
Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams for Discrete Optimization,

Constraint Programming, and Integer Programming

Willem-Jan van Hoeve

Master Class in Hybrid Methods for Combinatorial/Mixed Optimization

Toulouse, June 4-5, 2018

Tepper School of Business • William Larimer Mellon Founder

David Bergman, Andre Cire, Danial Davarnia, Samid Hoda,

John Hooker, Amin Hosseininasab, Brian Kell, Joris Kinable,

Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla

Slusky, Christian Tjandraatmadja, Tallys Yunes

Acknowledgments

2

Tepper School of Business • William Larimer Mellon Founder

• What are Decision Diagrams?

• Discrete Optimization with Decision Diagrams

– Modeling, Relaxation/Restriction, Search

• Constraint Programming with Decision Diagrams

– Constraint Propagation, Scheduling Applications

• Integer Programming with Decision Diagrams

– Integrate Decision Diagrams in Branch-and-Bound

Agenda

3

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams

4

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

0

1

0 1

x1

x2

x3

x4

Tepper School of Business • William Larimer Mellon Founder

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

Decision Diagrams

5

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4

0

1

0 1

x1

x2

x3

x4

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams

6

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4

0

1

0 1

x1

x2

x3

x4

• BDD: binary decision diagram
• MDD: multi-valued decision diagram

Tepper School of Business • William Larimer Mellon Founder

Brief Historic Background

• Widely used in computer science [Lee, 1959; Akers, 1978; Bryant, 1986]

– original application areas: circuit design, verification

• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering; minimal exact representation

• First applications to discrete optimization problems

– BDD-based IP solver [Lai et al., 1994]

– set bounds propagation in CP [Hawkins, Lagoon, Stuckey, 2005]

– IP cut generation [Becker et al., 2005] [Behle & Eisenbrand, 2007] [Behle, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

• Relaxed Decision Diagrams [Andersen, Hadzic, Hooker & Tiedemann, CP 2007]

7

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

8

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4

0

1

0 1

x1

x2

x3

x4

• Optimization perspective:
- literals → variables
- arcs → assignments
- paths → solutions

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

9

0

1

0 1

x1

x2

x3

x4

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

10

0

1

10

x1

x2

x3

x4

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

11

0

1 r

x1

x2

x3

x4

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

t

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

12

0

1 r

x1

x2

x3

x4

t

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution

0

0

0

0

2

1

-4

1

Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View

13

0

1 r

x1

x2

x3

x4

t

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution

0

0

0

0

2

1

-4

1

Tepper School of Business • William Larimer Mellon Founder

Towards Generic Discrete Optimization

14

Modeling
Framework

MIP: Linear Inequalities
DD: Dynamic Programming

Relaxation
Methods

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram Primal

Heuristics

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Search

MIP: Branch and bound (variable-based)
DD: Branch and bound (state-based)

Inference

MIP: Valid linear cuts
DD: Propagation, cuts

Generic Optimization
Techniques

E.g., MIP, MINLP, CP, SAT, …

Tepper School of Business • William Larimer Mellon Founder

Example: Maximum Independent Set Problem

Modeling Framework

15

3

4

2

5

1
5

8 6

2

4 • Classical combinatorial optimization problem

(equivalent to maximum clique)

• Wide applications, ranging from scheduling to

social network analysis

weight

Tepper School of Business • William Larimer Mellon Founder

Example: Maximum Independent Set Problem

Modeling Framework

16

Integer Programming Formulation:

max 5x1 + 4x2 + 2x3 + 6x4 + 8x5

subject to x1 + x2 ≤ 1
x1 + x5 ≤ 1
x2 + x3 ≤ 1
x2 + x4 ≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ∈ {0,1}

3

4

2

5

1
5

8 6

2

4

Tepper School of Business • William Larimer Mellon Founder

Example: Maximum Independent Set Problem

Modeling Framework

17

Our Model: Dynamic Programming

• Exploit recursiveness
• Model is formulated through states
• Decisions (or controls): define state transitions

Decision diagram: State-Transition Graph

• Nodes corresponds to states
• Arcs are state transitions
• Arc weights are transition costs

3

4

2

5

1
5

8 6

2

4

Tepper School of Business • William Larimer Mellon Founder

• DP model for the maximum independent set

‒ State: vertices that can be added to an independent set (eligible vertices)

‒ Decision: select (or not) a vertex i from the eligibility set

• Formal model:

𝑉𝑖 𝑆 = ൝
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 𝑤𝑖 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 𝑛

Modeling Framework

18

(N(i) = i + its neighbors)

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

x5

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

x5

{3,4}

{3,4,5}
{5}

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0

0
0

4

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

{5} {4,5}
{4}

 {5}

x5

{3,4}

{3,4,5}
{5}

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0

000 22

0
0

4

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

Merge equivalent nodes

{5} {4,5}
{4}

 {5}

x5

{3,4}

{3,4,5}
{5}

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0

000 22

0
0

4

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

23

{3,4}

x1

x2

x3

x4

{1,2,3,4,5}

{2,3,4,5}

{3,4}

{5}

{3,4,5}

{4,5}
{4}



{5}

 {5}

x5



3

4

2

5

1
5

8 6

2

4eligible vertices
: 0
: 1

Theorem: This procedure generates a

reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2013]

5 0

0

000

0

22

4

0000

00

6

6

8

Tepper School of Business • William Larimer Mellon Founder

• In general, decision diagrams grow exponentially large

• Variable ordering impacts size of diagrams

– Closely connected to treewidth and bandwidth

– Independent Set: polynomial for certain classes of graphs
[Bergman, Cire, vH, Hooker, IJOC 2014]

– TSP: parameterized-size depending on precedence relations
[Cire & vH, OR 2013]

Observations

24

Tepper School of Business • William Larimer Mellon Founder

Towards Generic Discrete Optimization

25

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram

Tepper School of Business • William Larimer Mellon Founder

• How to handle exponential size of diagram?

• Explicitly limit the size (e.g., the width)

– while ensuring that no solution is lost

– over-approximation of the solution space

– provides discrete relaxation:

Relaxed Decision Diagram

– strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]

Relaxed Decision Diagrams

26

r

t

width

Tepper School of Business • William Larimer Mellon Founder

• Model is augmented with a state aggregation operator

– Defines how to merge nodes so that no feasible solution is lost

– Example for maximum independent set:

Compiling Relaxed Decision Diagrams

27

𝑉𝑖 𝑆 = ൝
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 𝑤𝑖 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 𝑛

⊕ 𝑆1, 𝑆2 = 𝑆1 ∪ 𝑆2

Tepper School of Business • William Larimer Mellon Founder

Independent Set Problem: Relaxed DD

28

x1

x2

x3

x4

x5

{5} {4,5}{4}
{5}

{3,4}

{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}

3

4

2

5

1
5

8 6

2

4

: 0
: 1

Maximum width = 3

5 0

0

000

0

22

4

Tepper School of Business • William Larimer Mellon Founder

Independent Set Problem: Relaxed DD

29

x1

x2

x3

x4

x5

{4,5}
 {5}

{3,4}

{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}

: 0
: 1

3

4

2

5

1
5

8 6

2

4

Maximum width = 3

5 0

0

000

0

22

4

Tepper School of Business • William Larimer Mellon Founder

Independent Set Problem: Relaxed DD

30

x1

x2

x3

x4

x5

{4,5}
 {5}

{3,4}

{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}

 {5}

: 0
: 1

3

4

2

5

1
5

8 6

2

4

Maximum width = 3

5 0

0

000

0

22

4

0

0 0

006

8

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

31

x1

x2

x3

x4

x5

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

32

(0,0,0,1,0)

x1

x2

x3

x4

x5

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

33

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

x1

x2

x3

x4

x5

(1,0,0,0,1)

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

34

x1

x2

x3

x4

x5

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

5 0

0

000

0

22

4

00
00

00

6
6

8

5 0

0

0

0
0

0

22

4

06 00

0 0
8

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

35

x1

x2

x3

x4

x5

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

5 0

0

000

0

22

4

00
00

00

6
6

8

5 0

0

0

0
0

0

22

4

06 00

0 0
8

x = (0, 1, 0, 0, 1)

Solution value = 12

Tepper School of Business • William Larimer Mellon Founder

Exact vs. Relaxed Decision Diagrams

36

x1

x2

x3

x4

x5

Exact Relaxed

(width ≤ 3)

3

4

2

5

1
5

8 6

2

4

5 0

0

000

0

22

4

00
00

00

6
6

8

5 0

0

0

0
0

0

22

4

06 00

0 0
8

x = (1, 0, 0, 0, 1)

Upper bound = 13

Tepper School of Business • William Larimer Mellon Founder

Relaxation Bound: Independent Set

37

Compare with LP bound
(CPLEX)

Tepper School of Business • William Larimer Mellon Founder

Towards Generic Discrete Optimization

38

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram Primal

Heuristics

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Tepper School of Business • William Larimer Mellon Founder

Restricted Decision Diagrams

39

3

4

2

5

1
5

8 6

2

4

Maximum width = 3

• Under-approximation of the feasible set
x1

x2

x3

x4

x5

5 0

0

00

0

22

4

0
00

00

6

8

: 0
: 1

[Bergman, Cire, vH, Yunes, J Heur. 2014]

0

0
6

Tepper School of Business • William Larimer Mellon Founder

Restricted Decision Diagrams

40

3

4

2

5

1
5

8 6

2

4

Maximum width = 3

• Under-approximation of the feasible set
x1

x2

x3

x4

x5

5 0

0

00

0

22

4

0
00

00

6

8x = (0, 1, 0, 0, 1)

Lower bound = 12

: 0
: 1

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Tepper School of Business • William Larimer Mellon Founder

Primal Bound: Set Covering Problem

41

Tepper School of Business • William Larimer Mellon Founder

Towards Generic Discrete Optimization

42

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Inference

MIP: Valid linear cuts
DD: Propagation, cuts

Tepper School of Business • William Larimer Mellon Founder

• Cut generation for general MIPs

– Idea first proposed in [Becker et al., 2005] [Behle, PhD 2007]

– Facet-defining cuts [Tjandraatmadja & vH, IJOC to appear]

– Extension to MINLP [Davarnia & vH]

• Clause learning for SAT [Kell et al., CPAIOR 2015]

• Problem-specific cuts

– Precedence constraints for scheduling problem [Cire&vH, OR 2013]

• Constraint Propagation in Constraint Programming

– Several constraint types: Alldiff, Among, Sequence, Markov, Statistical, …

[Hoda, vH, Hooker, CP 2010] [Bergman, Cite, vH, JAIR 2014]

[Perez & Regin, IJCAI2015, CP2016, AAAI2017, CPAIOR 2017]

Inference Techniques from DDs

43

Tepper School of Business • William Larimer Mellon Founder

Towards Generic Discrete Optimization

44

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

Inference

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Search

MIP: Branch and bound (variable-based)
DD: Branch and bound (state-based)

MIP: Valid linear cuts
DD: Propagation, cuts

Tepper School of Business • William Larimer Mellon Founder

• Novel decision diagram branch-and-bound scheme

– Relaxed diagrams play the role of the LP relaxation

– Restricted diagrams are used as primal heuristics

• Branching is done on the nodes of the diagram

– Branching on pools of partial solutions

– Eliminate search symmetry

Exact Search Method

45

[Bergman, Cire, vH, Hooker, IJOC 2016]

Tepper School of Business • William Larimer Mellon Founder

Branch and Bound

46

x1

x2

x3

x4

x5

Last Exact Layer

Bound = 13

Relaxed BDD (width  3)
3

4

2

5

15

8 6

2

4

Tepper School of Business • William Larimer Mellon Founder

Node Queue

47

{3,4} {3,4,5}{5}5 4 0

Bound = 13

Q:

Upper bound = 13

x1

x2

x3

x4

x5

{3,4}

{1,2,3,4,5}

{2,3,4,5}

3

4

2

5

15

8 6

2

4
Relaxed BDD (width  3)

Last Exact Layer

Tepper School of Business • William Larimer Mellon Founder

Node Queue

48

Q:

Upper bound = 13

3

4

2

5

15

8 6

2

4{3,4,5}{5}{3,4} 5 4 0

Exact solution: 11

x3

x4

Lower bound = 11
{3,4} 5

Tepper School of Business • William Larimer Mellon Founder

{5} 4

Node Queue

49

Q:

Upper bound = 13

3

4

2

5

15

8 6

2

4{3,4,5}0

Exact solution: 12

{5} 4 Lower bound = 12Lower bound = 11

Tepper School of Business • William Larimer Mellon Founder

{3,4,5}0

Node Queue

50

Q:

Upper bound = 13

3

4

2

5

15

8 6

2

4

Lower bound = 12

Exact solution: 10

x3

x4

x5

{3,4,5}0

Tepper School of Business • William Larimer Mellon Founder

Node Queue

51

Q: 3

4

2

5

15

8 6

2

4

Optimal solution: 12

Tepper School of Business • William Larimer Mellon Founder

New Branching Scheme

• Novel branching scheme

– Branch on pools of partial solutions

– Remove symmetry from search

• Symmetry with respect to feasible completions

– Can be combined with other techniques

• Use decision diagrams for branching, and LP for bounds

• Define CP search with MDD inside global constraint

– Immediate parallelization

• Send nodes in the queue to different workers, recursive application

• DDX10 [Bergman et al. CPAIOR 2014]

52

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set: 500 variables

53

Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set: 1500 variables

54

Tepper School of Business • William Larimer Mellon Founder

Parallelization: Centralized Architecture

55

Master maintains a pool of BDD

nodes to process

– nodes with larger upper bound
have higher priority

Workers receive BDD nodes,
generate restricted & relaxed BDDs,
and send new BDD nodes and
bounds to master

– they also maintain a local pool
of nodes

[Bergman et al. CPAIOR 2014]

Tepper School of Business • William Larimer Mellon Founder

Parallelization: BDD vs CPLEX

• n = 170, each data point avg over 30 instances

• 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)

• 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)

56

CPLEX BDD

Tepper School of Business • William Larimer Mellon Founder

Parallelization: BDD vs CPLEX

• n = 170, each data point avg over 30 instances

• 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)

• 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)

• BDDs scale to well to (at least) 256 workers

56

CPLEX BDD

Tepper School of Business • William Larimer Mellon Founder

MAX-CUT Results

• Compare with IBM ILOG CPLEX and BiqMac

• Typical MIP formulation + triangle inequalities

– O(n2) variables, O(n3) constraints

• Benchmark problems

– g instances

– Helmberg and Rendl instances, which were taken from Rinaldi’s

random graph generator

– n ranges from 800 to 3000 – very large/difficult problems, mostly open

• BDD search

– Last Exact Layer (LEL) or Frontier Cut (FC)

Tepper School of Business • William Larimer Mellon Founder

MIP vs BDD: 60 seconds (n=40)

59

Tepper School of Business • William Larimer Mellon Founder

MIP vs BDD: 1,800 seconds (n=40)

60

Tepper School of Business • William Larimer Mellon Founder

BiqMac vs BDD

61

instance LB UB LB UB LB UB

g50 5880 5988.18 5880 5899* 5880 5988.18

g32 1390 1567.65 1410* 1645 1398 1560

g33 1352 1544.32 1380* 1536* 1376 1537

g34 1366 1546.70 1376* 1688 1372 1541

g11 558 629.17 564 567* 564 627

g12 548 623.88 556 616* 556 621

g13 578 647.14 580 652 580 645

BiqMac BDD Best known

Tepper School of Business • William Larimer Mellon Founder

• Reduced optimality gap for several benchmark instances

Optimality Gap Improvements

62

instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65

Tepper School of Business • William Larimer Mellon Founder

Constraint Programming with Decision Diagrams

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

Tepper School of Business • William Larimer Mellon Founder

• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

domain propagation

can be weak, however…

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

(1) and (2) are both
domain consistent

(i.e., no propagation)

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(xi) = {1,2,3,4}

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(xi) = {1,2,3,4}

Suppose we could
evaluate (2) on this list

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(xi) = {1,2,3,4}

Suppose we could
evaluate (2) on this list

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(xi) = {1,2,3,4}

Suppose we could
evaluate (2) on this list

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

1 2 3 4

1 2 4 3

1 3 2 4

…

4 3 2 1

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(xi) = {1,2,3,4}

Suppose we could
evaluate (2) on this list

Tepper School of Business • William Larimer Mellon Founder

Illustrative example

86

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

(1) and (2) are both
domain consistent

(i.e., no propagation)

domain projection: D(x4) = {1}
D(x1) = D(x2) = D(x3) = {2,3,4}

Suppose we could
evaluate (2) on this list

2 3 4 1

2 4 3 1

3 2 4 1

…

4 3 2 1









Tepper School of Business • William Larimer Mellon Founder

Illustrative example

87

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

(1) and (2) are both
domain consistent

(i.e., no propagation)

2 3 4 1

2 4 3 1

3 2 4 1

…

4 3 2 1









2 3 4

3
2

4
4

2 3

4 3 2

1

x1

x2

x3

x4

Use MDD!

Tepper School of Business • William Larimer Mellon Founder

Motivation for MDD propagation

• Conventional domain propagation: all structural relationships among

variables are lost after domain projection

• Potential solution space is implicitly defined by Cartesian product of

variable domains (very coarse relaxation)

We can communicate more information between constraint using

MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

• Limited width defines relaxed MDD

• Strength is controlled by the imposed width

88

Tepper School of Business • William Larimer Mellon Founder

MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those that do not participate in any

solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

89

Tepper School of Business • William Larimer Mellon Founder

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] [Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]

• Sequence constraints (combination of Amongs) [Bergman et al., 2014]

• Generic re-application of existing domain filtering algorithm for

any constraint type [Hoda et al., 2010]

90

Tepper School of Business • William Larimer Mellon Founder

• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

• Resource

– Nonpreemptive

– Process one activity at a time

Application to Disjunctive Scheduling

91

Activity 1

Activity 2

Activity 3

0 1 2 3 4

Tepper School of Business • William Larimer Mellon Founder

• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions

– Makespan

– Sum of setup times

– (Weighted) sum of completion times

– (Weighted) tardiness

– number of late jobs

– …

Scheduling: Model Extensions

92

Tepper School of Business • William Larimer Mellon Founder

DDs for Disjunctive Scheduling

Three main considerations:

• Representation

– How to represent solutions of disjunctive scheduling in a DD?

• Construction

– How to construct the DD?

• Inference techniques

– What can we infer using the DD?

93
93

Tepper School of Business • William Larimer Mellon Founder

• Every solution can be written as a permutation π

π1, π2 , π3, …, πn : activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

Decision Diagram Representation

94

𝑠𝑡𝑎𝑟𝑡𝜋𝑖 ≥ 𝑠𝑡𝑎𝑟𝑡𝜋𝑖−1 + 𝑝𝜋𝑖−1 𝑖 = 2,… , 𝑛

• Represent feasible permutations with multi-valued

decision diagram (MDD)
[Cire&vH, OR 2013]

Tepper School of Business • William Larimer Mellon Founder

MDD Representation: Example

95

π1

π2

π3

3

2

1

1 2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Path 3 – 2 – 1 :

6 ≤ start1 ≤ 8

3 ≤ start2 ≤ 5

1 ≤ start3 ≤ 3

3

2

precedence: 3 ≪ 1

Tepper School of Business • William Larimer Mellon Founder

1

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

3

1 32

1 32

Tepper School of Business • William Larimer Mellon Founder

1

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

3

1 32

1 32

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

3

1 32

1 32

Tepper School of Business • William Larimer Mellon Founder

31
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

31
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

1

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

1

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

323

1 32

1 32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

3

13
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

3

13
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

3

13
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

exact MDD

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

96

π1

π2

π3

2
precedence:
3 ≪ 1

32 32

3 1
2

exact MDDrelaxed MDDs
(strength is controlled by

maximum width)

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

111

precedence:
3 ≪ 1 π1

π2

π3

2 32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Tepper School of Business • William Larimer Mellon Founder

Top-down MDD compilation

112

precedence:
3 ≪ 1 π1

π2

π3

2 32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

minimize makespan: lower bound = 7 lower bound = 7 optimum = 9

Tepper School of Business • William Larimer Mellon Founder

We need to represent several problem components:

• Permutation structure (“AllDifferent”)

– state information: set of values taken on paths from root to state

• Earliest start time (similar for latest end time)

– state information: minimum completion time of all paths from root

• Precedence relations

– can be enforced using the state information for AllDifferent

MDD State Information

113

32

3 12

1 2

Tepper School of Business • William Larimer Mellon Founder

• Theorem: Constructing the exact MDD for a Disjunctive

Instance is NP-Hard

(In fact, determining state equivalence is already NP-hard)

• Therefore we use relaxed MDDs

– specify a maximum width

• MDDs of bounded width exist for special cases

– for example for structured precedence relations

Exact MDD Compilation

114

Tepper School of Business • William Larimer Mellon Founder

• Theorem: Given exact MDD M, we can deduce all

implied activity precedences in O(n2|M|) time

• The algorithm can also be applied to relaxed MDD to find

a subset of precedences

– can be stronger than edge-finding, not-first/not-last, etc.

Inference from the MDD

115

Tepper School of Business • William Larimer Mellon Founder

• MDD propagation implemented in IBM ILOG CPLEX CP

Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

– MDD is added as user-defined propagator

• Compare three different variants

– CPO (only use CPO propagation)

– MDD (only use MDD propagation)

– CPO+MDD (use both)

Performance

116

Tepper School of Business • William Larimer Mellon Founder

TSP with Time Windows

117

Dumas/Ascheuer instances
- 20-60 cities
- max MDD width: 16

P
u

re
 M

D
D

 t
im

e
(s

)

CPO time (s)

Tepper School of Business • William Larimer Mellon Founder

Total Tardiness

118

total tardiness total weighted tardiness

CPO

MDD-16

MDD-32
MDD-64

MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128

Tepper School of Business • William Larimer Mellon Founder

Sequential Ordering Problem (TSPLIB)

119

* solved for
the first time

*
*

*

Tepper School of Business • William Larimer Mellon Founder

• Lagrangian relaxation

– penalize constraint violations by modifying arc weights

• Additive bounding

– incorporate dual information from LP relaxations

– e.g., aggregate reduced costs along path from root to terminal

Strengthening Relaxed Decision Diagrams

120

Tepper School of Business • William Larimer Mellon Founder

Extension: Lagrangian bounds

• Observation: MDD bounds can be very loose

– main cause: repetition of activities

• Apply Lagrangian relaxation

– penalize repeated activities; reward unused activities

– shortest path with updated weights

121

π1

π2

π3

32

3 1
2

1 32

Tepper School of Business • William Larimer Mellon Founder

Impact of Lagrangian Relaxation (TSPTW)

122

[Bergman, Cire, vH, 2015]

Tepper School of Business • William Larimer Mellon Founder

• Case: time-dependent sequencing

– sequence-dependent setup times also depend on position!

– 𝛿𝑖,𝑗
𝑡 = setup time between i and j if i is at position t

• MDD representation

– state-dependent costs

Extension: Additive Bounding

123

Activity 1

Activity 2

Activity 3

0 1 2 3 74 5 6

[Kinable, Cire, vH, EJOR 2017]

Tepper School of Business • William Larimer Mellon Founder

• Add LP reduced costs to MDD relaxation

• Effectivess depends on the quality of the LP relaxation

• LP can be made stronger for specific problem class

– TD-TSP

– TD-TSP-TW (time windows)

– TD-SOP (precedence constraints)

Additive Bounding: LP + MDD

124

[Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995]

[Gouveia and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014]

[Miller,Tucker, Zemlin, 1960]

[Desrocher & Laporte, 2014]

[Sarin, Sherali, Bhootra, 2005]

[Fischetti &Toth, 1989]

Tepper School of Business • William Larimer Mellon Founder

Experimental Setup

• Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3

– MDD added to CP Optimizer (Cire & v.H., 2013)

– maximum width 1024

– time limit: 30 minutes

• TD-TSP 38 instances from TSPLIB (n=14-107 jobs)

𝛿𝑖,𝑗
𝑡 = (n-t)*𝛿𝑖,𝑗 [Abeledo et al., 2013]

• TD-TSPTW based on Dumas et al. (n=30, 35, 40), 270 total

• TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)

125

Tepper School of Business • William Larimer Mellon Founder

TD-TSP: Performance Plot

126

MIP

MDD

MDD+AB

Time (s) Gap (%)

Tepper School of Business • William Larimer Mellon Founder

TD-TSPTW: Performance Plot

127

max width 1024max width 32

(MIP was unable to find any single integer solution)

MDD

MDD+AB

MDD

MDD+AB

Time (s) Gap (%) Time (s) Gap (%)

Tepper School of Business • William Larimer Mellon Founder

TD-SOP: Performance Plot

128

MIP

MDD

MDD+AB

Time (s) Gap (%)

Tepper School of Business • William Larimer Mellon Founder

Integer Programming with Decision Diagrams

Tepper School of Business • William Larimer Mellon Founder

Motivation

130

Tepper School of Business • William Larimer Mellon Founder

Motivation

131

[Tjandraatmadja, PhD 2018]

Tepper School of Business • William Larimer Mellon Founder

• Option 1: use linear constraints to build DD

– DD relaxation usually much weaker than LP bound

• Option 2: identify structure in model

– set covering? set packing? independent set?

– dedicated DD representing part of the model

• Option 3: use structure inferred by solver

– conflict graph/clique table

Decision Diagram for IP Model?

132

Tepper School of Business • William Larimer Mellon Founder

Conflict Graph for Binary Problems

133

x1 x2 x3

x1 x2 x3

x1 + x2 + x3 ≤ 1

x2 + (1 – x3) ≤ 1

(1 – x1) + (1 – x2) ≤ 1

Conflict graphs are inferred and constructed by most modern MIP solvers
[Atamtürk et al., 2000; Achterberg, 2007]

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

134

x2 x3

x1 x2 x3

x1

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

135

x2 x3

x1 x2 x3

x1

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

136

x2 x3

x1 x2 x3

x1

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

137

x2 x3

x1 x2 x3

x1

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

138

x2 x3

x1 x2 x3

x1

• Theorem: If root state is domain consistent, then this approach

yields a reduced exact DD

Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation

139

x2 x3

x1 x2 x3

x1

• Theorem: If root state is domain consistent, then this approach

yields a reduced exact DD

Tepper School of Business • William Larimer Mellon Founder

Stronger DD relaxation via Lagrangian

140

Lagrangian subproblem is
longest path in DD (efficient)

Original IP model Lagrangian model

Tepper School of Business • William Larimer Mellon Founder

• Propagate linear constraints

• Additional state information

– variable domains

– constraint right-hand sides

Stronger DD relaxation via Propagation

141

Tepper School of Business • William Larimer Mellon Founder

• Experimental setup

– Independent set problem on random graphs (Watts-Strogatz)

– Add set of random knapsack constraints

– Vary number of variables n

– Vary number of knapsack constraints m

• Implemented in SCIP 5.0.1

– Only IP model is given to solver

– DD compiled automatically

Quality of Bound

142

Tepper School of Business • William Larimer Mellon Founder

Varying Number of Variables

143

number of knapsack
constraints: m = 0.1n

Tepper School of Business • William Larimer Mellon Founder

Varying Number of Knapsack Constraints

144

number of variables:
n = 200

Tepper School of Business • William Larimer Mellon Founder

Varying Number of Knapsack Constraints

145

number of variables:
n = 200

Tepper School of Business • William Larimer Mellon Founder

Varying Number of Knapsack Constraints

146

number of variables:
n = 1000

Tepper School of Business • William Larimer Mellon Founder

• Ingredients

– Dual+Primal bounds from DDs

– DD compilation based on

conflict graph, Lagrangian, and

propagation

– Use MIP primal bound to

remove sub-optimal DD arcs

Integrate DDs into IP Branch and Bound

147

Tepper School of Business • William Larimer Mellon Founder

When to apply Decision Diagrams?

148

Smaller subproblems are most effective; up to 100~200 variables
‒ for experiments we used 100 variable threshold, and max width 100

Tepper School of Business • William Larimer Mellon Founder

Random Graphs + Knapsack Constraints

149

n = 300, 350, 400, 450
m = 0.1n

On average: 65.5% node reduction

1.59x speedup

Tepper School of Business • William Larimer Mellon Founder

More detailed results

150

Tepper School of Business • William Larimer Mellon Founder

[Tjandraatmadja & vH, IJOC to appear]

More IP Integration: Cut Generation with DDs

151

Tepper School of Business • William Larimer Mellon Founder

• Discrete Optimization with Decision Diagrams

– new generic solving methodology

– outperforms integer programming on several classical problems

• Constraint Programming with Decision Diagrams

– state of the art for sequencing with side constraints

– closed several open instances from TSPLIB

• Integer Programming with Decision Diagrams

– generic methodology can improve IP solver with factor 1.59

Summary

152

