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• What are Decision Diagrams?

• Discrete Optimization with Decision Diagrams

– Modeling, Relaxation/Restriction, Search

• Constraint Programming with Decision Diagrams

– Constraint Propagation, Scheduling Applications

• Integer Programming with Decision Diagrams

– Integrate Decision Diagrams in Branch-and-Bound

Agenda
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Decision Diagrams

4

• Graphical representation of 
Boolean functions
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Decision Diagrams
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• Graphical representation of 
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4
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• BDD: binary decision diagram
• MDD: multi-valued decision diagram
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Brief Historic Background

• Widely used in computer science [Lee, 1959; Akers, 1978; Bryant, 1986]

– original application areas: circuit design, verification

• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering; minimal exact representation

• First applications to discrete optimization problems

– BDD-based IP solver [Lai et al., 1994]

– set bounds propagation in CP [Hawkins, Lagoon, Stuckey, 2005]

– IP cut generation [Becker et al., 2005] [Behle & Eisenbrand, 2007] [Behle, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

• Relaxed Decision Diagrams [Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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Decision Diagrams: Optimization View
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• Graphical representation of 
Boolean functions

𝑓 𝑥 = 𝑥1֞𝑥2 ∧ 𝑥3֞𝑥4
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• Optimization perspective:
- literals → variables
- arcs → assignments
- paths → solutions
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Decision Diagrams: Optimization View
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max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}



Tepper School of Business • William Larimer Mellon Founder

Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution
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Decision Diagrams: Optimization View
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Towards Generic Discrete Optimization
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Modeling 
Framework

MIP: Linear Inequalities
DD: Dynamic Programming

Relaxation 
Methods

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram Primal 

Heuristics

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Search

MIP: Branch and bound (variable-based)
DD: Branch and bound (state-based)

Inference

MIP: Valid linear cuts
DD: Propagation, cuts

Generic Optimization 
Techniques

E.g., MIP, MINLP, CP, SAT, …
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Example: Maximum Independent Set Problem

Modeling Framework

15
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4 • Classical combinatorial optimization problem 

(equivalent to maximum clique)

• Wide applications, ranging from scheduling to 

social network analysis

weight
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Example: Maximum Independent Set Problem

Modeling Framework
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Integer Programming Formulation:

max 5x1 + 4x2 + 2x3 + 6x4 + 8x5

subject to x1 + x2 ≤ 1
x1 + x5 ≤ 1
x2 + x3 ≤ 1
x2 + x4 ≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ∈ {0,1}
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Example: Maximum Independent Set Problem

Modeling Framework

17

Our Model: Dynamic Programming

• Exploit recursiveness
• Model is formulated through states
• Decisions (or controls): define state transitions

Decision diagram: State-Transition Graph

• Nodes corresponds to states
• Arcs are state transitions 
• Arc weights are transition costs
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• DP model for the maximum independent set

‒ State: vertices that can be added to an independent set (eligible vertices)

‒ Decision: select (or not) a vertex i from the eligibility set

• Formal model:

𝑉𝑖 𝑆 = ൝
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 𝑤𝑖 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 𝑛

Modeling Framework

18

( N(i) = i + its neighbors )
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Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

x5

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0



Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19

3

4

2

5

1
5

8 6

2

4

{3,4}

x1

x2

x3

x4

x5

{3,4}

{3,4,5}
{5}

{2,3,4,5}

{1,2,3,4,5}
eligible vertices

: 0
: 1

5 0

0
0

4



Tepper School of Business • William Larimer Mellon Founder

Maximum Independent Set Problem

19
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Maximum Independent Set Problem

19
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Maximum Independent Set Problem
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reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2013]
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• In general, decision diagrams grow exponentially large

• Variable ordering impacts size of diagrams

– Closely connected to treewidth and bandwidth

– Independent Set: polynomial for certain classes of graphs 
[Bergman, Cire, vH, Hooker, IJOC 2014]

– TSP: parameterized-size depending on precedence relations 
[Cire & vH, OR 2013]

Observations

24
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Towards Generic Discrete Optimization

25

Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram
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• How to handle exponential size of diagram?

• Explicitly limit the size (e.g., the width)

– while ensuring that no solution is lost

– over-approximation of the solution space

– provides discrete relaxation:

Relaxed Decision Diagram

– strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]

Relaxed Decision Diagrams

26
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• Model is augmented with a state aggregation operator

– Defines how to merge nodes so that no feasible solution is lost

– Example for maximum independent set:

Compiling Relaxed Decision Diagrams

27

𝑉𝑖 𝑆 = ൝
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 𝑤𝑖 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 𝑛

⊕ 𝑆1, 𝑆2 = 𝑆1 ∪ 𝑆2
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Independent Set Problem: Relaxed DD

28
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Independent Set Problem: Relaxed DD
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Independent Set Problem: Relaxed DD
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Relaxation Bound: Independent Set

37

Compare with LP bound 
(CPLEX)
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Towards Generic Discrete Optimization

38

Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram Primal 

Heuristics

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams
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Restricted Decision Diagrams

39
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Restricted Decision Diagrams
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Primal Bound: Set Covering Problem
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Towards Generic Discrete Optimization

42

Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Inference

MIP: Valid linear cuts
DD: Propagation, cuts
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• Cut generation for general MIPs

– Idea first proposed in [Becker et al., 2005] [Behle, PhD 2007]

– Facet-defining cuts [Tjandraatmadja & vH, IJOC to appear]

– Extension to MINLP [Davarnia & vH]

• Clause learning for SAT  [Kell et al., CPAIOR 2015]

• Problem-specific cuts

– Precedence constraints for scheduling problem [Cire&vH, OR 2013]

• Constraint Propagation in Constraint Programming

– Several constraint types: Alldiff, Among, Sequence, Markov, Statistical, …

[Hoda, vH, Hooker, CP 2010] [Bergman, Cite, vH, JAIR 2014] 

[Perez & Regin, IJCAI2015, CP2016, AAAI2017, CPAIOR 2017] 

Inference Techniques from DDs

43
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Towards Generic Discrete Optimization

44

Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

Inference

MIP: Linear Inequalities
DD: Dynamic Programming

MIP: Linear Programming Relaxation
DD: Relaxed Decision Diagram

MIP: Feasibility Pump, RINS, …
DD: Restricted Decision Diagrams

Search

MIP: Branch and bound (variable-based)
DD: Branch and bound (state-based)

MIP: Valid linear cuts
DD: Propagation, cuts
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• Novel decision diagram branch-and-bound scheme

– Relaxed diagrams play the role of the LP relaxation

– Restricted diagrams are used as primal heuristics

• Branching is done on the nodes of the diagram

– Branching on pools of partial solutions

– Eliminate search symmetry

Exact Search Method

45

[Bergman, Cire, vH, Hooker, IJOC 2016]
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Branch and Bound

46
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Node Queue

47
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Node Queue

48
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{5} 4

Node Queue
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{3,4,5}0

Node Queue
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Node Queue

51
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New Branching Scheme

• Novel branching scheme

– Branch on pools of partial solutions

– Remove symmetry from search

• Symmetry with respect to feasible completions

– Can be combined with other techniques

• Use decision diagrams for branching, and LP for bounds

• Define CP search with MDD inside global constraint 

– Immediate parallelization

• Send nodes in the queue to different workers, recursive application

• DDX10 [Bergman et al. CPAIOR 2014]

52
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Maximum Independent Set: 500 variables

53
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Maximum Independent Set: 1500 variables

54



Tepper School of Business • William Larimer Mellon Founder

Parallelization: Centralized Architecture

55

Master maintains a pool of BDD

nodes to process

– nodes with larger upper bound 
have higher priority

Workers receive BDD nodes, 
generate restricted & relaxed BDDs, 
and send new BDD nodes and 
bounds to master

– they also maintain a local pool
of nodes

[Bergman et al. CPAIOR 2014]
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Parallelization: BDD vs CPLEX

• n = 170, each data point avg over 30 instances

• 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)

• 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)

56

CPLEX BDD
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Parallelization: BDD vs CPLEX

• n = 170, each data point avg over 30 instances

• 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)

• 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)

• BDDs scale to well to (at least) 256 workers

56

CPLEX BDD
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MAX-CUT Results

• Compare with IBM ILOG CPLEX and BiqMac

• Typical MIP formulation + triangle inequalities

– O(n2) variables, O(n3) constraints

• Benchmark problems

– g instances

– Helmberg and Rendl instances, which were taken from Rinaldi’s

random graph generator

– n ranges from 800 to 3000 – very large/difficult problems, mostly open

• BDD search

– Last Exact Layer (LEL) or Frontier Cut (FC)
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MIP vs BDD: 60 seconds (n=40)

59
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MIP vs BDD: 1,800 seconds (n=40)
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BiqMac vs BDD

61

instance LB UB LB UB LB UB

g50 5880 5988.18 5880 5899* 5880 5988.18

g32 1390 1567.65 1410* 1645 1398 1560

g33 1352 1544.32 1380* 1536* 1376 1537

g34 1366 1546.70 1376* 1688 1372 1541

g11 558 629.17 564 567* 564 627

g12 548 623.88 556 616* 556 621

g13 578 647.14 580 652 580 645

BiqMac BDD Best known
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• Reduced optimality gap for several benchmark instances

Optimality Gap Improvements

62

instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65
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Constraint Programming with Decision Diagrams
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• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}
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• Constraint Programming applies constraint propagation

– Remove provably inconsistent values from variable domains

– Propagate updated domains to other constraints

Motivation

64

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1  {1,2}, x2  {0,1,2,3}, x3  {2,3}, x4  {0,1}

domain propagation

can be weak, however…
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Illustrative example

65

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}
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Illustrative example
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(1) and (2) are both 
domain consistent 

(i.e., no propagation)
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Illustrative example

86

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

(1) and (2) are both 
domain consistent 

(i.e., no propagation)

domain projection: D(x4) = {1}
D(x1) = D(x2) = D(x3) = {2,3,4}

Suppose we could 
evaluate (2) on this list

2   3   4   1 

2   4   3   1

3   2   4   1

…

4   3   2   1








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Illustrative example

87

alldifferent(x1,x2,x3,x4) (1)

x1 + x2 + x3 ≥ 9 (2)

xi  {1,2,3,4}

List of all solutions to alldifferent:

x1 x2 x3 x4

(1) and (2) are both 
domain consistent 

(i.e., no propagation)

2   3   4   1 

2   4   3   1

3   2   4   1

…

4   3   2   1









2 3 4

3
2

4
4

2 3

4 3 2

1

x1

x2

x3

x4

Use MDD!
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Motivation for MDD propagation

• Conventional domain propagation: all structural relationships among 

variables are lost after domain projection

• Potential solution space is implicitly defined by Cartesian product of 

variable domains (very coarse relaxation)

We can communicate more information between constraint using 

MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

• Limited width defines relaxed MDD

• Strength is controlled by the imposed width

88
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MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those that do not participate in any 

solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

89
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Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] [Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]

• Sequence constraints (combination of Amongs) [Bergman et al., 2014]

• Generic re-application of existing domain filtering algorithm for 

any constraint type [Hoda et al., 2010]

90
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• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

• Resource

– Nonpreemptive

– Process one activity at a time

Application to Disjunctive Scheduling

91

Activity 1

Activity 2

Activity 3

0 1 2 3 4
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• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions

– Makespan

– Sum of setup times

– (Weighted) sum of completion times

– (Weighted) tardiness

– number of late jobs

– …

Scheduling: Model Extensions

92
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DDs for Disjunctive Scheduling

Three main considerations:

• Representation

– How to represent solutions of disjunctive scheduling in a DD?

• Construction

– How to construct the DD?

• Inference techniques

– What can we infer using the DD?

93
93
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• Every solution can be written as a permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

Decision Diagram Representation

94

𝑠𝑡𝑎𝑟𝑡𝜋𝑖 ≥ 𝑠𝑡𝑎𝑟𝑡𝜋𝑖−1 + 𝑝𝜋𝑖−1 𝑖 = 2,… , 𝑛

• Represent feasible permutations with multi-valued

decision diagram (MDD)
[Cire&vH, OR 2013]
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MDD Representation: Example

95

π1

π2

π3

3

2

1

1 2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Path  3 – 2 – 1 : 

6 ≤ start1  ≤ 8

3 ≤ start2  ≤ 5

1 ≤ start3  ≤ 3

3

2

precedence: 3 ≪ 1
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1

Top-down MDD compilation

96

π1

π2

π3

2
precedence: 
3 ≪ 1

3

1 32

1 32
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31
2

Top-down MDD compilation

96

π1

π2

π3

2
precedence: 
3 ≪ 1

323

1 32

1 32

3 1
2

1 32
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Top-down MDD compilation
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1 32
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Top-down MDD compilation

96

π1

π2

π3

2
precedence: 
3 ≪ 1

32 32

3 1
2

exact MDD

3

1 32

1 32

3 1
2

1 32
1

2
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Top-down MDD compilation

96

π1

π2

π3

2
precedence: 
3 ≪ 1

32 32

3 1
2

exact MDDrelaxed MDDs
(strength is controlled by

maximum width)

3

1 32

1 32

3 1
2

1 32
1

2
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Top-down MDD compilation

111

precedence: 
3 ≪ 1 π1

π2

π3

2 32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2
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Top-down MDD compilation

112

precedence: 
3 ≪ 1 π1

π2

π3

2 32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

minimize makespan: lower bound = 7 lower bound = 7 optimum = 9
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We need to represent several problem components:

• Permutation structure (“AllDifferent”)

– state information: set of values taken on paths from root to state

• Earliest start time (similar for latest end time)

– state information: minimum completion time of all paths from root

• Precedence relations

– can be enforced using the state information for AllDifferent

MDD State Information

113

32

3 12

1 2
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• Theorem: Constructing the exact MDD for a Disjunctive 

Instance is NP-Hard

(In fact, determining state equivalence is already NP-hard)

• Therefore we use relaxed MDDs

– specify a maximum width

• MDDs of bounded width exist for special cases 

– for example for structured precedence relations

Exact MDD Compilation

114
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• Theorem: Given exact MDD M,  we can deduce all 

implied activity precedences in O(n2|M|) time

• The algorithm can also be applied to relaxed MDD to find 

a subset of precedences

– can be stronger than edge-finding, not-first/not-last, etc.

Inference from the MDD

115
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• MDD propagation implemented in IBM ILOG CPLEX CP 

Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

– MDD is added as user-defined propagator

• Compare three different variants

– CPO (only use CPO propagation)

– MDD (only use MDD propagation)

– CPO+MDD (use both)

Performance

116
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TSP with Time Windows

117

Dumas/Ascheuer instances
- 20-60 cities
- max MDD width: 16

P
u

re
 M

D
D

 t
im

e 
(s

)

CPO time (s)
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Total Tardiness

118

total tardiness total weighted tardiness

CPO

MDD-16

MDD-32
MDD-64

MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128
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Sequential Ordering Problem (TSPLIB)

119

* solved for 
the first time

*
*

*
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• Lagrangian relaxation

– penalize constraint violations by modifying arc weights

• Additive bounding

– incorporate dual information from LP relaxations

– e.g., aggregate reduced costs along path from root to terminal

Strengthening Relaxed Decision Diagrams

120
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Extension: Lagrangian bounds

• Observation: MDD bounds can be very loose

– main cause: repetition of activities

• Apply Lagrangian relaxation

– penalize repeated activities; reward unused activities

– shortest path with updated weights

121

π1

π2

π3

32

3 1
2

1 32



Tepper School of Business • William Larimer Mellon Founder

Impact of Lagrangian Relaxation (TSPTW)

122

[Bergman, Cire, vH, 2015]
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• Case: time-dependent sequencing

– sequence-dependent setup times also depend on position!

– 𝛿𝑖,𝑗
𝑡 = setup time between i and j if i is at position t

• MDD representation

– state-dependent costs

Extension: Additive Bounding

123

Activity 1

Activity 2

Activity 3

0 1 2 3 74 5 6

[Kinable, Cire, vH, EJOR 2017]
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• Add LP reduced costs to MDD relaxation

• Effectivess depends on the quality of the LP relaxation

• LP can be made stronger for specific problem class

– TD-TSP

– TD-TSP-TW (time windows)

– TD-SOP (precedence constraints)

Additive Bounding: LP + MDD

124

[Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995] 

[Gouveia and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014]

[Miller,Tucker, Zemlin, 1960] 

[Desrocher & Laporte, 2014]

[Sarin, Sherali, Bhootra, 2005]

[Fischetti &Toth, 1989]
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Experimental Setup

• Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3

– MDD added to CP Optimizer  (Cire & v.H., 2013)

– maximum width 1024

– time limit: 30 minutes

• TD-TSP 38 instances from TSPLIB (n=14-107 jobs)

𝛿𝑖,𝑗
𝑡 = (n-t)*𝛿𝑖,𝑗 [Abeledo et al., 2013]

• TD-TSPTW based on Dumas et al. (n=30, 35, 40), 270 total

• TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)

125
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TD-TSP: Performance Plot

126

MIP

MDD

MDD+AB

Time (s) Gap (%)
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TD-TSPTW: Performance Plot

127

max width 1024max width 32

(MIP was unable to find any single integer solution)

MDD

MDD+AB

MDD

MDD+AB

Time (s) Gap (%) Time (s) Gap (%)
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TD-SOP: Performance Plot

128

MIP

MDD

MDD+AB

Time (s) Gap (%)
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Integer Programming with Decision Diagrams
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Motivation

130
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Motivation

131

[Tjandraatmadja, PhD 2018]
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• Option 1: use linear constraints to build DD

– DD relaxation usually much weaker than LP bound

• Option 2: identify structure in model

– set covering? set packing? independent set? 

– dedicated DD representing part of the model

• Option 3: use structure inferred by solver 

– conflict graph/clique table

Decision Diagram for IP Model?

132
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Conflict Graph for Binary Problems
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x1 x2 x3

x1 x2 x3

x1 + x2 + x3 ≤ 1

x2 + (1 – x3 ) ≤ 1

(1 – x1 ) + (1 – x2 ) ≤ 1

Conflict graphs are inferred and constructed by most modern MIP solvers
[Atamtürk et al., 2000; Achterberg, 2007]



Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation
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• State: variable domains

• Transition: propagate decision
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• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation
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• Theorem: If root state is domain consistent, then this approach 

yields a reduced exact DD



Tepper School of Business • William Larimer Mellon Founder

• State: variable domains

• Transition: propagate decision

Decision Diagram Compilation
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• Theorem: If root state is domain consistent, then this approach 

yields a reduced exact DD
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Stronger DD relaxation via Lagrangian
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Lagrangian subproblem is 
longest path in DD (efficient)

Original IP model Lagrangian model
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• Propagate linear constraints

• Additional state information

– variable domains

– constraint right-hand sides

Stronger DD relaxation via Propagation
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• Experimental setup

– Independent set problem on random graphs (Watts-Strogatz)

– Add set of random knapsack constraints

– Vary number of variables n

– Vary number of knapsack constraints m

• Implemented in SCIP 5.0.1

– Only IP model is given to solver

– DD compiled automatically

Quality of Bound
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Varying Number of Variables
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number of knapsack 
constraints: m = 0.1n
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Varying Number of Knapsack Constraints
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number of variables:
n = 200
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Varying Number of Knapsack Constraints
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number of variables:
n = 200
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Varying Number of Knapsack Constraints
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number of variables:
n = 1000
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• Ingredients

– Dual+Primal bounds from DDs

– DD compilation based on 

conflict graph, Lagrangian, and 

propagation

– Use MIP primal bound to 

remove sub-optimal DD arcs

Integrate DDs into IP Branch and Bound
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When to apply Decision Diagrams?

148

Smaller subproblems are most effective; up to 100~200 variables
‒ for experiments we used 100 variable threshold, and max width 100
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Random Graphs + Knapsack Constraints
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n = 300, 350, 400, 450
m = 0.1n

On average: 65.5% node reduction 

1.59x speedup
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More detailed results
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[Tjandraatmadja & vH, IJOC to appear]

More IP Integration: Cut Generation with DDs
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• Discrete Optimization with Decision Diagrams

– new generic solving methodology

– outperforms integer programming on several classical problems

• Constraint Programming with Decision Diagrams

– state of the art for sequencing with side constraints

– closed several open instances from TSPLIB

• Integer Programming with Decision Diagrams

– generic methodology can improve IP solver with factor 1.59

Summary
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