

### Decision Diagrams for Discrete Optimization, Constraint Programming, and Integer Programming

Willem-Jan van Hoeve

Master Class in Hybrid Methods for Combinatorial/Mixed Optimization Toulouse, June 4-5, 2018



David Bergman, Andre Cire, Danial Davarnia, Samid Hoda, John Hooker, Amin Hosseininasab, Brian Kell, Joris Kinable, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla Slusky, Christian Tjandraatmadja, Tallys Yunes







🖉 Springer

David Bergman Andre A. Cire Willem-Jan van Hoeve John Hooker

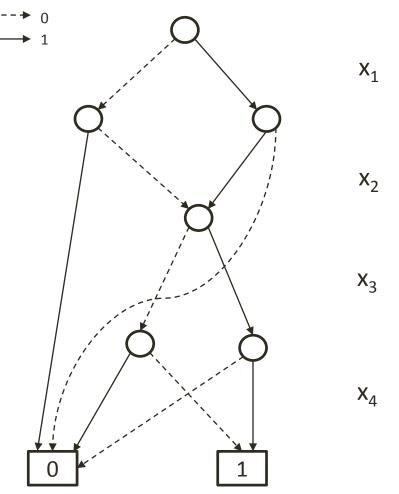
Decision

Diagrams for Optimization





- What are Decision Diagrams?
- Discrete Optimization with Decision Diagrams
   Modeling, Relaxation/Restriction, Search
- Constraint Programming with Decision Diagrams
   Constraint Propagation, Scheduling Applications
- Integer Programming with Decision Diagrams
  - Integrate Decision Diagrams in Branch-and-Bound



**Carnegie Mellon** 

SCHOOL OF BUSINESS

# **Decision Diagrams**

Graphical representation of • **Boolean functions** 

$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | X <sub>3</sub> | <b>X</b> <sub>4</sub> | f(x) |
|-----------------------|-----------------------|----------------|-----------------------|------|
| 0                     | 0                     | 0              | 0                     | 1    |
| 0                     | 0                     | 0              | 1                     | 0    |
| 0                     | 1                     | 1              | 0                     | 0    |
| 0                     | 0                     | 1              | 1                     | 1    |
| •••                   | •••                   | •••            | •••                   | •••  |

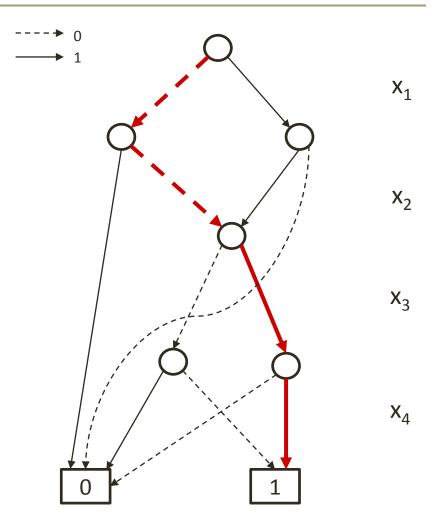
### Tepper School of Business • William Larimer Mellon Founder



Graphical representation of
 Boolean functions

$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

| <b>x</b> <sub>1</sub> | x <sub>2</sub> | X <sub>3</sub> | <b>X</b> <sub>4</sub> | f(x) |
|-----------------------|----------------|----------------|-----------------------|------|
| 0                     | 0              | 0              | 0                     | 1    |
| 0                     | 0              | 0              | 1                     | 0    |
| 0                     | 1              | 1              | 0                     | 0    |
| 0                     | 0              | 1              | 1                     | 1    |
| •••                   | •••            | •••            | •••                   | •••  |





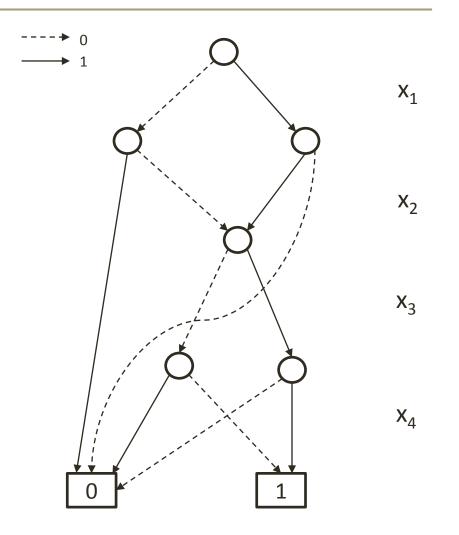
#### Tepper School of Business • William Larimer Mellon Founder

### **Decision Diagrams**

 Graphical representation of Boolean functions

$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

- BDD: binary decision diagram
- MDD: multi-valued decision diagram







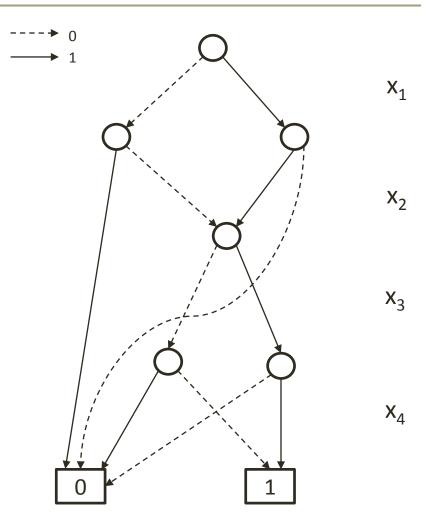
- Widely used in computer science [Lee, 1959; Akers, 1978; Bryant, 1986]
   original application areas: circuit design, verification
- Usually reduced ordered BDDs/MDDs are applied
  - fixed variable ordering; minimal exact representation
- First applications to discrete optimization problems
  - BDD-based IP solver [Lai et al., 1994]
  - set bounds propagation in CP [Hawkins, Lagoon, Stuckey, 2005]
  - IP cut generation [Becker et al., 2005] [Behle & Eisenbrand, 2007] [Behle, 2007]
  - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Relaxed Decision Diagrams [Andersen, Hadzic, Hooker & Tiedemann, CP 2007]



 Graphical representation of Boolean functions

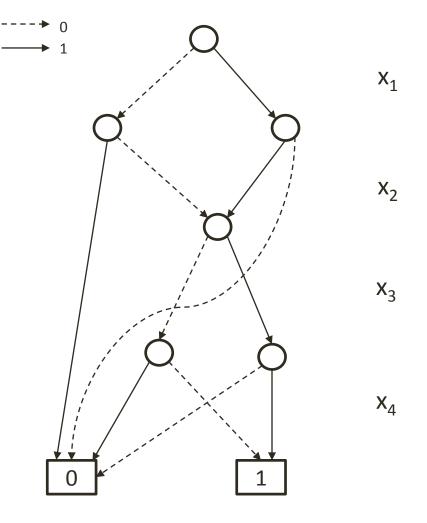
$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

- Optimization perspective:
  - literals  $\rightarrow$  variables
  - arcs  $\rightarrow$  assignments
  - paths  $\rightarrow$  solutions



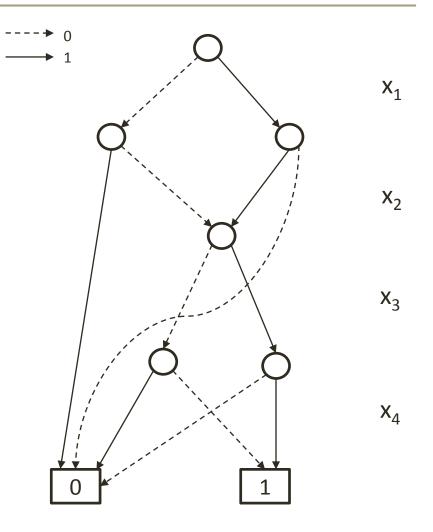


max 
$$2x_1 + x_2 - 4x_3 + x_4$$
  
subject to  
 $x_1 - x_2 = 0$   
 $x_3 - x_4 = 0$   
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$ 



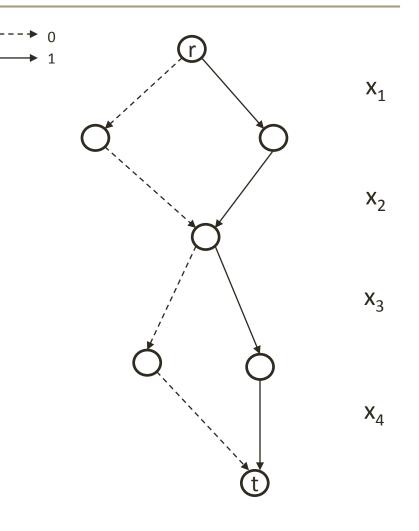


max  $2x_1 + x_2 - 4x_3 + x_4$ subject to  $x_1 - x_2 = 0$   $x_3 - x_4 = 0$  $x_1, x_2, x_3, x_4 \in \{0, 1\}$ 





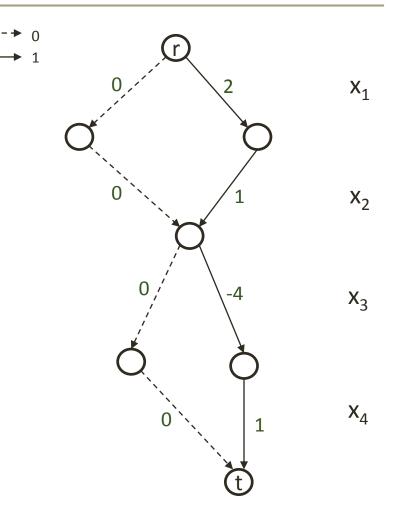
max  $2x_1 + x_2 - 4x_3 + x_4$ subject to  $x_1 - x_2 = 0$   $x_3 - x_4 = 0$  $x_1, x_2, x_3, x_4 \in \{0, 1\}$ 





max 
$$2x_1 + x_2 - 4x_3 + x_4$$
  
subject to  
 $x_1 - x_2 = 0$   
 $x_3 - x_4 = 0$   
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$ 

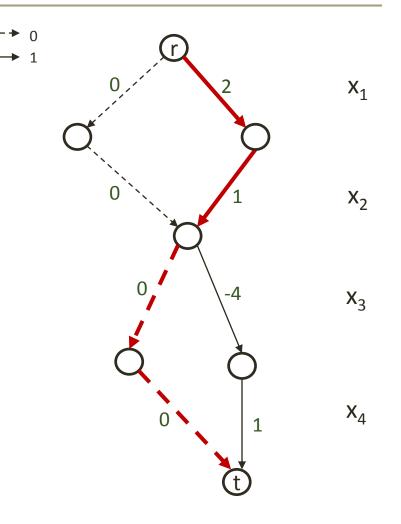
- Maximizing a linear (or separable) function:
  - Arc lengths: contribution to the objective
  - Longest path: optimal solution





max 
$$2x_1 + x_2 - 4x_3 + x_4$$
  
subject to  
 $x_1 - x_2 = 0$   
 $x_3 - x_4 = 0$   
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$ 

- Maximizing a linear (or separable) function:
  - Arc lengths: contribution to the objective
  - Longest path: optimal solution



# **Towards Generic Discrete Optimization**



### Modeling Framework

MIP: Linear Inequalities DD: Dynamic Programming

### Relaxation Methods

MIP: Linear Programming Relaxation DD: Relaxed Decision Diagram

### Primal Heuristics

MIP: Feasibility Pump, RINS, ... DD: Restricted Decision Diagrams

Generic Optimization Techniques

E.g., MIP, MINLP, CP, SAT, ...

#### Inference

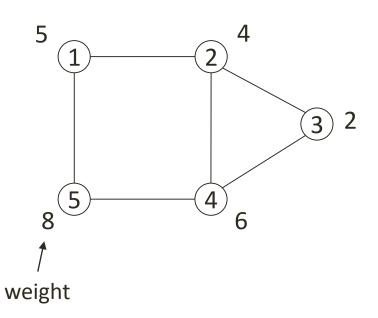
MIP: Valid linear cuts DD: Propagation, cuts

#### Search

MIP: Branch and bound (variable-based) DD: Branch and bound (state-based)



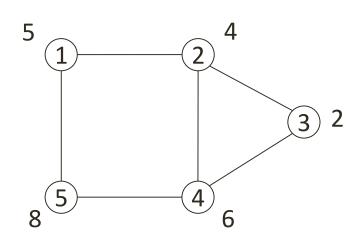
### Example: Maximum Independent Set Problem



- Classical combinatorial optimization problem (equivalent to maximum clique)
- Wide applications, ranging from scheduling to social network analysis



### Example: Maximum Independent Set Problem

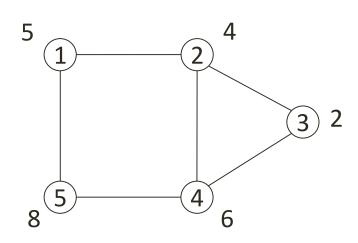


Integer Programming Formulation:

max 
$$5x_1 + 4x_2 + 2x_3 + 6x_4 + 8x_5$$
  
subject to  $x_1 + x_2 \le 1$   
 $x_1 + x_5 \le 1$   
 $x_2 + x_3 \le 1$   
 $x_2 + x_4 \le 1$   
 $x_3 + x_4 \le 1$   
 $x_4 + x_5 \le 1$   
 $x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$ 



### Example: Maximum Independent Set Problem



### Our Model: Dynamic Programming

- Exploit recursiveness
- Model is formulated through states
- Decisions (or *controls*): define state transitions

### Decision diagram: State-Transition Graph

- Nodes corresponds to states
- Arcs are state transitions
- Arc weights are transition costs



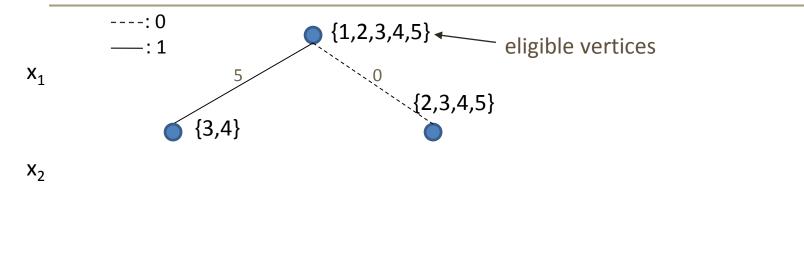
- DP model for the maximum independent set
  - State: vertices that can be added to an independent set (eligible vertices)
  - Decision: select (or not) a vertex i from the eligibility set
- Formal model:

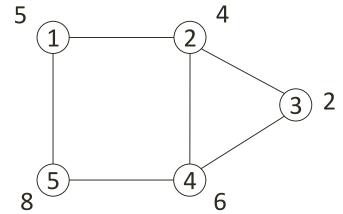
$$V_{i}(S) = \begin{cases} max \{V_{i-1}(S \setminus \{i\}), V_{i-1}(S \setminus N(i)) + w_{i}\}, & i \in S \\ V_{i-1}(S), & o.w. \end{cases}$$

 $V_i(\emptyset) = 0, \qquad i = 1, \dots, n$ 

(N(i) = i + its neighbors)



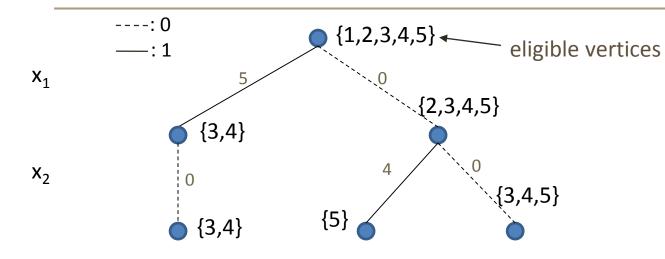


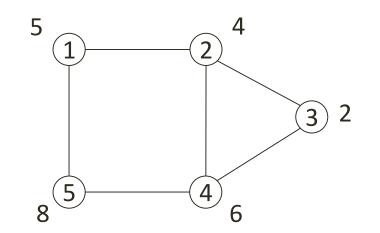


 $X_3$ 

 $X_4$ 



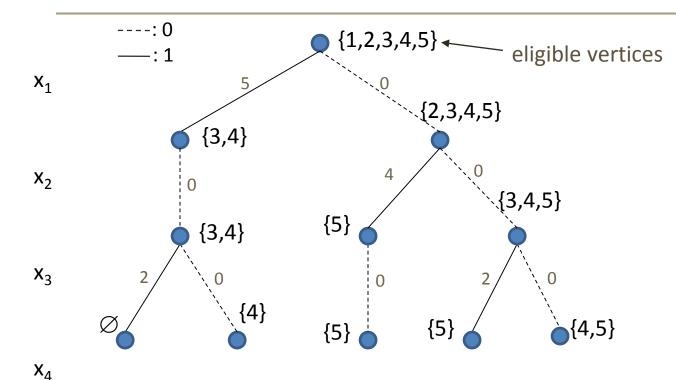


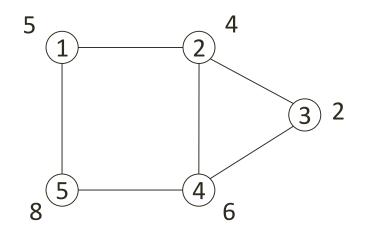


 $X_3$ 

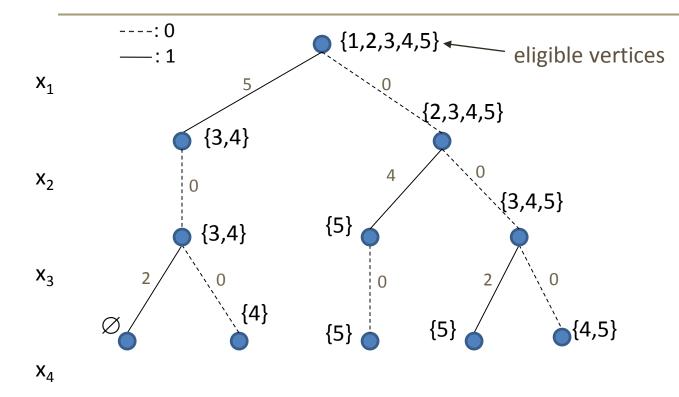
 $X_4$ 

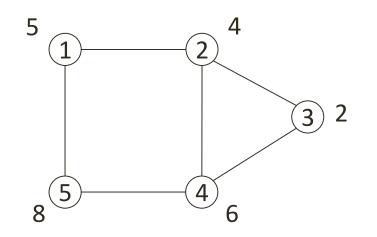








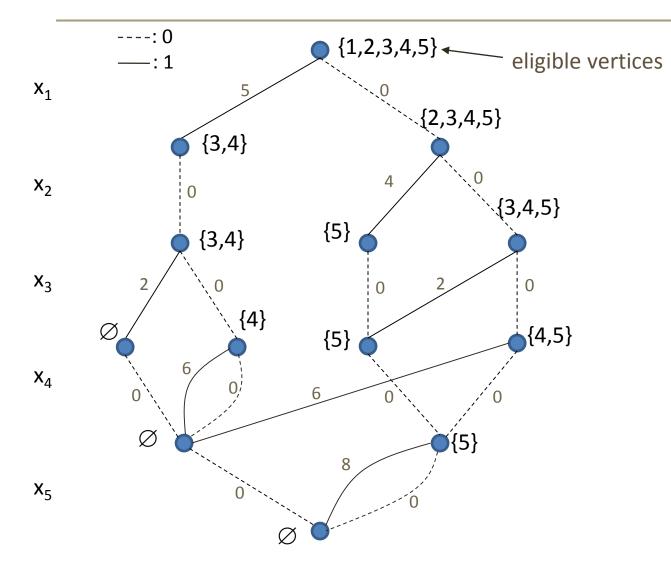


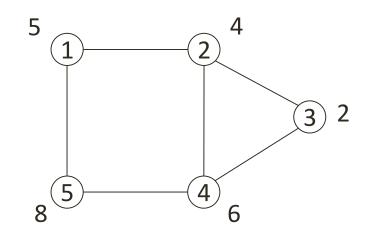


### Merge equivalent nodes

Xς







**Theorem:** This procedure generates a reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2013]



• In general, decision diagrams grow exponentially large

- Variable ordering impacts size of diagrams
  - Closely connected to treewidth and bandwidth
  - Independent Set: polynomial for certain classes of graphs [Bergman, Cire, vH, Hooker, IJOC 2014]
  - TSP: parameterized-size depending on precedence relations

[Cire & vH, OR 2013]

# **Towards Generic Discrete Optimization**



Modeling Framework

MIP: Linear Inequalities DD: Dynamic Programming

### Relaxation Methods

MIP: Linear Programming Relaxation DD: Relaxed Decision Diagram

Generic Optimization Techniques

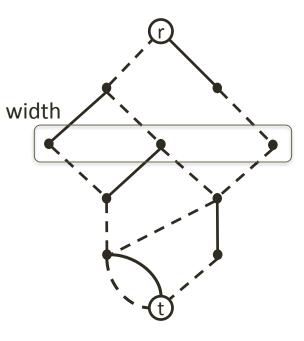
# **Relaxed Decision Diagrams**

- How to handle exponential size of diagram?
- Explicitly limit the size (e.g., the width)
  - while ensuring that no solution is lost
  - over-approximation of the solution space
  - provides discrete relaxation:

Relaxed Decision Diagram

- strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]







- Model is augmented with a state aggregation operator
  - Defines how to merge nodes so that no feasible solution is lost
  - Example for maximum independent set:

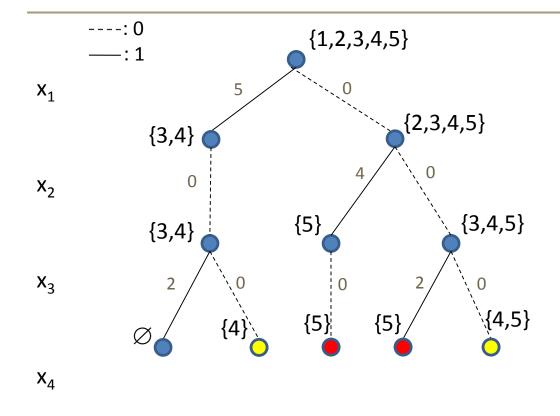
$$V_{i}(S) = \begin{cases} max \{V_{i-1}(S \setminus \{i\}), V_{i-1}(S \setminus N(i)) + wi\}, & i \in S \\ V_{i-1}(S), & o.w. \end{cases}$$

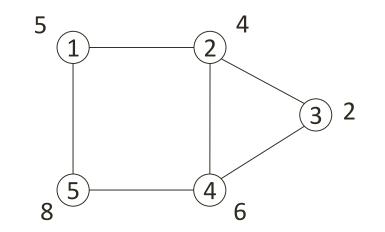
$$V_i(\emptyset) = 0, \qquad i = 1, \dots, n$$

 $\bigoplus (S_1, S_2) = S_1 \cup S_2$ 

### Independent Set Problem: Relaxed DD



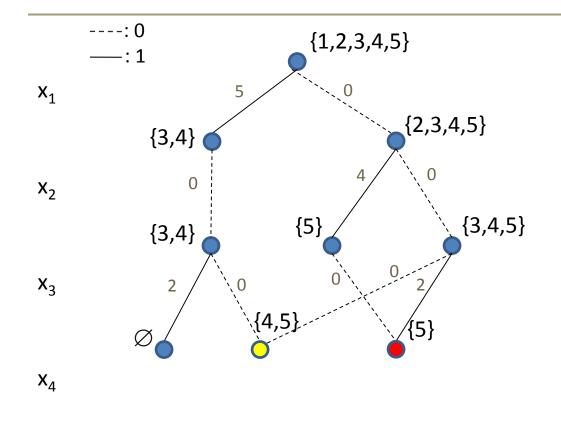


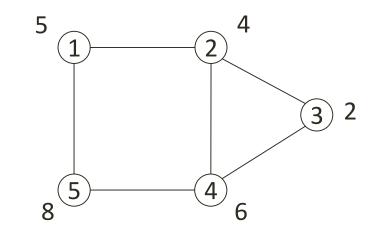


Maximum width = 3

### Independent Set Problem: Relaxed DD



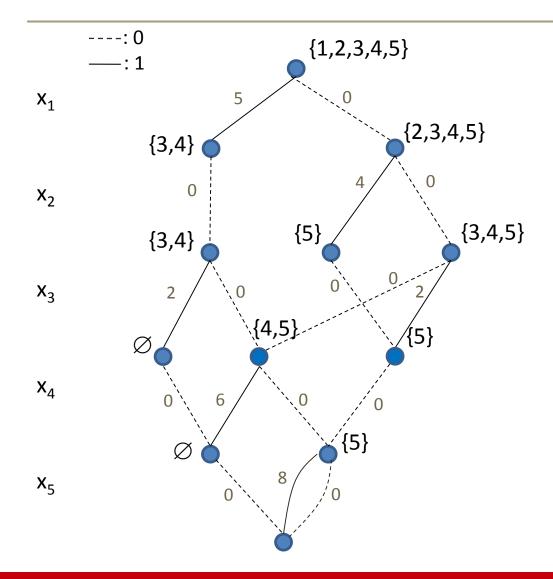


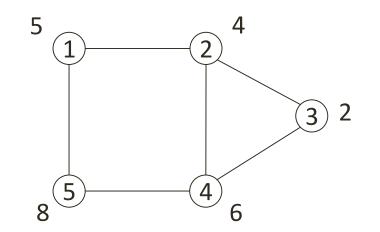


Maximum width = 3

### Independent Set Problem: Relaxed DD

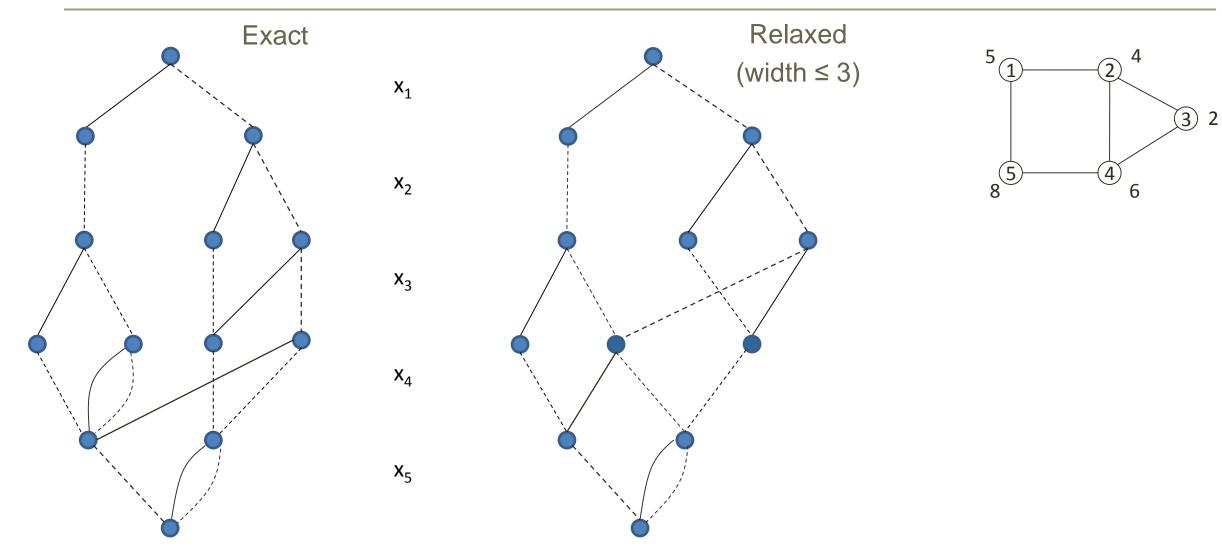




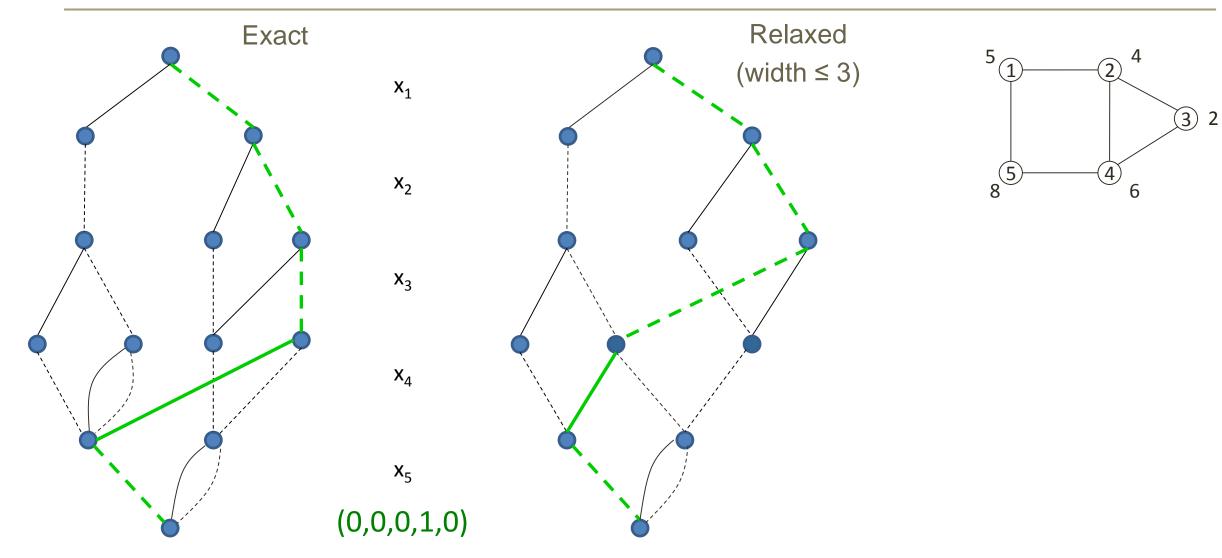


Maximum width = 3



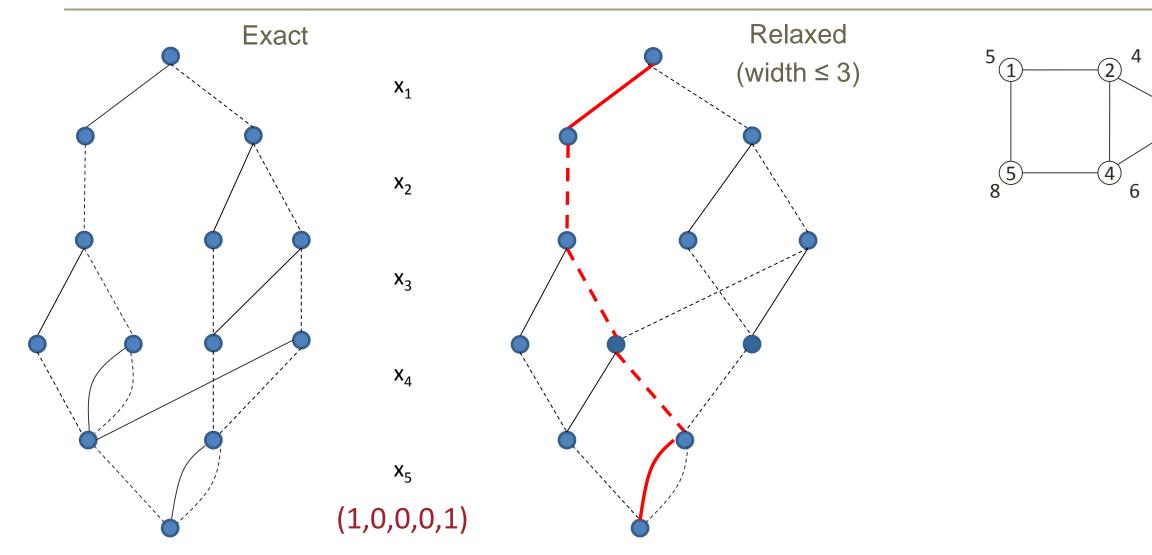




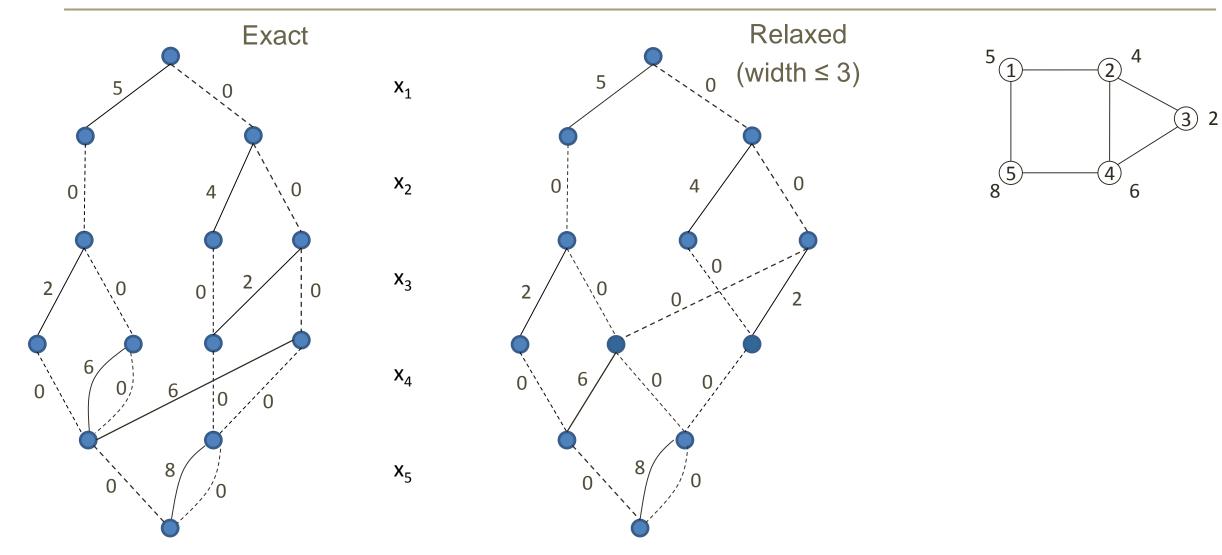




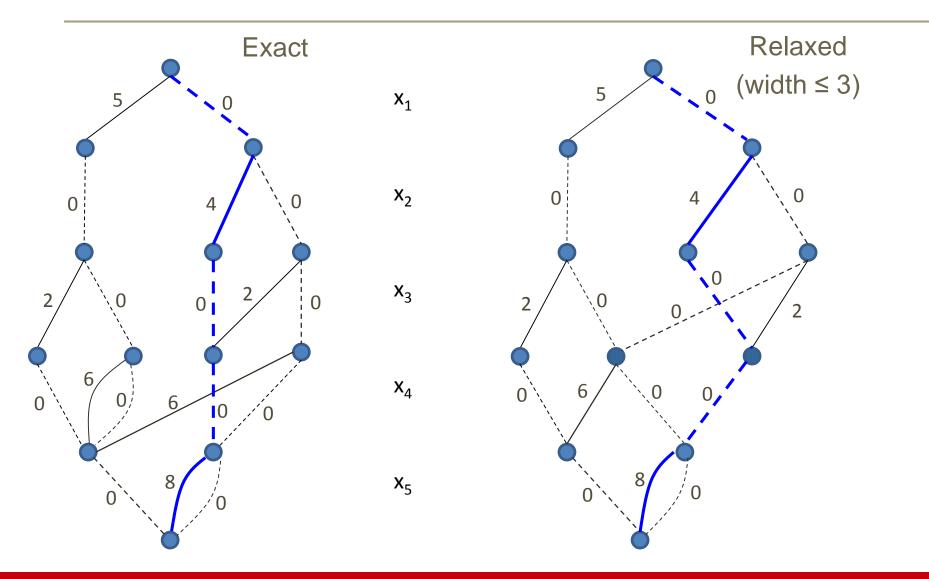
3 2

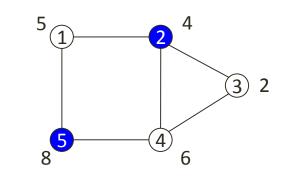












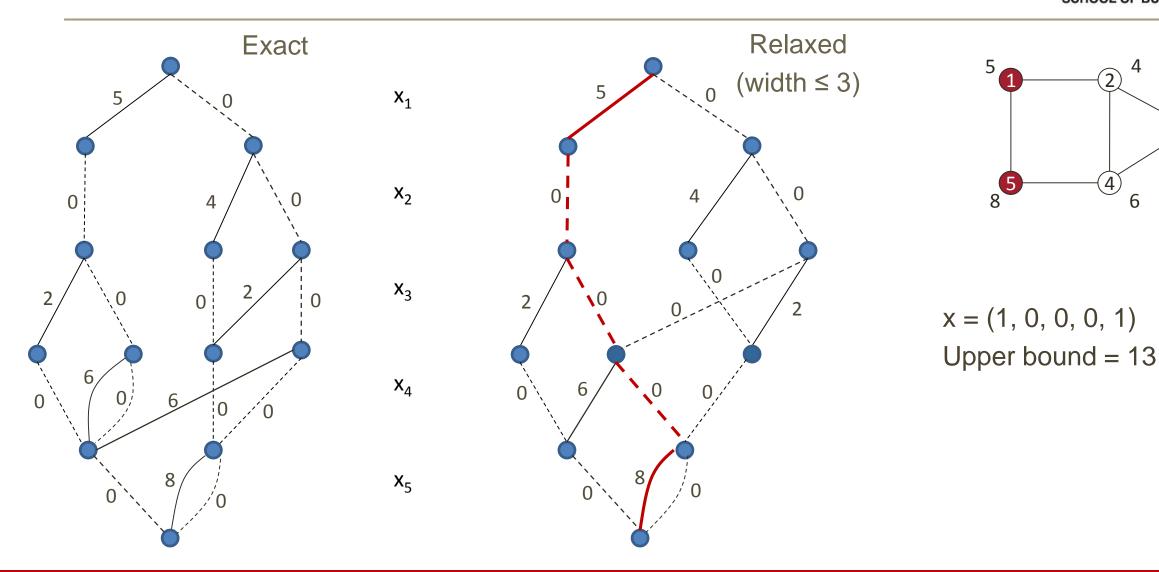
x = (0, 1, 0, 0, 1)Solution value = 12



4

6

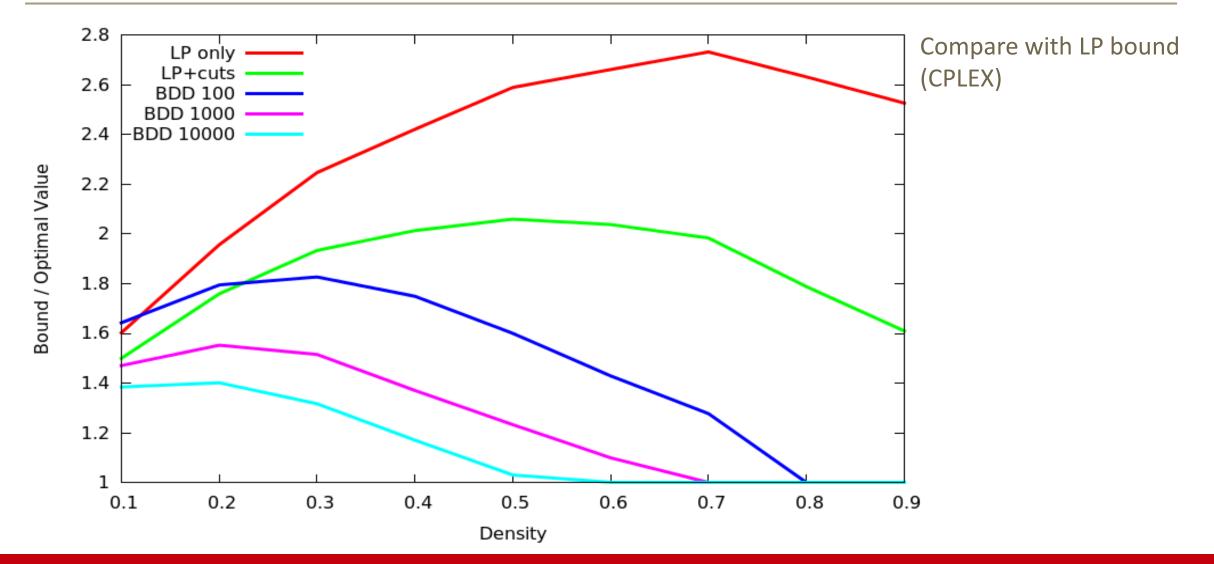
3 2





# **Relaxation Bound: Independent Set**





# **Towards Generic Discrete Optimization**



#### Modeling Framework

MIP: Linear Inequalities DD: Dynamic Programming

#### Relaxation Methods

MIP: Linear Programming Relaxation DD: Relaxed Decision Diagram

### Primal Heuristics

MIP: Feasibility Pump, RINS, ... DD: Restricted Decision Diagrams

Generic Optimization Techniques

# **Restricted Decision Diagrams**

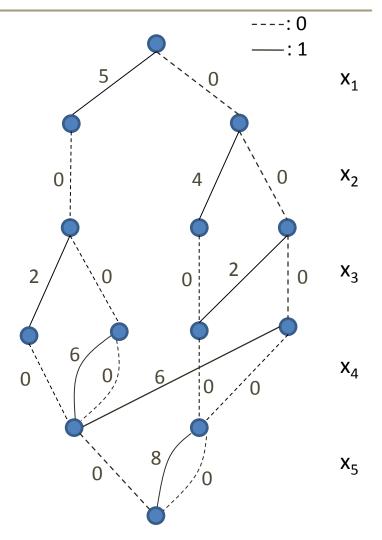


• Under-approximation of the feasible set



Maximum width = 3

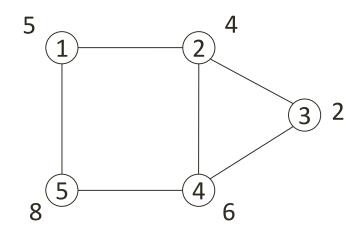
[Bergman, Cire, vH, Yunes, J Heur. 2014]



# **Restricted Decision Diagrams**



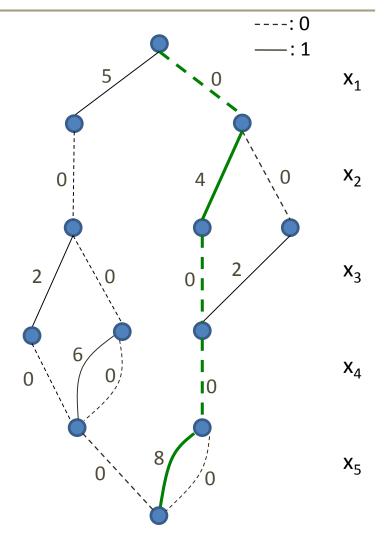
• Under-approximation of the feasible set



Maximum width = 3

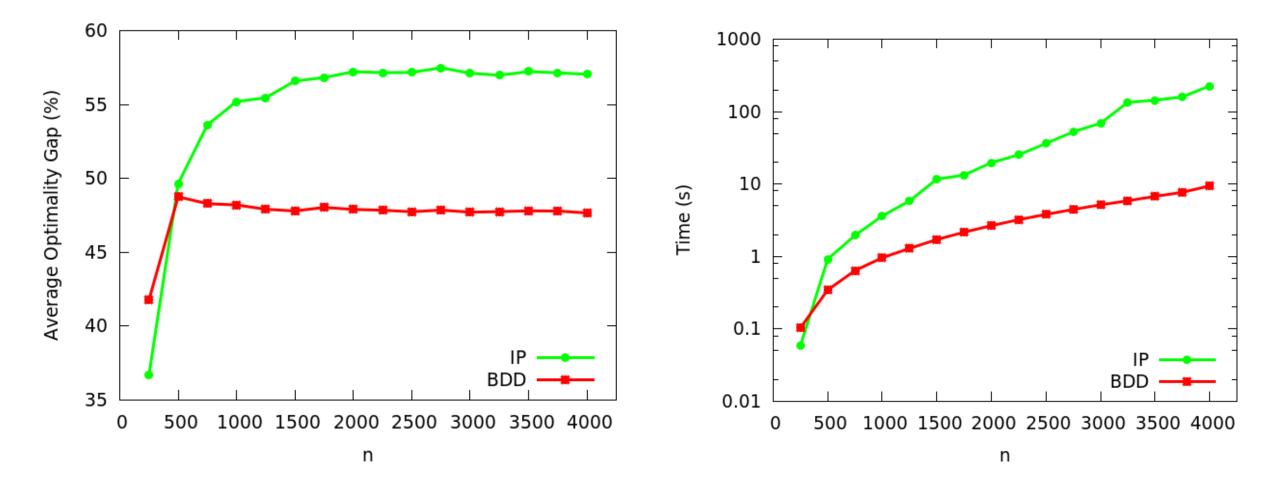
x = (0, 1, 0, 0, 1)Lower bound = 12

[Bergman, Cire, vH, Yunes, J Heur. 2014]



## Primal Bound: Set Covering Problem





# **Towards Generic Discrete Optimization**



#### Modeling Framework

MIP: Linear Inequalities DD: Dynamic Programming

#### Relaxation Methods

MIP: Linear Programming Relaxation DD: Relaxed Decision Diagram

#### Primal Heuristics

MIP: Feasibility Pump, RINS, ... DD: Restricted Decision Diagrams

Generic Optimization Techniques

Inference

MIP: Valid linear cuts DD: Propagation, cuts

# Inference Techniques from DDs



- Cut generation for general MIPs
  - Idea first proposed in [Becker et al., 2005] [Behle, PhD 2007]
  - Facet-defining cuts [Tjandraatmadja & vH, IJOC to appear]
  - Extension to MINLP [Davarnia & vH]
- Clause learning for SAT [Kell et al., CPAIOR 2015]
- Problem-specific cuts
  - Precedence constraints for scheduling problem [Cire&vH, OR 2013]
- Constraint Propagation in Constraint Programming
  - Several constraint types: Alldiff, Among, Sequence, Markov, Statistical, ...

[Hoda, vH, Hooker, CP 2010] [Bergman, Cite, vH, JAIR 2014] [Perez & Regin, IJCAI2015, CP2016, AAAI2017, CPAIOR 2017]

# **Towards Generic Discrete Optimization**



#### Modeling Framework

MIP: Linear Inequalities DD: Dynamic Programming

#### Relaxation Methods

MIP: Linear Programming Relaxation DD: Relaxed Decision Diagram

### Primal Heuristics

MIP: Feasibility Pump, RINS, ... DD: Restricted Decision Diagrams

Generic Optimization Techniques

Inference

MIP: Valid linear cuts DD: Propagation, cuts

#### Search

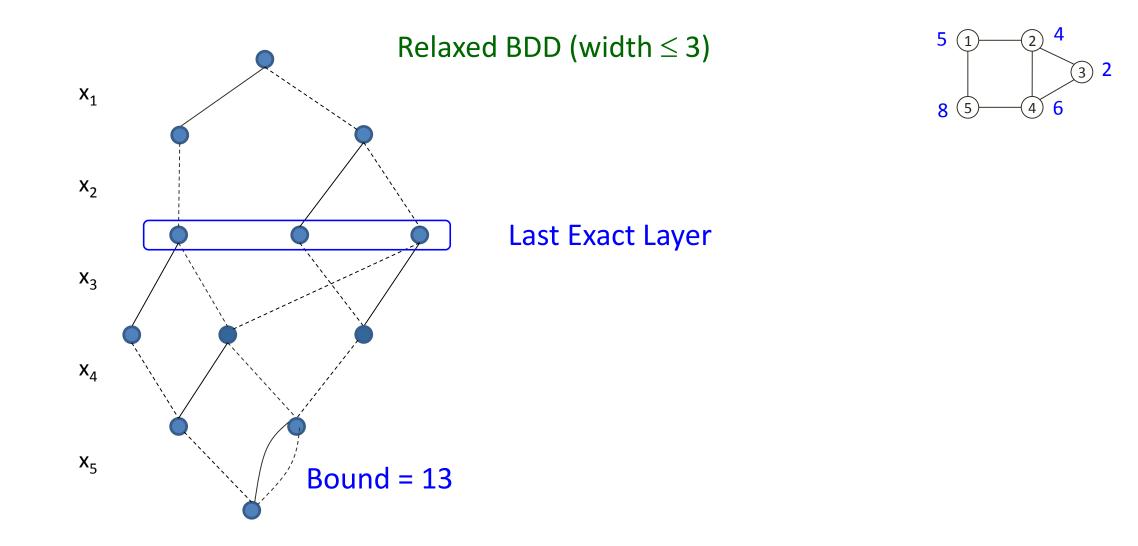
MIP: Branch and bound (variable-based) DD: Branch and bound (state-based)



- Novel decision diagram branch-and-bound scheme
  - Relaxed diagrams play the role of the LP relaxation
  - Restricted diagrams are used as primal heuristics
- Branching is done on the *nodes* of the diagram
  - Branching on pools of partial solutions
  - Eliminate search symmetry

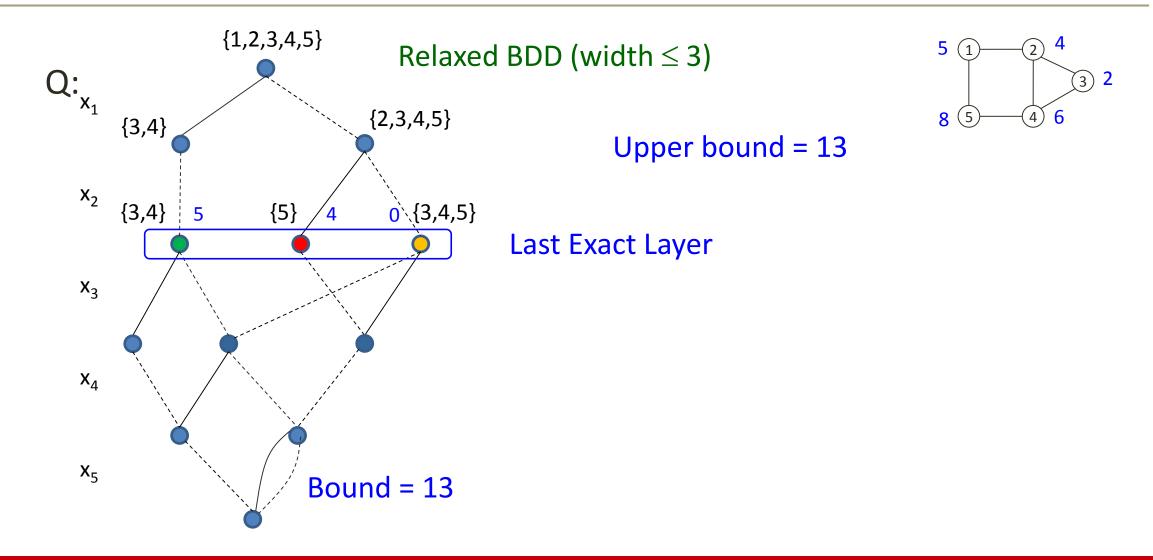
## **Branch and Bound**





## Node Queue

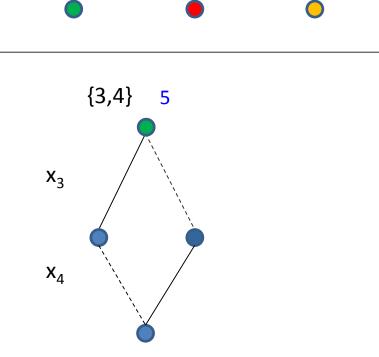




## Node Queue

{3*,*4} 5

**Q**:



{5} 4

<mark>0</mark> {3,4,5}

Upper bound = 13 Lower bound = 11

Exact solution: 11



3 2

4

(2)

4) 6

5

1

8 (5)

## Exact solution: 12

{5} 4

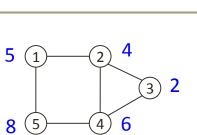
<mark>0</mark> {3,4,5}

 $\bigcirc$ 

{5} **4** 

Upper bound = 13

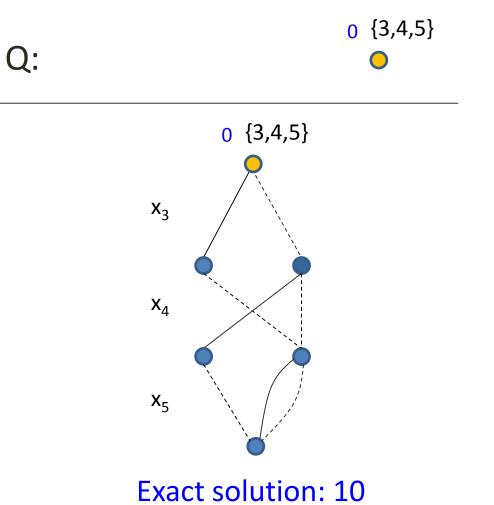
Lower bound = 12





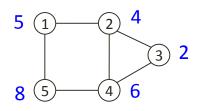
Node Queue

**Q**:



## Node Queue

Upper bound = 13 Lower bound = 12



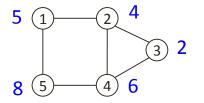


## Node Queue

Q:

Optimal solution: 12







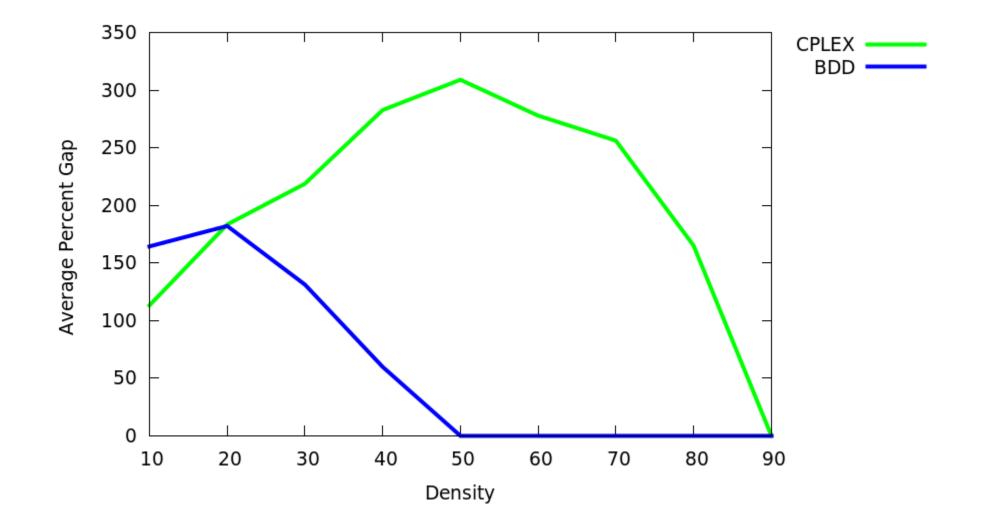
# **New Branching Scheme**



- Novel branching scheme
  - Branch on **pools** of partial solutions
  - Remove symmetry from search
    - Symmetry with respect to feasible completions
  - Can be combined with other techniques
    - Use decision diagrams for branching, and LP for bounds
    - Define CP search with MDD inside global constraint
  - Immediate parallelization
    - Send nodes in the queue to different workers, recursive application
    - DDX10 [Bergman et al. CPAIOR 2014]

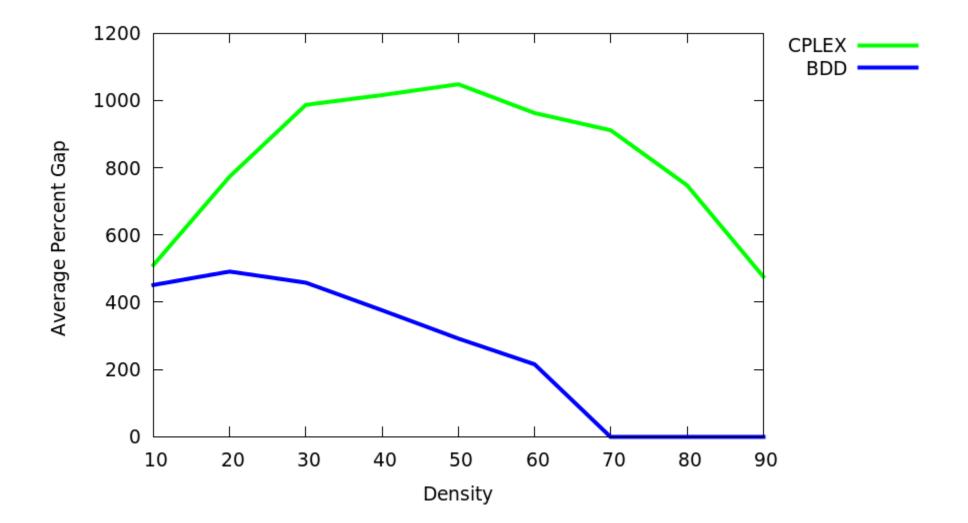
# Maximum Independent Set: 500 variables





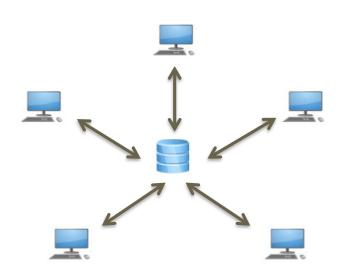
# Maximum Independent Set: 1500 variables





# Parallelization: Centralized Architecture





Master maintains a pool of BDD nodes to process

 nodes with larger upper bound have higher priority

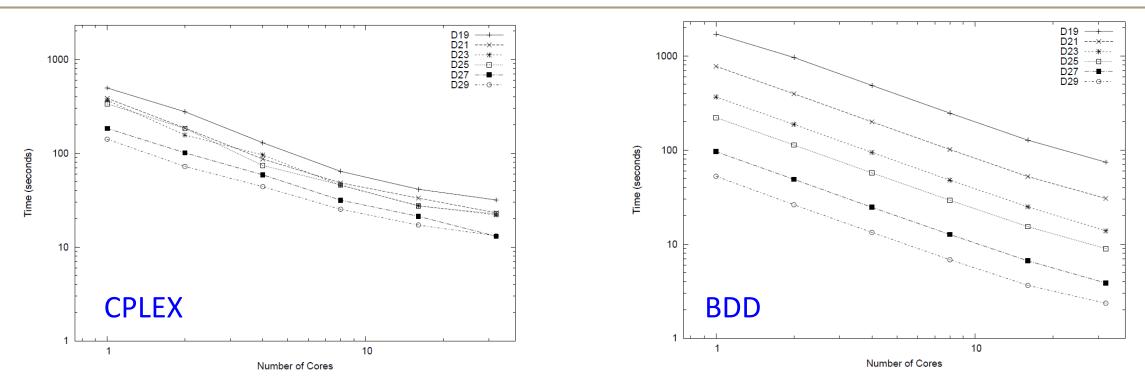
**Workers** receive BDD nodes, generate *restricted* & *relaxed* BDDs, and send new BDD nodes and bounds to master

they also maintain a local pool of nodes

[Bergman et al. CPAIOR 2014]

# Parallelization: BDD vs CPLEX

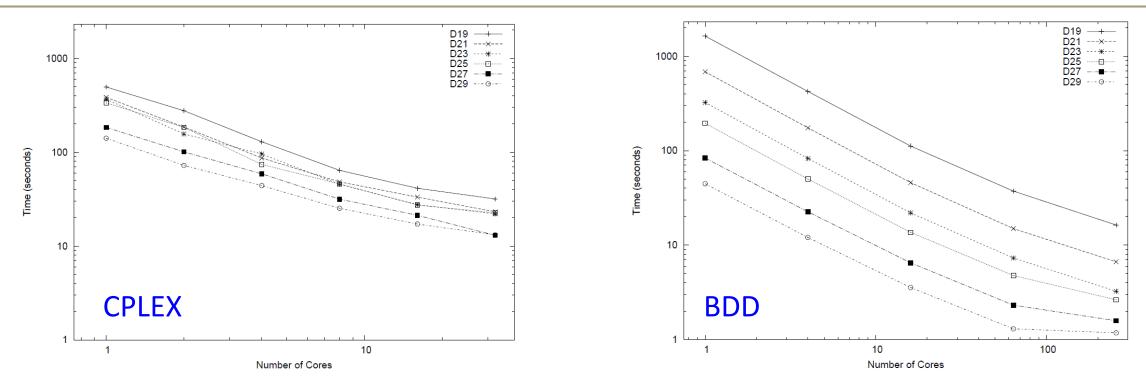




- n = 170, each data point avg over 30 instances
- 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
- 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)

# Parallelization: BDD vs CPLEX





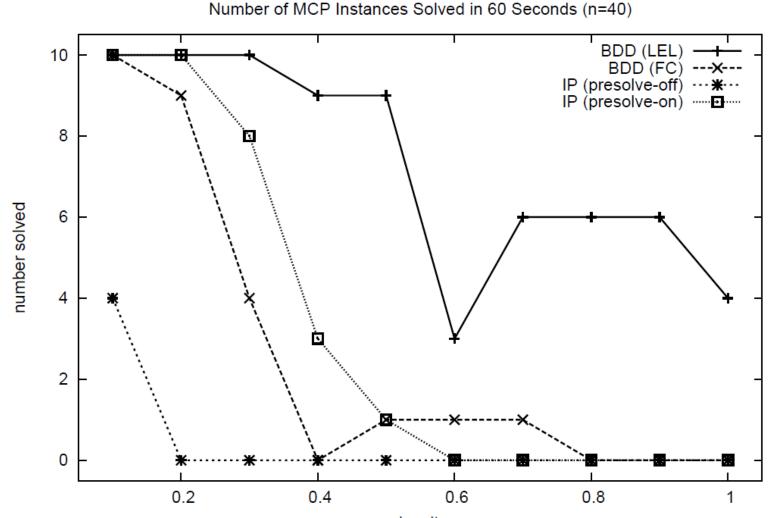
- n = 170, each data point avg over 30 instances
- 1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
- 32 workers: BDD 5.5 times faster than CPLEX (density 0.29)
- BDDs scale to well to (at least) 256 workers



- Compare with IBM ILOG CPLEX and BiqMac
- Typical MIP formulation + triangle inequalities
  - $O(n^2)$  variables,  $O(n^3)$  constraints
- Benchmark problems
  - g instances
  - Helmberg and Rendl instances, which were taken from Rinaldi's random graph generator
  - n ranges from 800 to 3000 very large/difficult problems, mostly open
- BDD search
  - Last Exact Layer (LEL) or Frontier Cut (FC)

## MIP vs BDD: 60 seconds (n=40)

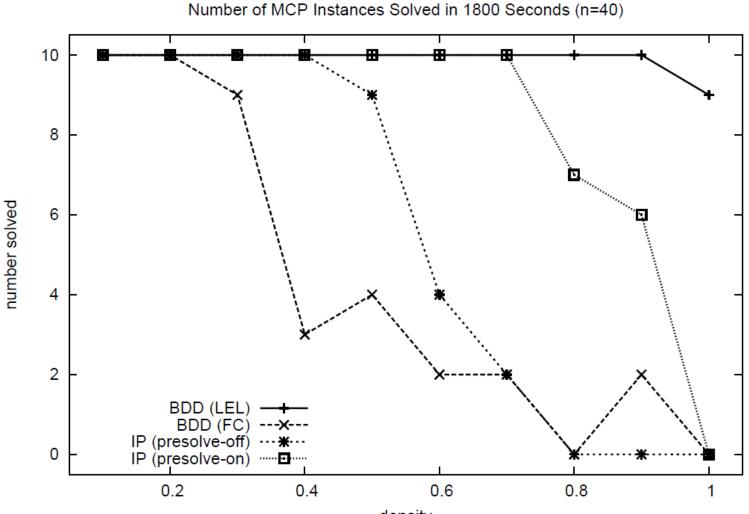




density

# MIP vs BDD: 1,800 seconds (n=40)





density

# BiqMac vs BDD



|          | BiqMac |         | BDD   |       | Best known |         |
|----------|--------|---------|-------|-------|------------|---------|
| instance | LB     | UB      | LB    | UB    | LB         | UB      |
| g50      | 5880   | 5988.18 | 5880  | 5899* | 5880       | 5988.18 |
| g32      | 1390   | 1567.65 | 1410* | 1645  | 1398       | 1560    |
| g33      | 1352   | 1544.32 | 1380* | 1536* | 1376       | 1537    |
| g34      | 1366   | 1546.70 | 1376* | 1688  | 1372       | 1541    |
| g11      | 558    | 629.17  | 564   | 567*  | 564        | 627     |
| g12      | 548    | 623.88  | 556   | 616*  | 556        | 621     |
| g13      | 578    | 647.14  | 580   | 652   | 580        | 645     |



• Reduced optimality gap for several benchmark instances

| instance | old % gap | new % gap | % reduction |
|----------|-----------|-----------|-------------|
| g11      | 11.17     | 0.53      | 95.24       |
| g50      | 1.84      | 0.32      | 82.44       |
| g32      | 11.59     | 10.64     | 8.20        |
| g12      | 11.69     | 10.79     | 7.69        |
| g33      | 11.70     | 11.30     | 3.39        |
| g34      | 12.32     | 11.99     | 2.65        |



## **Constraint Programming with Decision Diagrams**





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{split} &x_1 > x_2 \\ &x_1 + x_2 = x_3 \\ & all different(x_1, x_2, x_3, x_4) \\ &x_1 \in \{1, 2\}, \, x_2 \in \{0, 1, 2, 3\}, \, x_3 \in \{2, 3\}, \, x_4 \in \{0, 1\} \end{split}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$x_1 > x_2$$

 $\begin{aligned} &x_1 + x_2 = x_3 \\ & all different(x_1, x_2, x_3, x_4) \\ &x_1 \in \{1, 2\}, \, x_2 \in \{0, 1, 2, 3\}, \, x_3 \in \{2, 3\}, \, x_4 \in \{0, 1\} \end{aligned}$ 





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$x_1 > x_2$$

 $x_1 + x_2 = x_3$ all different  $(x_1, x_2, x_3, x_4)$  $x_1 \in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\}$ 





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$x_1 > x_2$$
  
 $x_1 + x_2 = x_3$ 

all different  $(x_1, x_2, x_3, x_4)$  $x_1 \in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\}$ 





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$x_1 > x_2$$

 $\begin{aligned} x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$ 





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, x_2 \in \{0, 1, 2, 3\}, x_3 \in \{2, 3\}, x_4 \in \{0, 1\} \end{aligned}$$





- Constraint Programming applies constraint propagation
  - Remove provably inconsistent values from variable domains
  - Propagate updated domains to other constraints

$$\begin{aligned} x_1 > x_2 \\ x_1 + x_2 &= x_3 \\ all different(x_1, x_2, x_3, x_4) \\ x_1 &\in \{1, 2\}, \, x_2 \in \{0, 1, 2, 3\}, \, x_3 \in \{2, 3\}, \, x_4 \in \{0, 1\} \end{aligned}$$

domain propagation can be weak, however...



 $\begin{aligned} & all different(x_1, x_2, x_3, x_4) & (1) \\ & x_1 + x_2 + x_3 \ge 9 & (2) \\ & x_i \in \{1, 2, 3, 4\} \end{aligned}$ 



 $alldifferent(x_1, x_2, x_3, x_4) (1)$  $x_1 + x_2 + x_3 \ge 9 (2)$  $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)

#### 

4 3 2 1



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)

#### 



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)



alldifferent
$$(x_1, x_2, x_3, x_4)$$
 (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)



alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)  
 $x_1 + x_2 + x_3 \ge 9$  (2)  
 $x_i \in \{1, 2, 3, 4\}$ 

(1) and (2) are bothdomain consistent(i.e., no propagation)

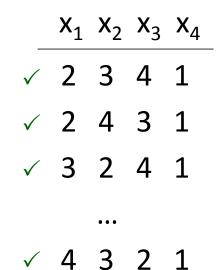
domain projection:  $D(x_4) = \{1\}$  $D(x_1) = D(x_2) = D(x_3) = \{2,3,4\}$ 

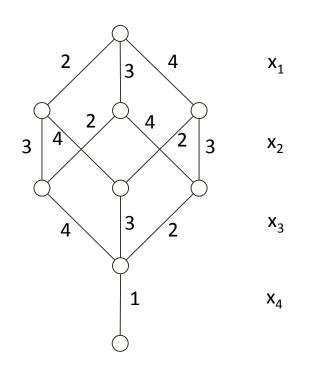


$$alldifferent(x_1, x_2, x_3, x_4) (1)$$
$$x_1 + x_2 + x_3 \ge 9 (2)$$
$$x_i \in \{1, 2, 3, 4\}$$

(1) and (2) are bothdomain consistent(i.e., no propagation)

#### List of all solutions to *alldifferent*:





Use MDD!



- Conventional domain propagation: all structural relationships among variables are lost after domain projection
- Potential solution space is implicitly defined by Cartesian product of variable domains (very coarse relaxation)

We can communicate more information between constraint using MDDs [Andersen et al. 2007]

- Explicit representation of more refined potential solution space
- Limited width defines *relaxed* MDD
- Strength is controlled by the imposed width

# **MDD-based Constraint Programming**



- Maintain limited-width MDD
  - Serves as relaxation
  - Typically start with width 1 (initial variable domains)
  - Dynamically adjust MDD, based on constraints
- Constraint Propagation
  - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
  - Node refinement: Split nodes to separate edge information
- Search
  - As in classical CP, but may now be guided by MDD



- Linear equalities and inequalities
- Alldifferent constraints
- *Element* constraints
- Among constraints

[Hadzic et al., 2008] [Hoda et al., 2010]

[Andersen et al., 2007]

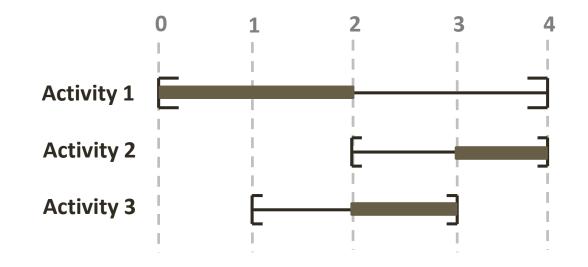
[Hoda et al., 2010]

[Hoda et al., 2010]

- Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]
- Sequence constraints (combination of Amongs) [Bergman et al., 2014]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]



- Sequencing and scheduling of activities on a resource
- Activities
  - Processing time: p<sub>i</sub>
  - Release time: r<sub>i</sub>
  - Deadline: d<sub>i</sub>
- Resource
  - Nonpreemptive
  - Process one activity at a time





- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
  - Makespan
  - Sum of setup times
  - (Weighted) sum of completion times
  - (Weighted) tardiness
  - number of late jobs

- ...



Three main considerations:

- Representation
  - How to represent solutions of disjunctive scheduling in a DD?
- Construction
  - How to construct the DD?
- Inference techniques
  - What can we infer using the DD?



• Every solution can be written as a permutation  $\pi$ 

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$ : activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

 $start_{\pi_i} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}} \qquad i = 2, \dots, n$ 

Represent feasible permutations with multi-valued decision diagram (MDD)

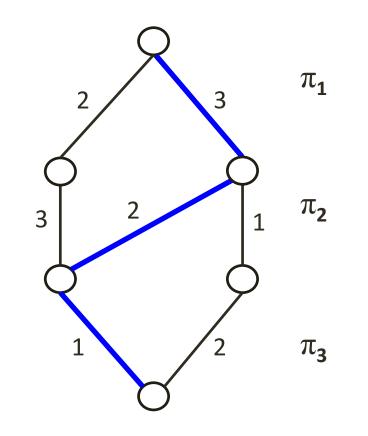
[Cire&vH, OR 2013]

## MDD Representation: Example



| Act | r <sub>i</sub> | <b>p</b> i | d <sub>i</sub> |
|-----|----------------|------------|----------------|
| 1   | 3              | 4          | 12             |
| 2   | 0              | 3          | 11             |
| 3   | 1              | 2          | 10             |

precedence:  $3 \ll 1$ 

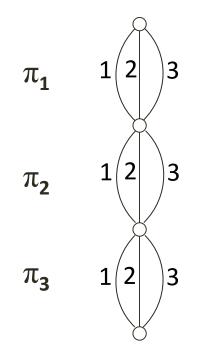


Path 3 – 2 – 1 :

- $6 \leq \text{start}_1 \leq 8$
- $3 \leq \text{start}_2 \leq 5$
- $1 \leq \text{start}_3 \leq 3$

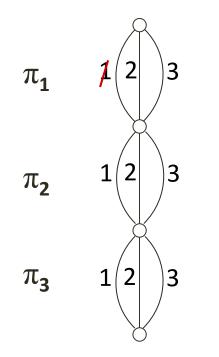


precedence:  $3 \ll 1$ 



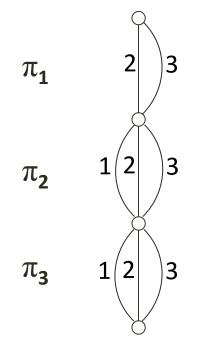


precedence:  $3 \ll 1$ 

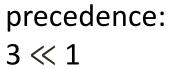


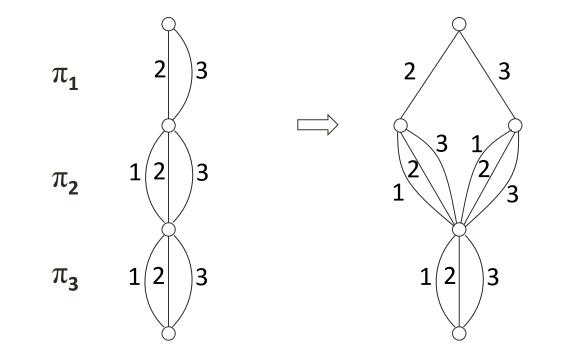


precedence:  $3 \ll 1$ 

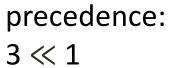


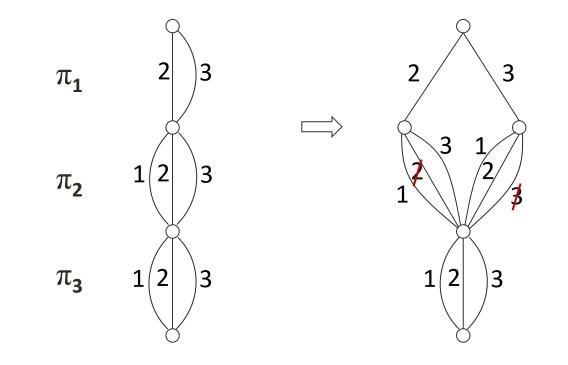




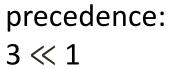


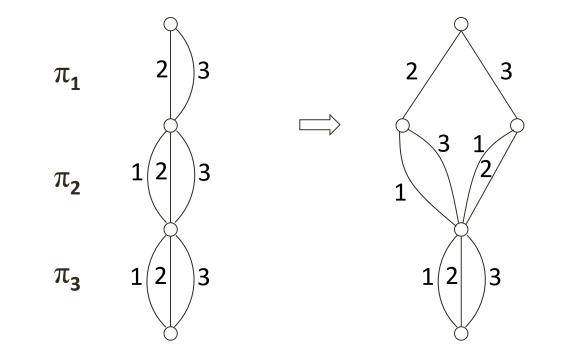




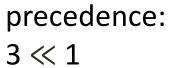


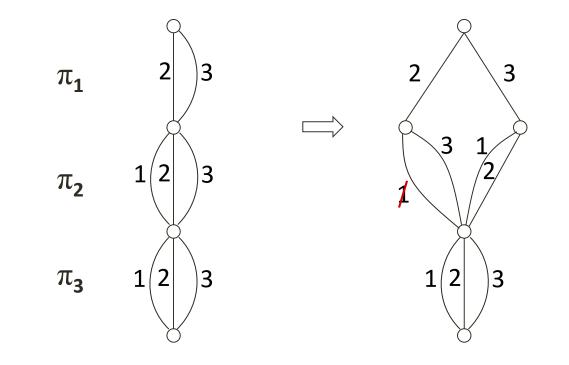




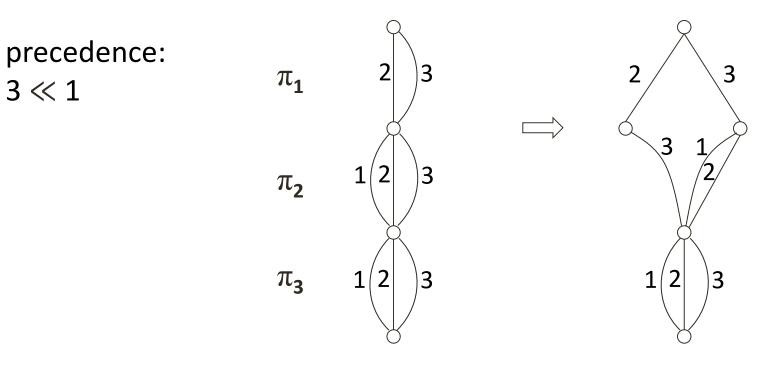






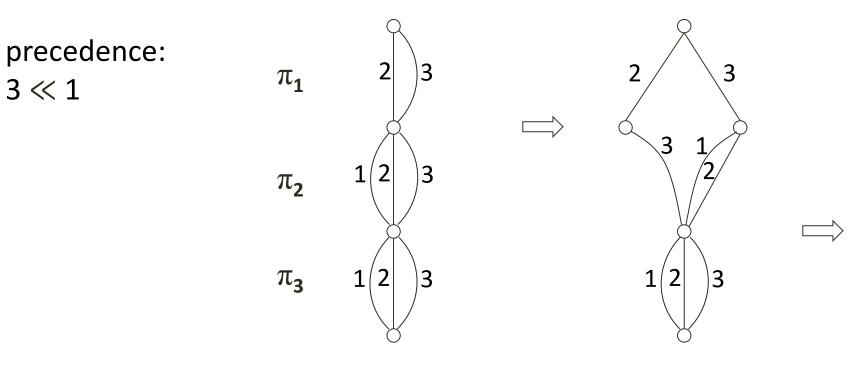






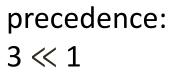
 $3 \ll 1$ 

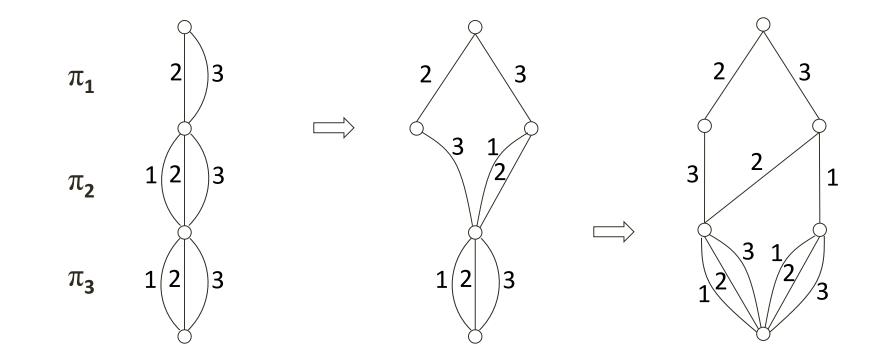




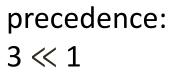
 $3 \ll 1$ 

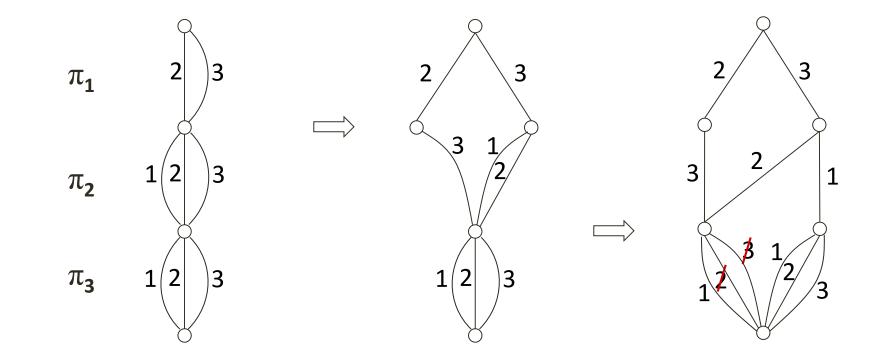




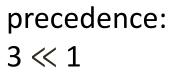


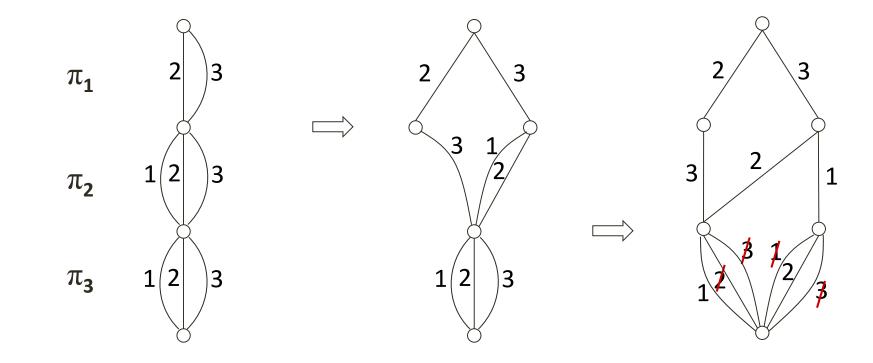




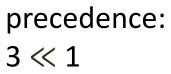


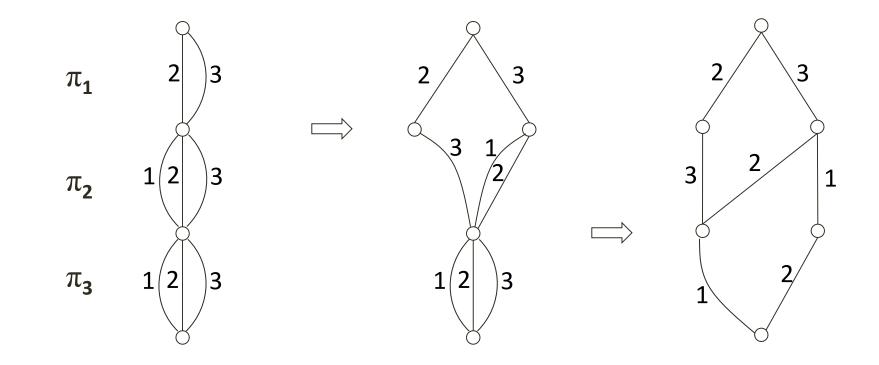




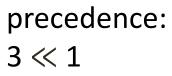


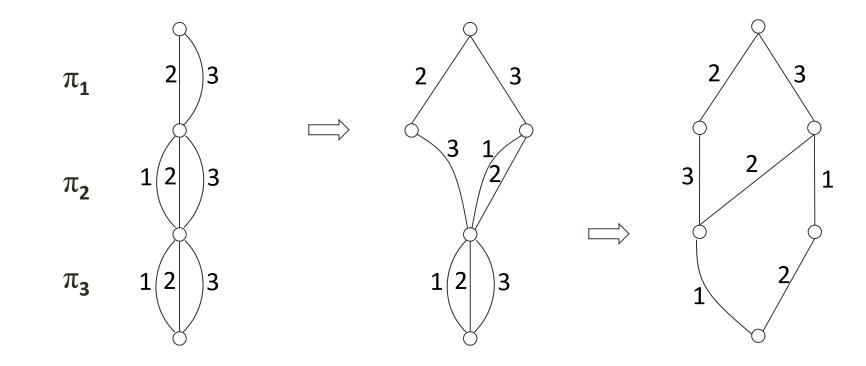












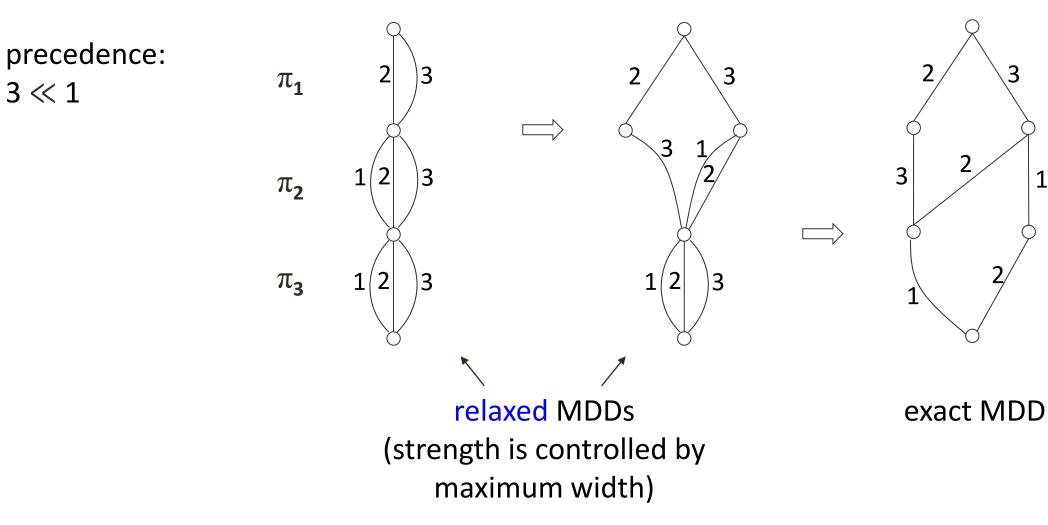
exact MDD

Tepper School of Business • William Larimer Mellon Founder



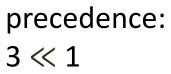
3

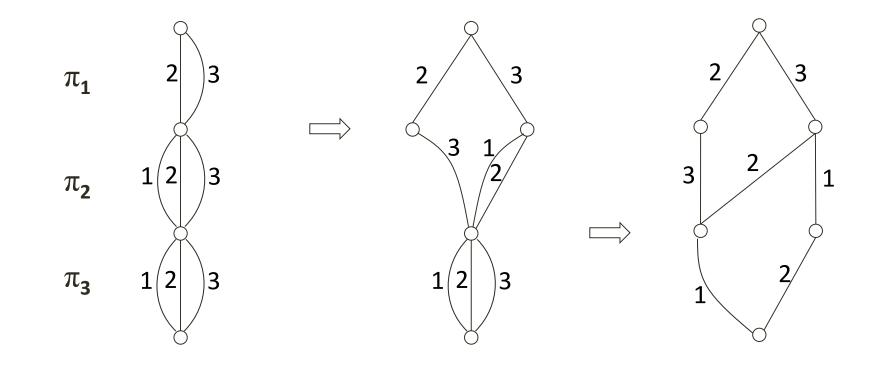
1



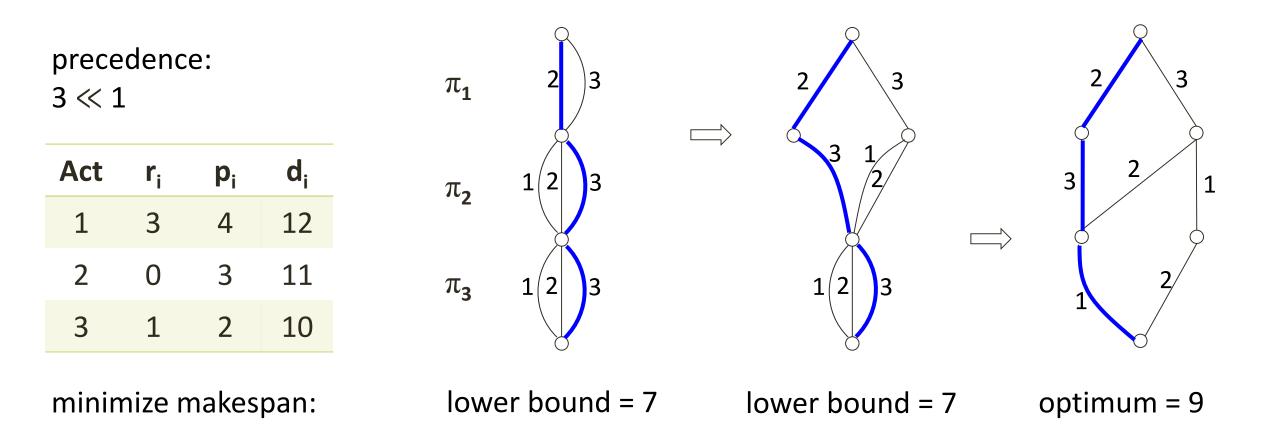
Tepper School of Business • William Larimer Mellon Founder







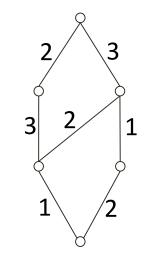






We need to represent several problem components:

- Permutation structure ("AllDifferent")
  - state information: set of values taken on paths from root to state
- Earliest start time (similar for latest end time)
  - state information: minimum completion time of all paths from root
- Precedence relations
  - can be enforced using the state information for AllDifferent





• Theorem: Constructing the exact MDD for a Disjunctive Instance is NP-Hard

(In fact, determining state equivalence is already NP-hard)

- Therefore we use relaxed MDDs
  - specify a maximum width

MDDs of bounded width exist for special cases
 – for example for structured precedence relations



 Theorem: Given exact MDD M, we can deduce all implied activity precedences in O(n<sup>2</sup>|M|) time

- The algorithm can also be applied to *relaxed* MDD to find a subset of precedences
  - can be stronger than edge-finding, not-first/not-last, etc.

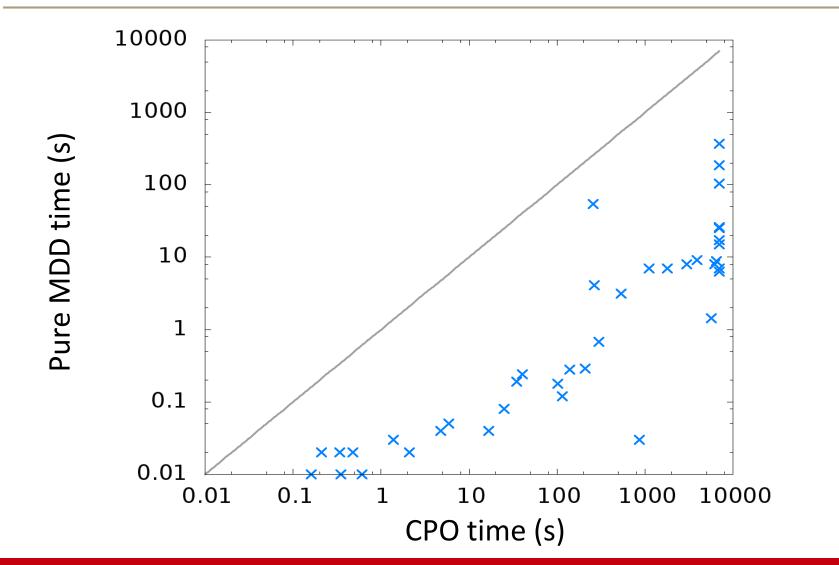




- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
  - State-of-the-art constraint based scheduling solver
  - Uses a portfolio of inference techniques and LP relaxation
  - MDD is added as user-defined propagator
- Compare three different variants
  - CPO (only use CPO propagation)
  - MDD (only use MDD propagation)
  - CPO+MDD (use both)

#### **TSP** with Time Windows



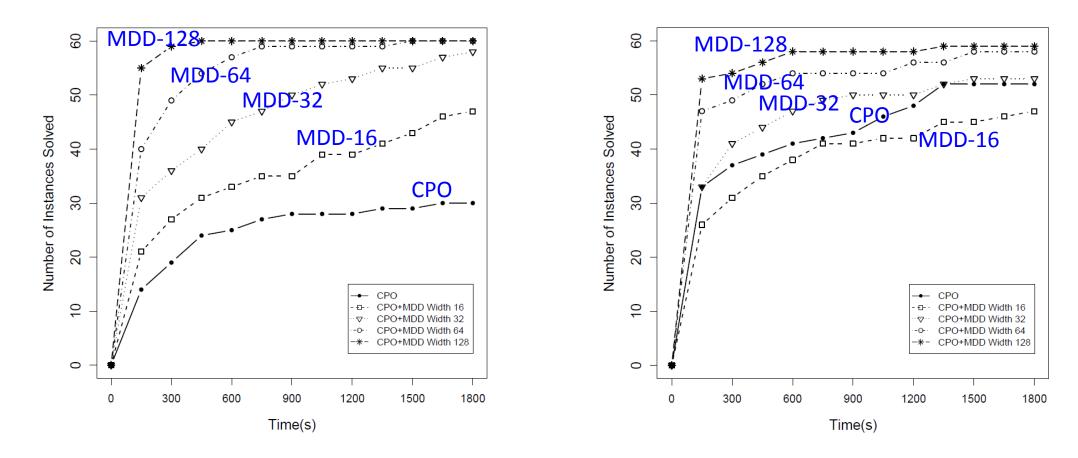


Dumas/Ascheuer instances

- 20-60 cities
- max MDD width: 16

#### **Total Tardiness**





total weighted tardiness

# Sequential Ordering Problem (TSPLIB)



| instance | vertices | bounds         | $\begin{array}{c} \text{CPO} \\ \text{best}  \text{time (s)} \end{array}$ |               | CPO+MDD, width 2048<br>best time (s) |               |
|----------|----------|----------------|---------------------------------------------------------------------------|---------------|--------------------------------------|---------------|
| br17.10  | 17       | 55             | 55                                                                        | 0.01          | 55                                   | 4.98          |
| br17.12  | 17       | 55             | 55                                                                        | 0.01          | 55                                   | 4.56          |
| ESC07    | 7        | 2125           | 2125                                                                      | 0.01          | 2125                                 | 0.07          |
| ESC25    | 25       | 1681           | 1681                                                                      | $\mathrm{TL}$ | 1681                                 | 48.42         |
| p43.1    | 43       | 28140          | 28205                                                                     | $\mathrm{TL}$ | 28140                                | 287.57        |
| p43.2    | 43       | [28175, 28480] | 28545                                                                     | $\mathrm{TL}$ | 28480                                | 279.18*       |
| p43.3    | 43       | [28366, 28835] | 28930                                                                     | $\mathrm{TL}$ | 28835                                | 177.29*       |
| p43.4    | 43       | 83005          | 83615                                                                     | $\mathrm{TL}$ | 83005                                | 88.45         |
| ry48p.1  | 48       | [15220, 15805] | 18209                                                                     | $\mathrm{TL}$ | 16561                                | $\mathrm{TL}$ |
| ry48p.2  | 48       | [15524, 16666] | 18649                                                                     | $\mathrm{TL}$ | 17680                                | $\mathrm{TL}$ |
| ry48p.3  | 48       | [18156, 19894] | 23268                                                                     | $\mathrm{TL}$ | 22311                                | $\mathrm{TL}$ |
| ry48p.4  | 48       | [29967, 31446] | 34502                                                                     | $\mathrm{TL}$ | 31446                                | 96.91*        |
| ft53.1   | 53       | [7438, 7531]   | 9716                                                                      | $\mathrm{TL}$ | 9216                                 | $\mathrm{TL}$ |
| ft 53.2  | 53       | [7630, 8026]   | 11669                                                                     | $\mathrm{TL}$ | 11484                                | $\mathrm{TL}$ |
| ft 53.3  | 53       | [9473, 10262]  | 12343                                                                     | $\mathrm{TL}$ | 11937                                | $\mathrm{TL}$ |
| ft 53.4  | 53       | 14425          | 16018                                                                     | $\mathrm{TL}$ | 14425                                | 120.79        |

\* solved for the first time



- Lagrangian relaxation
  - penalize constraint violations by modifying arc weights

- Additive bounding
  - incorporate dual information from LP relaxations
  - e.g., aggregate reduced costs along path from root to terminal

#### Extension: Lagrangian bounds

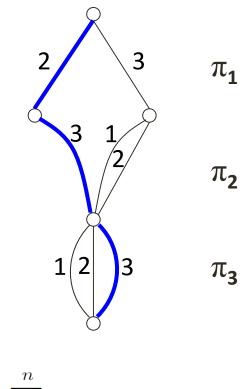
- Observation: MDD bounds can be very loose - main cause: repetition of activities
- Apply Lagrangian relaxation
  - penalize repeated activities; reward unused activities

$$\min z + \sum_{j=1}^{n} \lambda_j \left( \sum_{i=1}^{n} (\pi_i = j) - 1 \right)$$
$$= z + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j (\pi_i = j) - \sum_{j=1}^{n} \lambda_j$$

shortest path with updated weights

 $\pi_2$ 3  $\pi_2$  $\sum (\pi_i = j) = 1 \quad \forall j$ 

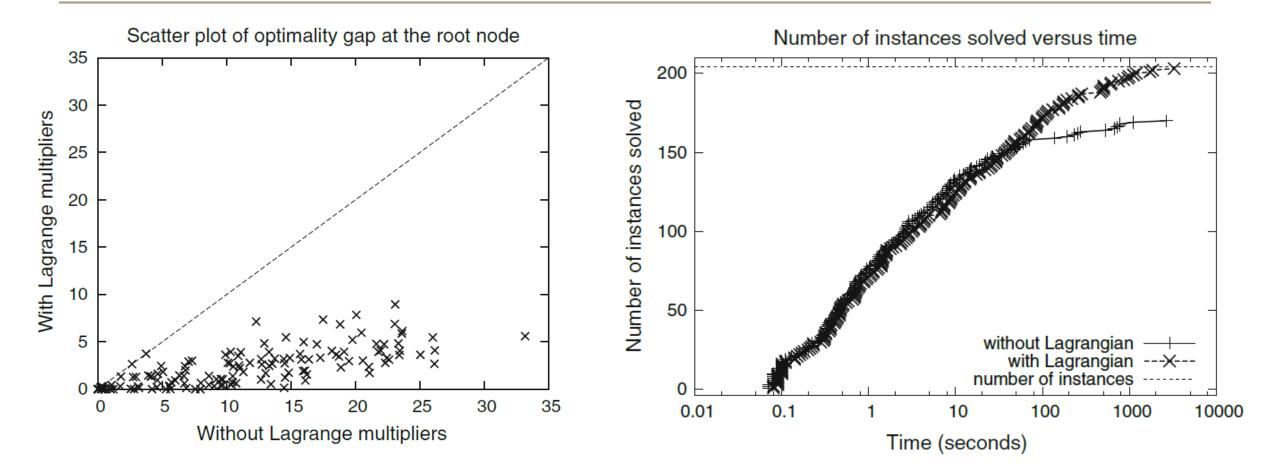




SCHOOL OF BUSIN

# Impact of Lagrangian Relaxation (TSPTW)





[Bergman, Cire, vH, 2015]

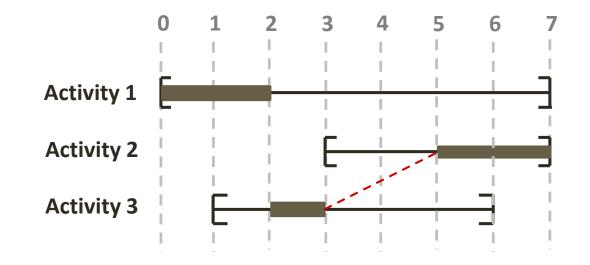


- Case: time-dependent sequencing
  - sequence-dependent setup times also depend on position!
  - $\delta_{i,j}^t$  = setup time between i and j if i is at position t

MDD representation

 state-dependent costs

[Kinable, Cire, vH, EJOR 2017]





- Add LP reduced costs to MDD relaxation [Fischetti & Toth, 1989]
- Effectivess depends on the quality of the LP relaxation
- LP can be made stronger for specific problem class
  - TD-TSP [Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995] [Gouveia and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014]
  - TD-TSP-TW (time windows)

[Miller, Tucker, Zemlin, 1960] [Desrocher & Laporte, 2014]

- TD-SOP (precedence constraints)

[Sarin, Sherali, Bhootra, 2005]

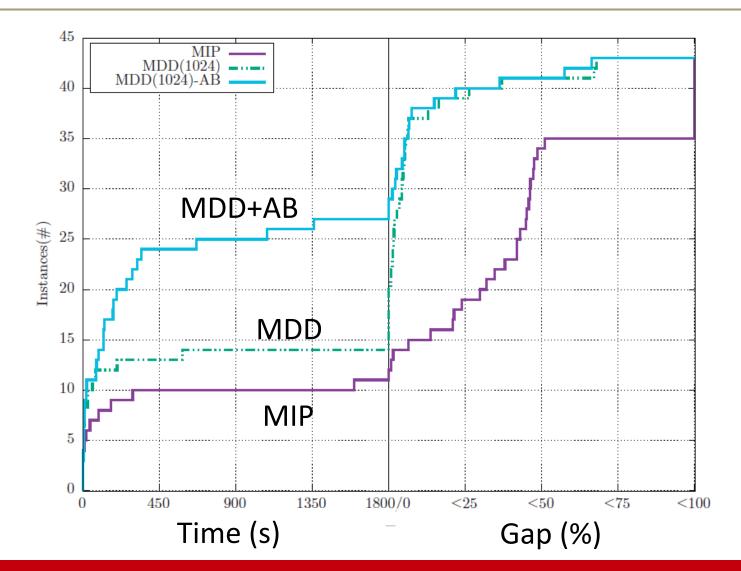




- Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3
  - MDD added to CP Optimizer (Cire & v.H., 2013)
  - maximum width 1024
  - time limit: 30 minutes
- TD-TSP 38 instances from TSPLIB (n=14-107 jobs)  $\delta_{i,j}^t = (n-t)^* \delta_{i,j}$  [Abeledo et al., 2013]
- TD-TSPTW based on Dumas et al. (n=30, 35, 40), 270 total
- TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)

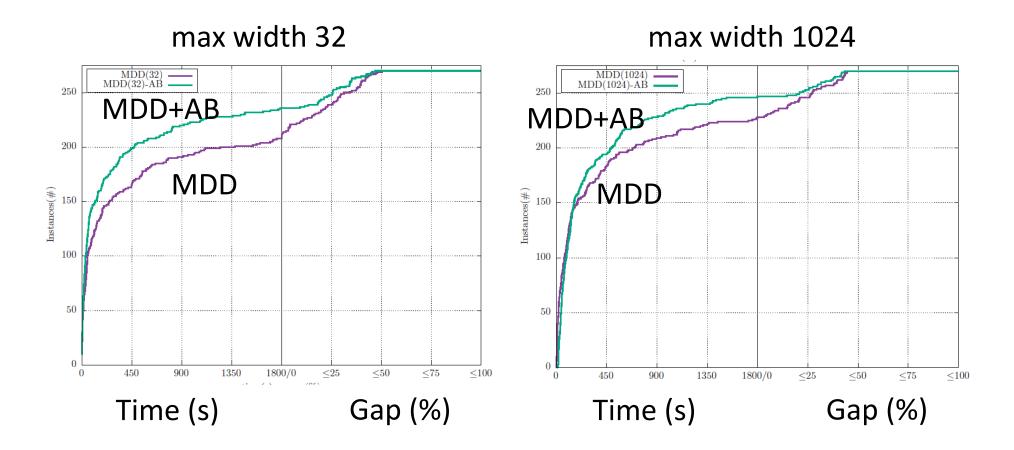
# **TD-TSP: Performance Plot**





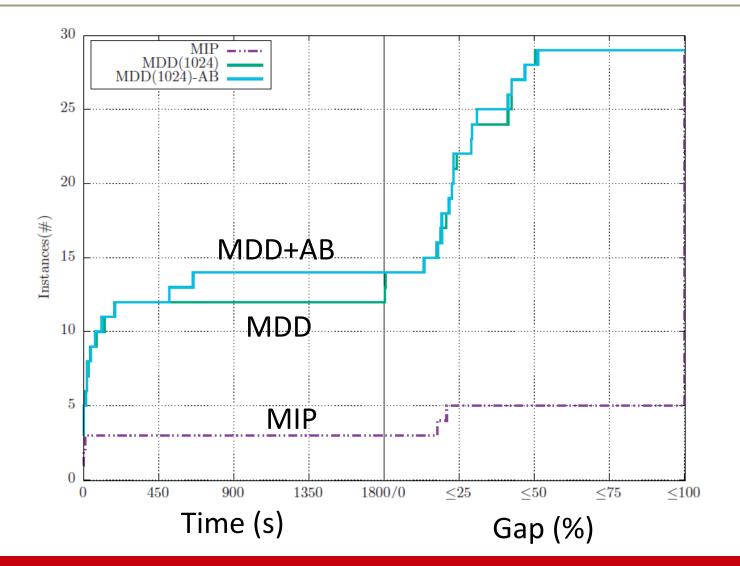
# **TD-TSPTW: Performance Plot**





(MIP was unable to find any single integer solution)



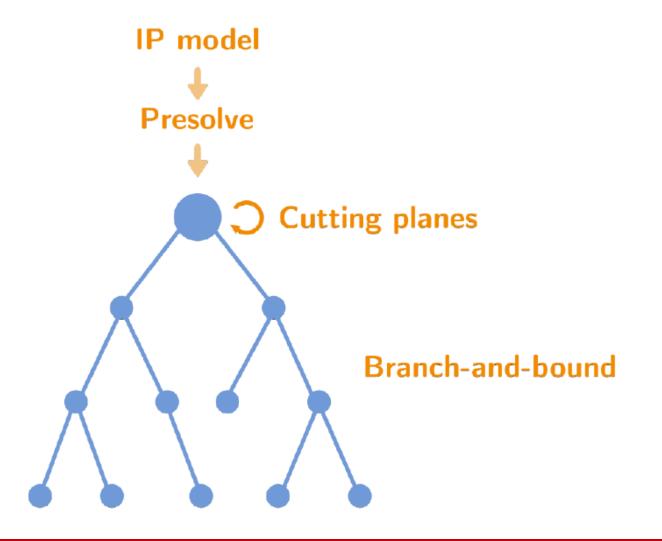




#### Integer Programming with Decision Diagrams

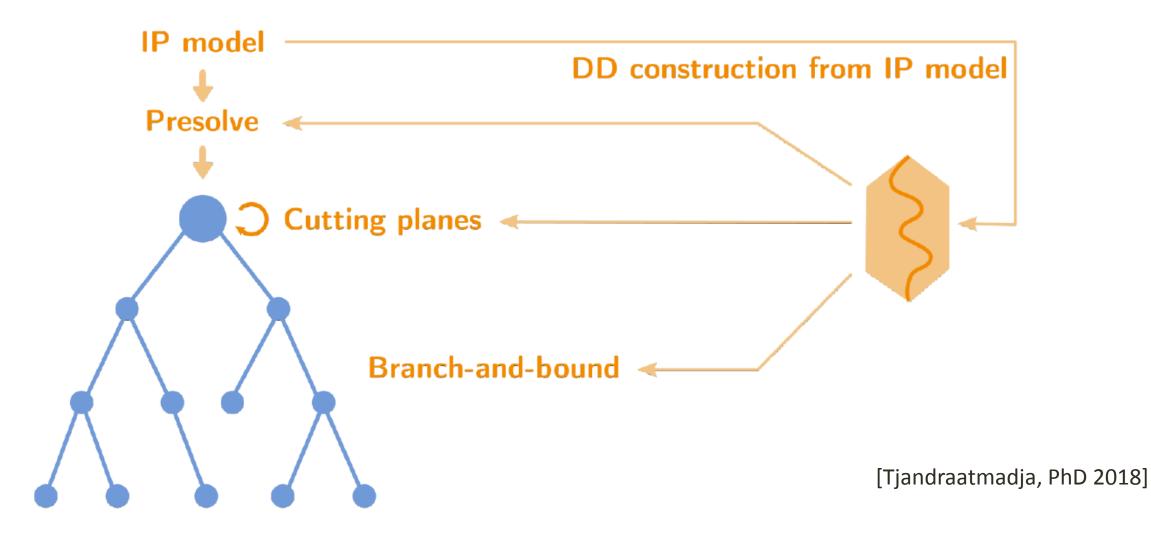
# **Motivation**





## **Motivation**



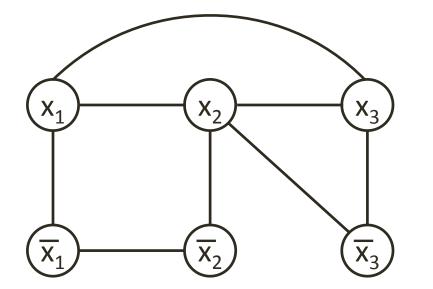




- Option 1: use linear constraints to build DD
   DD relaxation usually much weaker than LP bound
- Option 2: identify structure in model
  - set covering? set packing? independent set?
  - dedicated DD representing part of the model
- Option 3: use structure inferred by solver
  - conflict graph/clique table

#### **Conflict Graph for Binary Problems**



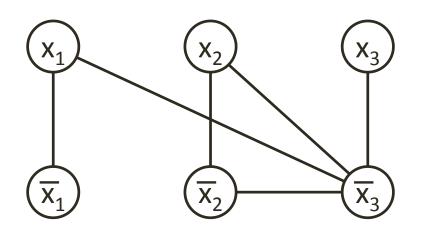


 $x_1 + x_2 + x_3 \le 1$   $x_2 + (1 - x_3) \le 1$  $(1 - x_1) + (1 - x_2) \le 1$ 

Conflict graphs are inferred and constructed by most modern MIP solvers [Atamtürk et al., 2000; Achterberg, 2007]



- State: variable domains
- Transition: propagate decision



 $x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, x_3 \in \{0, 1\}$ 

 $x_1$ 

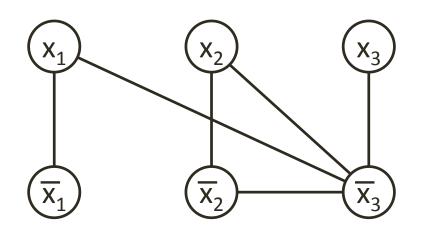
 $x_2$ 

 $x_3$ 

Tepper School of Business • William Larimer Mellon Founder



- State: variable domains
- Transition: propagate decision



$$x_{1} \in \{0,1\}, x_{2} \in \{0,1\}, x_{3} \in \{0,1\}$$

$$x_{1}$$

$$x_{2} \in \{0,1\}, x_{3} \in \{0,1\} \bullet$$

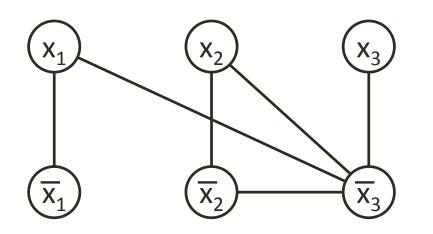
$$x_{2} \in \{0,1\}, x_{3} \in \{1\}$$

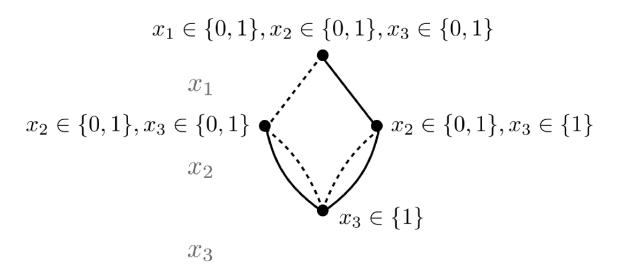
$$x_{2}$$

 $x_3$ 



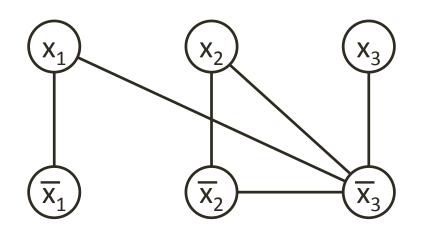
- State: variable domains
- Transition: propagate decision

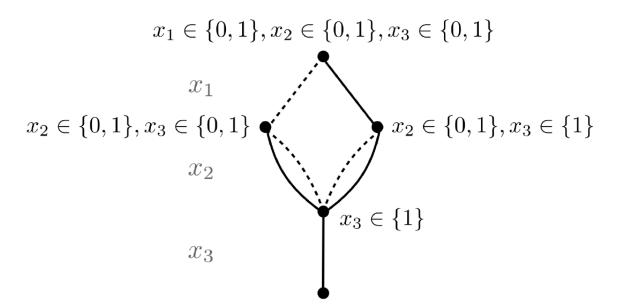






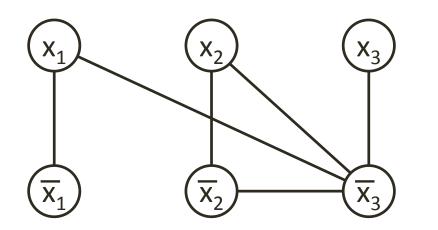
- State: variable domains
- Transition: propagate decision

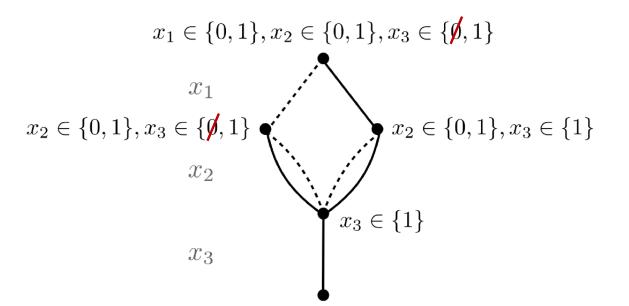






- State: variable domains
- Transition: propagate decision

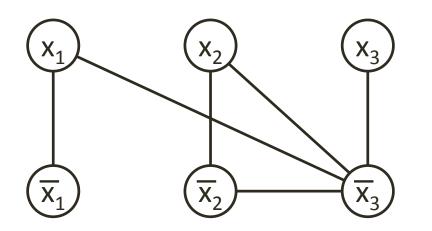


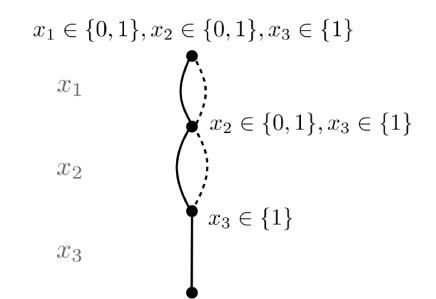


 Theorem: If root state is domain consistent, then this approach yields a reduced exact DD



- State: variable domains
- Transition: propagate decision





 Theorem: If root state is domain consistent, then this approach yields a reduced exact DD



**Original IP model** 

max  $c^{\top}x$ 

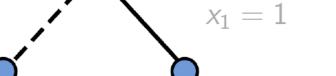
 $Fx \leq f \quad \leftarrow \text{Structured} \\ \text{constraints for DD} \\ Ax \leq b \quad \leftarrow \text{Any set of linear} \\ \text{constraints} \\ \end{cases}$ 

$$x \in \mathbb{Z}^n, \ \ell \leq x \leq u$$

Lagrangian model

 $\begin{array}{l} \min_{\lambda \ge 0} \max \ c^{\top} x + \lambda^{\top} (b - Ax) \\ Fx \le f \\ x \in \mathbb{Z}^n, \ \ell \le x \le u \end{array}$ 

Lagrangian subproblem is longest path in DD (efficient)



 $3x_1 + x_2 + 2x_3 < 4$ 

 $x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, x_3 \in \{0, 1\}$ 

 $x_2 \in \{0, 1\}, x_3 \in \{0, 1\}$   $x_2 \in \{0, 1\}, x_3 \in \{0\}$ 

 $x_1 = 0$ 

 $x_2 + 2x_3 \leq 4$ 

SCHOOL OF BUSI

# Stronger DD relaxation via Propagation

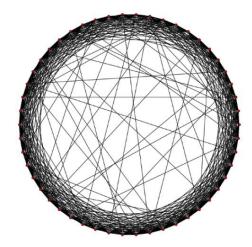
- Propagate linear constraints
- Additional state information
  - variable domains
  - constraint right-hand sides

 $x_2 + 2x_3 \leq 1$ 



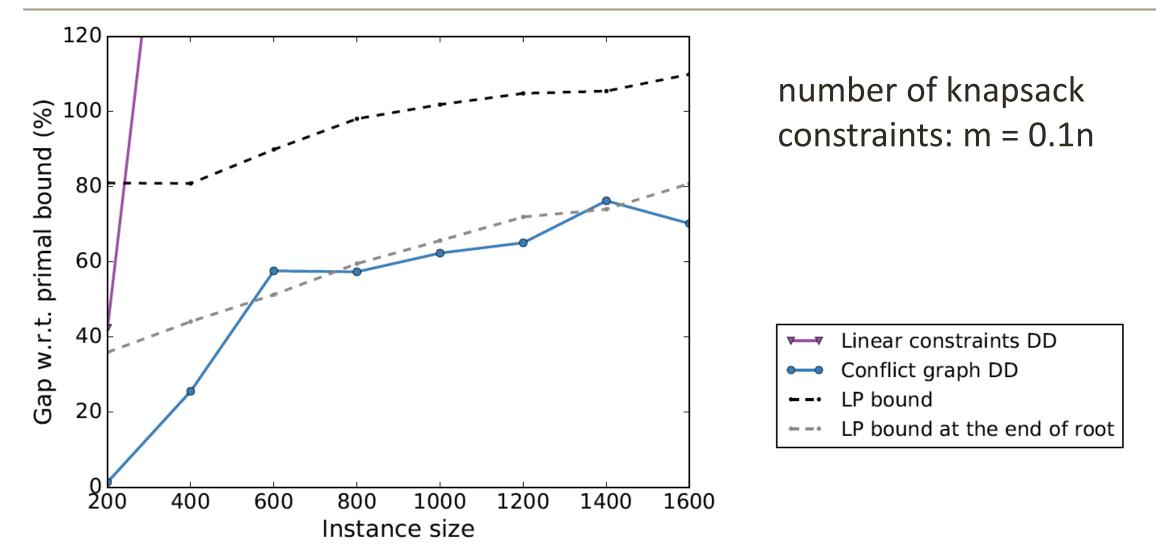


- Experimental setup
  - Independent set problem on random graphs (Watts-Strogatz)
  - Add set of random knapsack constraints  $\sum_{i \in S} a_i x_i \leq b$
  - Vary number of variables n
  - Vary number of knapsack constraints m
- Implemented in SCIP 5.0.1
  - Only IP model is given to solver
  - DD compiled automatically

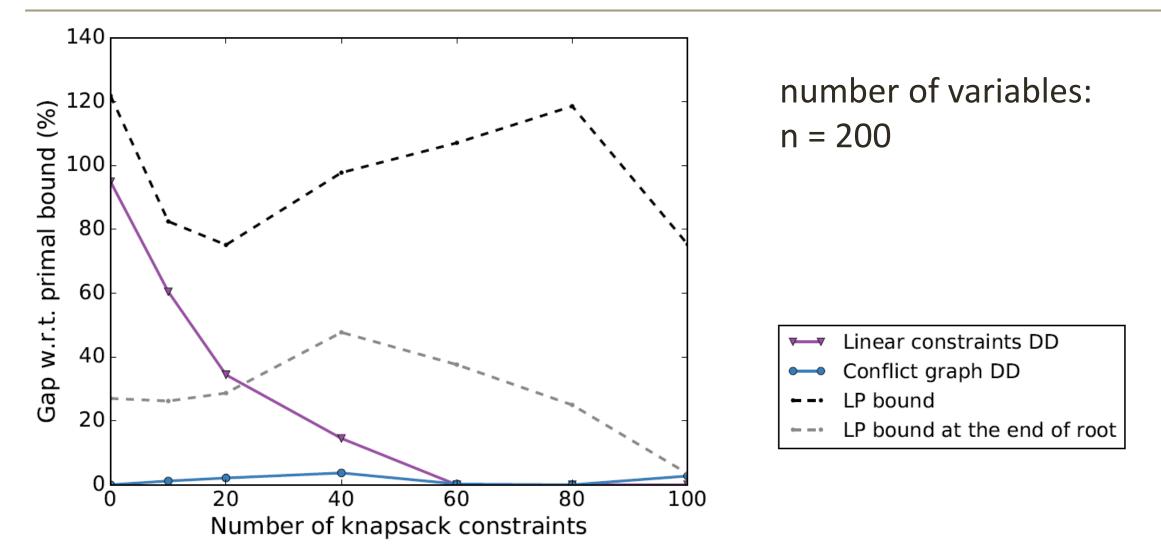


# Varying Number of Variables

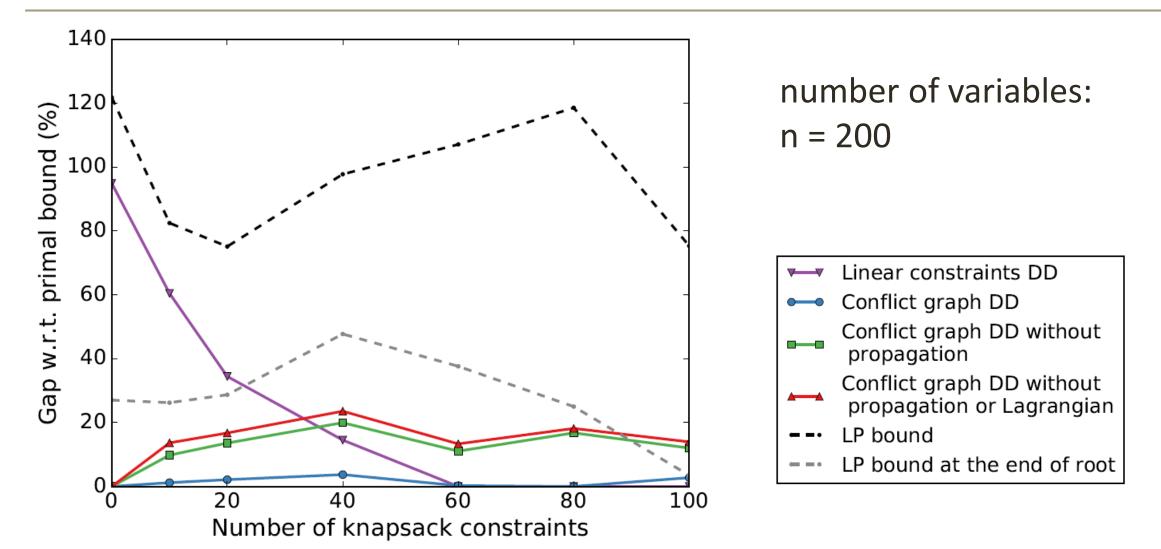






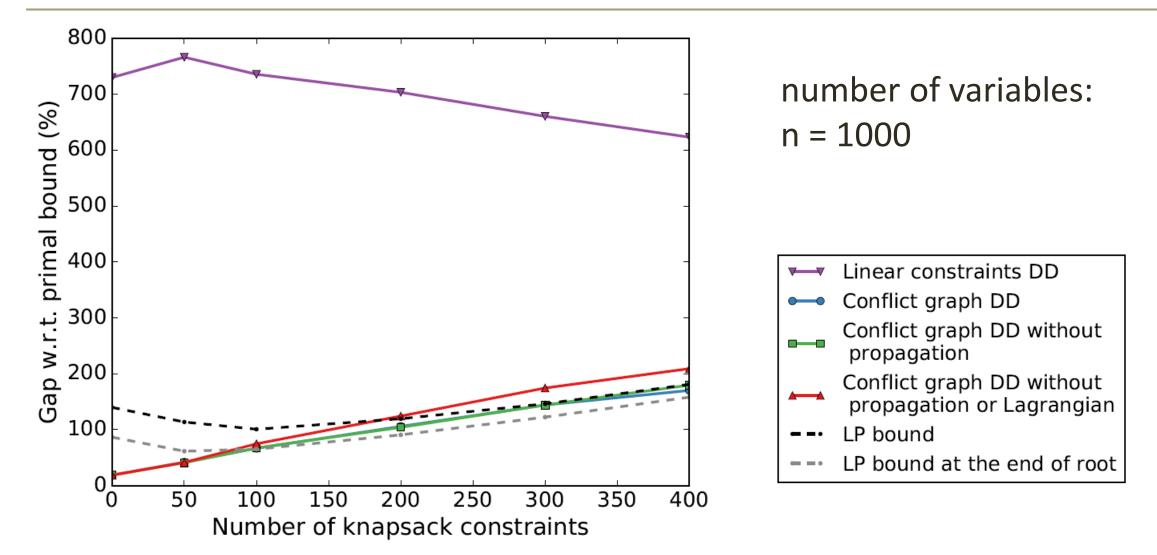






# Varying Number of Knapsack Constraints

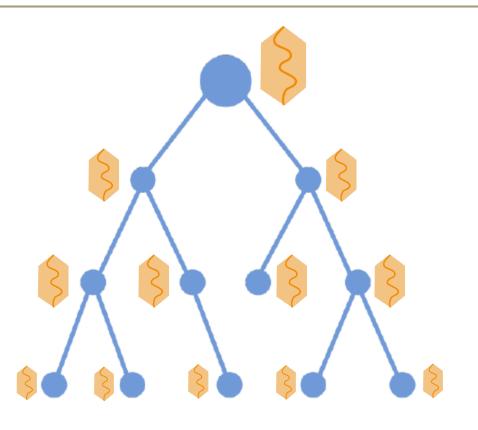




# Integrate DDs into IP Branch and Bound

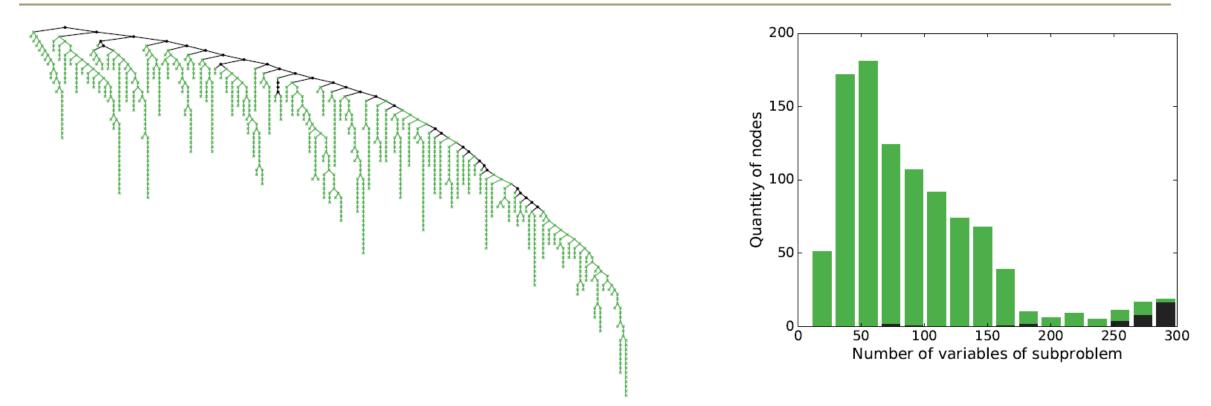


- Ingredients
  - Dual+Primal bounds from DDs
  - DD compilation based on conflict graph, Lagrangian, and propagation
  - Use MIP primal bound to remove sub-optimal DD arcs



### When to apply Decision Diagrams?

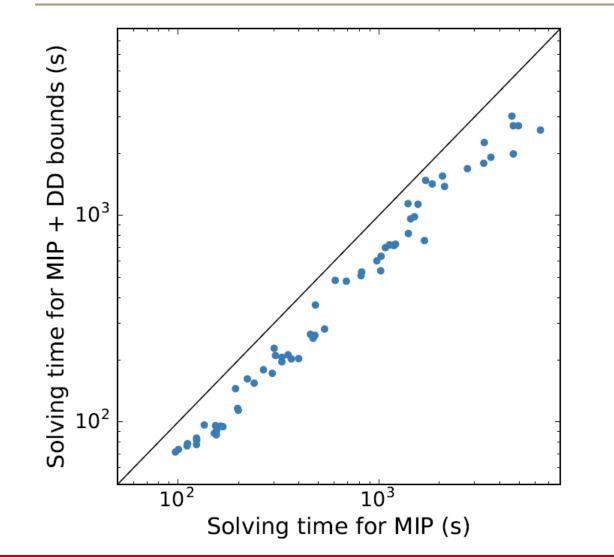




Smaller subproblems are most effective; up to 100~200 variables

– for experiments we used 100 variable threshold, and max width 100



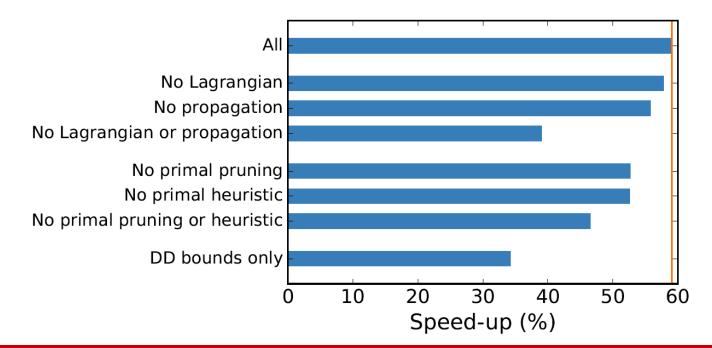


# On average: 65.5% node reduction 1.59x speedup

#### More detailed results

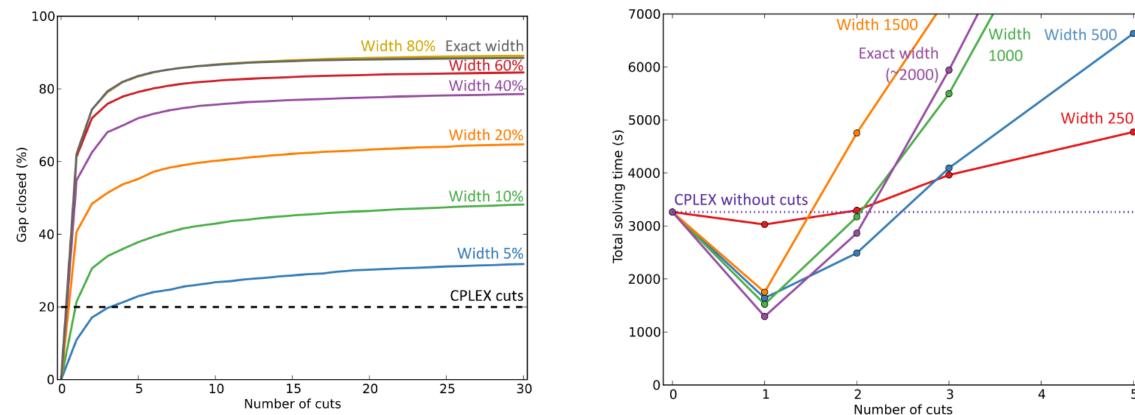


| п                          | 300   | 350   | 400   | 450   |
|----------------------------|-------|-------|-------|-------|
| Average speed-up (%)       | 57.33 | 62.90 | 60.14 | 60.17 |
| Average node reduction (%) | 73.93 | 67.44 | 63.63 | 57.75 |



#### More IP Integration: Cut Generation with DDs





Gap closed for instances with 80% density and 300 vertices (truncated at 30 cuts)

[Tjandraatmadja & vH, IJOC to appear]

Solving time for instances with 80% density and 600 vertices

5





- Discrete Optimization with Decision Diagrams
  - new generic solving methodology
  - outperforms integer programming on several classical problems
- Constraint Programming with Decision Diagrams
  - state of the art for sequencing with side constraints
  - closed several open instances from TSPLIB
- Integer Programming with Decision Diagrams
  - generic methodology can improve IP solver with factor 1.59