but may now be guided by MDD
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Specific MDD propagation algorithms lepper

SCHOOL OF BUSINESS

* Linear equalities and inequalities  [Hadzic et al., 2008] [Hoda et al., 2010]

e Alldifferent constraints [Andersen et al., 2007]
 Element constraints [Hoda et al., 2010]
 Among constraints [Hoda et al., 2010]

 Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]
« Seguence constraints (combination of Amongs) [Bergman et al., 2014]

* Generic re-application of existing domain filtering algorithm for
any constraint type [Hoda et al., 2010]
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Application to Disjunctive Scheduling lepper

SCHOOL OF BUSINESS

« Sequencing and scheduling of activities on a resource

* Activities
: : 0 1 2 3 4
— Processing time: p,
— Release time: r, Activity 1 [— —
— Deadline: d. .
' Activity 2 [ d
* Resource Activity 3 E ]
— Nonpreemptive

— Process one activity at a time
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Scheduling: Model Extensions lepper

SCHOOL OF BUSINESS

* Precedence relations between activities

« Sequence-dependent setup times

 Various objective functions

— Makespan

— Sum of setup times

— (Weighted) sum of completion times
— (Weighted) tardiness

— number of late jobs
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DDs for Disjunctive Scheduling lepper

SCHOOL OF BUSINESS

Three main considerations:

* Representation

— How to represent solutions of disjunctive scheduling in a DD?

 Construction

— How to construct the DD?

* Inference techniques

— What can we infer using the DD?




Decision Diagram Representation lepper

SCHOOL OF BUSINESS

* Every solution can be written as a permutation =«

m, T, , T, ..., W, . activity sequencing in the resource

« Schedule is implied by a sequence, e.g.:

starty, = starty,  +pg,_, 1=2,..,n

* Represent feasible permutations with multi-valued
decision diagram (MDD)

[Cire&vH, OR 2013]
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MDD Representation: Example lepper

Act r. p;, d
1 3 4 12 !
, 0 P Path 3—-2-1:
3 1 2 10 m, 6 sstart; <8
3 Sstart, <5
precedence: 3 K1 1 < start, €3
T3
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Top-down MDD compilation lepper

SCHOOL OF BUSINESS

precedence:
3K1
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precedence:
3«1 Ty 2 )3 2 3
—>
) 1
L —>
T3 1%}3 )
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Top-down MDD compilation lepper

SCHOOL OF BUSINESS

precedence:
3«1 T 23 2 3
—
D —>
T3 lé)3 )
exact MDD
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Top-down MDD compilation lepper

SCHOOL OF BUSINESS

precedence:
3«1 T, 2| |13 2 3
—
TEZ 1 2>3 3 1
) —>
n;  1(2| )3 )
N /
relaxed MDDs exact MDD

(strength is controlled by
maximum width)
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Top-down MDD compilation lepper

SCHOOL OF BUSINESS

precedence:
3«1 Ty 2 )3 2 3
—>
) 1
L —>
T3 1%}3 )
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Top-down MDD compilation lepper

precedence:

3K1

Act r. p, d
1 3 4 12
2 0 3 11
3 1 2 10

minimize makespan:

SCHOOL OF BUSINESS

T, 2| 13 2 3
—>
r, 12 )3 3 1
—>
T3 1(2] )3 )
lower bound =7 lower bound =7 optimum =9
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MDD State Information lepper

SCHOOL OF BUSINESS

We need to represent several problem components:

* Permutation structure (“AllDifferent”)
— state information: set of values taken on paths from root to state

« Earliest start time (similar for latest end time)
— state information: minimum completion time of all paths from root

* Precedence relations
— can be enforced using the state information for AllDifferent
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Exact MDD Compilation lepper

SCHOOL OF BUSINESS

* Theorem: Constructing the exact MDD for a Disjunctive
Instance i1s NP-Hard

(In fact, determining state equivalence is already NP-hard)

 Therefore we use relaxed MDDs
— specify a maximum width

 MDDs of bounded width exist for special cases
— for example for structured precedence relations




Inference from the MDD lepper

SCHOOL OF BUSINESS

* Theorem: Given exact MDD M, we can deduce all
implied activity precedences in O(n?|M]) time

* The algorithm can also be applied to relaxed MDD to find
a subset of precedences

— can be stronger than edge-finding, not-first/not-last, etc.




Performance lepper

SCHOOL OF BUSINESS

« MDD propagation implemented in IBM ILOG CPLEX CP
Optimizer 12.4 (CPO)
— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation
— MDD is added as user-defined propagator

« Compare three different variants
— CPO (only use CPO propagation)
— MDD (only use MDD propagation)
— CPO+MDD (use both)
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TSP with Time Windows lepper

SCHOOL OF BUSINESS

10000 )
_ Dumas/Ascheuer instances
] - 20-60 cities
1000 ] - max MDD width: 16
N X |
Py 100 | X
L x,
& Z » :
= | §-
()
o) 10 i x x XX %
> X
Y 1} ]
- X
o
_ * VA _
0.1 C X X N
L x % x x i
- K XX X
0.01 R < S T B
0.01 0.1 1 10 100 1000 10000

CPO time (s)
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Total Tardiness rIé]O]Qel“
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Sequential Ordering Problem (TSPLIB)

CPO CPO+MDD, width 2048
instance vertices bounds best  time (s) best time (s)
br17.10 17 55 55 0.01 55 4.98
br17.12 17 55 55 0.01 55 4.56
ESCO07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 (28175, 28480)] 28545 TL 28480 279.18 *
p43.3 43 28366, 28835] 28930 TL 28835 177.29 *
p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 (15220, 15805] 18209 TL 16561 TL
ry48p.2 48 (15524, 16666] 18649 TL 17680 TL
ry48p.3 48 (18156, 19894] 23268 TL 22311 TL
ry48p.4 48 (29967, 31446] 34502 TL 31446 96.91 *
ft53.1 53 (7438, 7531] 9716 TL 9216 TL
ft53.2 53 (7630, 8026] 11669 TL 11484 TL * solved for
ft53.3 53 (9473, 10262] 12343 TL 11937 TL the first time
ft53.4 53 14425 16018 TL 14425 120.79
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Strengthening Relaxed Decision Diagrams rIépper

SCHOOL OF BUSINESS

« Lagrangian relaxation
— penalize constraint violations by modifying arc weights

 Additive bounding
— Incorporate dual information from LP relaxations
— e.d., aggregate reduced costs along path from root to terminal




Extension: Lagrangian bounds lepper

SCHOOL OF BUSINESS

* Observation: MDD bounds can be very loose

— main cause: repetition of activities T,
* Apply Lagrangian relaxation
— penalize repeated activities; reward unused activities m,
min z + Z Aj (Z(m =7j)— 1)
7j=1 =1 T[3
—z4 ) > Nm=j)->_ N

i=1 j=1 j=1

vj

— shortest path with updated weights
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Impact of Lagrangian Relaxation (TSPTW) rIépper

SCHOOL OF BUSINESS

Scatter plot of optimality gap at the root node Number of instances solved versus time
35 | | | | | | > [ T L T T e T
200 SR
o 0T AT 2
Q2 =
S o5 - . 3 150 |- T
= - w
=0 7 @
E 20 B //"" — E
2 ol s
: | 2 100 - -
=% ©
- o
< ] Ie! B ]
= e 7
X 4 = without Lagrangian —+—
with Lagrangian --->¢--
: ol | number of instances -------- N
30 35 0.01 0.1 1 10 100 1000 10000

Without Lagrange multipliers Time (seconds)

[Bergman, Cire, vH, 2015]
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Extension: Additive Bounding lepper

SCHOOL OF BUSINESS

« Case: time-dependent seguencing
— seguence-dependent setup times also depend on position!
— 65]- = setup time between i and j if I Is at position t

0 1 2 3 4 5 6 7

MDD representation

y .

— state-dependent costs Activity 1 - |- .
Activity 2 [ — ,_ﬂ
Activity 3 H R j

[Kinable, Cire, vH, EJOR 2017]




Additive Bounding: LP + MDD lepper

SCHOOL OF BUSINESS

e Add LP reduced costs to MDD relaxation [Fischetti &Toth, 1989]

» Effectivess depends on the quality of the LP relaxation
* LP can be made stronger for specific problem class

— TD-TSP [Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995]
[Gouvela and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014]
—TD-TSP-TW (time windows) [Miller, Tucker, Zemlin, 1960]
[Desrocher & Laporte, 2014]

— TD-SOP (precedence constraints) [Sarin, Sherali, Bhootra, 2005]
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Experimental Setup rIé]@)[’)el“

SCHOOL OF BUSINESS

Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3
— MDD added to CP Optimizer (Cire & v.H., 2013)

— maximum width 1024

— time limit: 30 minutes

TD-TSP 38 instances from TSPLIB (n=14-107 jobs)

67 = (n-1)*6; ; [Abeledo et al., 2013]
TD-TSPTW  based on Dumas et al. (n=30, 35, 40), 270 total
TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)
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TD-TSP: Performance Plot lepper

SCHOOL OF BUSINESS

45 | | | | |
“MIP ——
MDD(1024) = .= :

40 MDD(1024)-AB —— |

Instances(+#)

<100
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TD-TSPTW: Performance Plot lepper

SCHOOL OF BUSINESS

max width 32 max width 1024

).IJIDD(S% —
MDD(32)-AB —— :

MDD+

MDD(1021) —— ‘ 5 : :
MDD(1024)-AB —— | | =

200 |-

| | | | | | E i i i i i i
0 450 900 1350 1800/0 <25 <50 <75 <100 0 450 900 1350 1800/0 <25 <50 <75 <100

Time (s) Gz_:\p (‘;A) Time (s) Gap (;A))

(MIP was unable to find any single integer solution)
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TD-SOP: Performance Plot lepper

SCHOOL OF BUSINESS
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Integer Programming with Decision Diagrams
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Motivation rIépper

SCHOOL OF BUSINESS

IP model

Presolve

) Cutting planes

Branch-and-bound
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Motivation rIépper

SCHOOL OF BUSINESS

IP model
DD construction from IP model

Presolve

) Cutting planes

Branch-and-bound

[Tjandraatmadja, PhD 2018]
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Decision Diagram for IP Model? lepper

SCHOOL OF BUSINESS

* Option 1: use linear constraints to build DD
— DD relaxation usually much weaker than LP bound

* Option 2: identify structure in model
— set covering? set packing? independent set?
— dedicated DD representing part of the model

* Option 3: use structure inferred by solver
— conflict graph/cligue table




Conflict Graph for Binary Problems rIWG]‘O]QGI“

SCHOOL OF BUSINESS

X;+ X, +x3<1
X, +(1l—x%3)<1

(1-x,)+(1-x,)<1

Conflict graphs are inferred and constructed by most modern MIP solvers
[Atamtirk et al., 2000; Achterberg, 2007]
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS

e State: variable domains

« Transition: propagate decision z1 € {0,1},25 € {0,1}, 23 € {0,1}
o
L1
L2
I3
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS

e State: variable domains
* Transition: propagate decision 21 € {01}, € (0.1}, 25 € {0.1)

1 \
zy € {0,1},25 € {0,1} @ zy € {0,1}, 23 € {1}

L2
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS

e State: variable domains

* Transition: propagate decision r1 € {0129 € {0.1),25 € {0.1}
1 .
To € {0, 1},333 € {0, 1} ':' B To € {0,1},3:3 S {1}
L2
¢ . {1)
I3
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS

e State: variable domains

 Transition: propagate decision r1 € (0.1}, € {01}, 25 € (0.1}
1 .
zo € {0,1}, 25 € {0,1} & g 2, € {0,1}, 25 € {1)
L2
s c {1}
I3
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS

e State: variable domains
* Transition: propagate decision 1€ (0.1).20 € {0.1}. 2 € (4. 1)

X1
To € {0, 1}3373 S {¢a ]-} ‘:

L2

| EPAS {0,1},:1,’3 — {1}

T3 € {1}

* Theorem: If root state is domain consistent, then this approach
yields a reduced exact DD
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Decision Diagram Compilation lepper

SCHOOL OF BUSINESS
e State: variable domains
» Transition: propagate decision 1€ (0.1}, € {01}, 24 € {1}
X1 '
:'.TQ c {0, 1},333 i~ {1}
92 ‘
4y e (1}
I3

* Theorem: If root state is domain consistent, then this approach
yields a reduced exact DD
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Stronger DD relaxation via Lagrangian rIépper

SCHOOL OF BUSINESS

Original IP model Lagrangian model
max ¢ ' x r;]>|51 max ¢'x + A\ (b Ax)
Fx < f < Structured N
constraints for DD Fx < f
n
Ax < b < Any set of linear xEL', b<x<u
constraints
xeZ" (t<x<u Lagrangian subproblem is

longest path in DD (efficient)
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Stronger DD relaxation via Propagation rIépper

SCHOOL OF BUSINESS

* Propagate linear constraints

e Additional state information

— variable domains 3x1 - 30 4+ 2x3 < 4
— constraint right-hand sides x; € {0.1},x € {0,1}.x3 € {0.1}

Xo +2x3 < 4 Xp +2x3 < 1
xp € {0,1},x3 € {0,1} X2 €{0,1},x3 < {0}
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Quiality of Bound lepper

SCHOOL OF BUSINESS

* Experimental setup
— Independent set problem on random graphs (Watts-Strogatz)
— Add set of random knapsack constraints » ;- aix;i < b
— Vary number of variables n
— Vary number of knapsack constraints m

* Implemented in SCIP 5.0.1

— Only IP model is given to solver
— DD compiled automatically
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Varying Number of Variables lepper

SCHOOL OF BUSINESS
120
~100l | eeemmmmemeeTTT number of knapsack
S T 1 .
= et constraints: m=0.1n
-
8 80F
O
©
E 60
o)
+
— 40 v~ Linear constraints DD
i e—e (Conflict graph DD
(© ==+ LP bound
o 20t
~ =+ LP bound at the end of root

800 200 600 800 1000 1200 1400 1600
Instance size
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Varying Number of Knapsack Constraints rIépper

SCHOOL OF BUSINESS
140
120 number of variables:
\O\e
= n=200
100
%
o
O
— 80t
©
£
o 60
-
— 40 v~ Linear constraints DD
i e—e (Conflict graph DD
8 ==+ LP bound
20} ~ =+ LP bound at the end of root

0 20 40 60 80 100
Number of knapsack constraints
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Varying Number of Knapsack Constraints

140

= =
o N
o o

Gap w.r.t. primal bound (%)
Co
o

60}

401

20}

20 40 60 80
Number of knapsack constraints

lepper

SCHOOL OF BUSINESS

number of variables:
n =200

v—v¥ |Linear constraints DD
e—e (Conflict graph DD
o o

Conflict graph DD without
propagation

Conflict graph DD without
propagation or Lagrangian
==+ LP bound

==+ |LP bound at the end of root
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Varying Number of Knapsack Constraints rIépper

SCHOOL OF BUSINESS

800

number of variables:
n = 1000

~J
o
o

o)}
o
o

un
o
o

v—v¥ |Linear constraints DD
e—e (Conflict graph DD
o o

Conflict graph DD without
propagation

Conflict graph DD without
_________ propagation or Lagrangian
100¢ e T ==+ LP bound

==+ P bound at the end of root
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-
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Number of knapsack constraints
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Integrate DDs into |IP Branch and Bound rIépepel“

SCHOOL OF BUSINESS

 Ingredients
— Dual+Primal bounds from DDs

— DD compilation based on
conflict graph, Lagrangian, and
propagation

— Use MIP primal bound to
remove sub-optimal DD arcs




When to apply Decision Diagrams?

lepper

SCHOOL OF BUSINESS

200

-

Quantity of nodes

N,

=

o

o
T

un
o
T

0 50 100 150 200 250 300

Number of variables of subproblem

Smaller subproblems are most effective; up to 100~200 variables
— for experiments we used 100 variable threshold, and max width 100
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Random Graphs + Knapsack Constraints

Solving time for MIP + DD bounds (s)
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®
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107 i

Solving time for MIP (s)

T Carnegie Mellon
epper

SCHOOL OF BUSINESS

n =300, 350, 400, 450
m=0.1n

On average: 65.5% node reduction
1.59x speedup
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More detailed results lepper

SCHOOL OF BUSINESS

n 300 350 400 @ 450

Average speed-up (%) 57.33 62.90 60.14 60.17
Average node reduction (%) 73.93 67.44 63.63 57.75

All

No Lagrangian
No propagation
No Lagrangian or propagation

No primal pruning
No primal heuristic
No primal pruning or heuristic

DD bounds only

0 10 20 30 40 50 60
Speed-up (%)
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More IP Integration: Cut Generation with DDs Tépper

SCHOOL OF BUSINESS

Gap closed for instances with 80% density and 300 vertices (truncated at 30 cuts) Solving time for instances with 80% density and 600 vertices

100 T T T T T T T 7000 T T T T T
| _ Width 1500 Width Width 500
Width 80% Exact width 1000
Width 60% 6000} 1
80l Width 40%,
5000} Width 250
Width 20% 0
< v
S T E
o = 4000} 1
% 1 !]f m
ke Width 10% £ CPLEX without cuts
g ] 3 3000} 1
© =
Width 5% s
2000} .
CPLEX cuts
1000} 1
5 3 o5 a 5 ; ; :

Number of cuts Number of cuts

[Tjandraatmadja & vH, IJOC to appear]
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Summary lepper

SCHOOL OF BUSINESS

» Discrete Optimization with Decision Diagrams
— new generic solving methodology
— outperforms integer programming on several classical problems

« Constraint Programming with Decision Diagrams
— state of the art for sequencing with side constraints
— closed several open instances from TSPLIB

 Integer Programming with Decision Diagrams
— generic methodology can improve IP solver with factor 1.59
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