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Abstract. Constraint propagation is inherently restricted to the local
information that is available to each propagator. We propose to im-
prove the communication between constraints by introducing Lagrangian
penalty costs between pairs of constraints, based on the Lagrangian de-
composition scheme. The role of these penalties is to force variable as-
signments in each of the constraints to correspond to one another. We
apply this approach to constraints that can be represented by decision
diagrams, and show that propagating Lagrangian cost information can
help improve the overall bound computation as well as the solution time.

1 Introduction

Modern finite-domain constraint programming (CP) solvers employ a constraint
propagation process in which domain changes for the variables are propagated
between constraints. To allow for more communication and knowledge sharing
between constraints, several techniques have been proposed. One possibility is
to propagate more structural information than variable domains, such as (re-
laxed) decision diagrams [1, 10]. Another option, in the context of optimization
problems, is to combine constraints with the objective function, and utilize math-
ematical programming relaxations for stronger cost-based filtering [7, 15]. These
approaches, however, have in common that consistency checks are done sepa-
rately and independently for each constraint. Higher-order consistencies, such as
pairwise consistency [12] can consider multiple constraints simultaneously, but
may suffer from a relatively high computational cost.

We propose an alternative, and generic, approach to improve the propaga-
tion between constraints based on Lagrangian decomposition [9]. In Lagrangian
decomposition, the constraint set of a given problem is partitioned into struc-
tured subproblems, each of which is defined on a duplicate copy of the original
variables. To link the subproblems, constraints are added to ensure that each
of the duplicates is equal to the original variable. These latter constraints are
then relaxed with an associated Lagrangian multiplier, and moved to the objec-
tive. This results in independent subproblems that can be separately optimized.



Intuitively, the idea is to force the variables to take the same value in each con-
straint, via the Lagrangian penalties, which are iteratively updated. This will
somehow synchronize the consistency checks for each of the constraints; instead
of allowing each constraint to check its consistency w.r.t. an arbitrary tuple, we
iteratively arrive at tuples with minimal disagreement.

Since constraint programming has been designed to work with (global) con-
straints that capture a specific structure of the problem, the application of La-
grangian decomposition in this context seems natural and promising. Indeed,
we show that the Lagrangian decomposition is not only useful to improve the
bound on the objective, but can also be applied for cost-based domain filtering.

The structure of the paper is as follows. We first provide an overview of the
most relevant related work in Section 2. In Section 3 we recall the Lagrangian
decomposition scheme. We apply this to constraint programming models in Sec-
tion 4. Experimental results on instances with multiple alldiff constraints are
given in Section 5, while Section 6 provides results on set covering problems. We
conclude in Section 7.

2 Related Work

Lagrangian relaxations have been widely applied in operations research as well
as constraint programming. One of the first applications in CP is the work by
Benoist et al. [2] on the Traveling Tournament Problem. A formal treatment
was provided by Sellmann [16] who showed that optimal Lagrangian multipliers
may not result in the most effective domain filtering. Recently, [8] introduced
a framework for automated Lagrangian relaxation in a constraint programming
context. That work explicitly generalizes Lagrangian relaxations to CP problems
using measures of constraint violations, or degrees of satisfiability.

Adapting weights for improving propagation has also been applied in the
context of Valued Constraint Satisfaction Problems [6]. In that work, a linear
programming model is proposed for computing Optimal Soft Arc Consistency,
but Lagrangian relaxations are not used. Khemmoudj et al. [13] combine arc con-
sistency with Lagrangian relaxation for filtering constraint satisfaction problems
(CSPs). They consider binary CSPs (i.e., each constraint has at most two vari-
ables in its scope) in extensional form. Lastly, Bergman et al. [3] introduce La-
grangian relaxations in the context of propagating (relaxed) decision diagrams.

3 Lagrangian Decomposition

Lagrangian decomposition has been introduced to strengthen Lagrangian bounds
for integer linear optimization problems [9]. Consider an integer linear program
of the form:

(P ) max{fx | Ax ≤ b, Cx ≤ d, x ∈ X},

for some feasible set X, where x ∈ Rn is a vector of variables, f ∈ Rn represents
a ‘weight’ vector, A and C represent constraint coefficient matrices, and b and



c are constant right-hand size vectors. This is equivalent to the reformulated
program

max{fx | Ay ≤ b, Cx ≤ d, x = y, x ∈ X, y ∈ Y },

for any set Y containing X.
The Lagrangian decomposition of P consists in dualizing the equality con-

straints x = y with Lagrangian multipliers λ ∈ Rn :

LP (λ) := max{fx+ λ(y − x) | Cx ≤ d, x ∈ X,Ay ≤ b, y ∈ Y }
= max{(f − λ)x | Cx ≤ d, x ∈ X}+ max{λy | Ay ≤ by ∈ Y }

The Lagrangian dual is to find those Lagrangian multipliers λ that provide the
best bound:

min
λ
LP (λ).

Guignard and Kim [9] show that the optimal bound obtained from this La-
grangian decomposition is at least as strong as the standard Lagrangian bounds
from dualizing either Ax ≤ b or Cx ≤ d. Lagrangian decomposition may be
particularly useful when the problem is composed of several well-structured sub-
problems, such as those defined by (global) constraints in CP models.

4 Application to Constraint Programming

We apply Lagrangian decomposition to constraint optimization problems (COPs),
which include constraint satisfaction problems (CSPs) as special case. It is im-
portant to note that this approach will transform each of the original constraints
into an ‘optimization constraint’; instead of representing a witness for feasibility
the constraint now has to represent a witness for optimality, even if the con-
straint is not directly linked to the objective function, or in case of feasibility
problems.

When the variables have numeric domains, the method from Section 3 can
be directly applied. In general, however, domains need not be numeric, and we
will therefore focus our discussion on this more general case. Consider a COP
with variables x1, . . . , xn that have given finite domains xi ∈ Di:

max f(x1, . . . , xn)
s.t. Cj(x1, . . . , xn) j ∈ {1, . . . ,m}

xi ∈ Di i ∈ {1, . . . , n}
(1)

For simplicity we assume here that all variables appear in all constraints, but
we can allow a different subset of variables for each constraint. Also, Cj may
represent any substructure, for example a global constraint, a table constraint, or
a collection of constraints. We introduce for each variable xi and each constraint
j = 1, . . . ,m a duplicate variable yji with domain Di. We let the set y1i represent

our ‘base’ variables, to which we will compare the variables yji for j = 2, . . . ,m.



The reformulated COP is as follows:

max f(y11 , . . . , y
1
n)

s.t. Cj(y
j
1, . . . , y

j
n) j ∈ {1, . . . ,m}

y1i = yji i ∈ {1, . . . , n}, j ∈ {2, . . . ,m}
yji ∈ Di i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

To establish the Lagrangian decomposition, we relax the constraints y1i = yji
and move these into the objective as y1i 6= yji with associated Lagrangian multi-

pliers. To measure its violation, we propose to represent y1i 6= yji with the set of

constraints ((yji = v)− (y1i = v)) for all v ∈ Di, where (yji = v) is interpreted as
a binary value representing the truth value of the expression. Lastly, we define
a Lagrangian multiplier for each i, j (j ≥ 2) and each v ∈ D(xi) as a vector

λ
j

i := λji [v].

The Lagrangian objective function can then be written as:

max f(y11 , . . . , y
1
n) +

m∑
j=2

n∑
i=1

∑
v∈D(xi)

λji [v]((yji = v)− (y1i = v))

= f(y11 , . . . , y
1
n) +

m∑
j=2

n∑
i=1

(
λji [y

j
i ]− λ

j
i [y

1
i ]
)

This leads to the following decomposition (for any given set of multipliers λ
j

i ):

max

f(y11 , . . . , y
1
n)−

m∑
j=2

n∑
i=1

λji [y
1
i ] | C1(y11 , . . . , y

1
n)


+

m∑
j=2

(
max

{
n∑
i=1

λji [y
j
i ] | Cj(y

j
1, . . . , y

j
n)

})
which are m independent subproblems. Let zj be the optimal objective value
for subproblem j ∈ {1, . . . ,m}. Then

∑m
j=1 zj is a valid bound on f(x1, . . . , xn).

Note that the duplicate variables have only been introduced for the formal de-
scription of the method. In practice, all constraints Cj use the original variables.

Design choices The Lagrangian decomposition scheme can be adapted by al-
locating parts of original objective to different subproblems. Moreover, we can
introduce equality constraints between any pair of subproblems. We will illus-
trate the latter in the following example.

Example 1. Consider the following CSP:

C1 : alldiff(x1, x2, x3) C2 : alldiff(x2, x4, x5) C3 : alldiff(x3, x5)
x1 ∈ {a, b}, x2 ∈ {b, c}, x3 ∈ {a, c}, x4 ∈ {a, b}, x5 ∈ {a, b, c}

This CSP is domain consistent as well as pairwise consistent, and has one solution
(x1, x2, x3, x4, x5) = (b, c, a, a, b).



We construct a Lagrangian decomposition based on the constraints C1, C2, C3.
To link these, we only need to introduce the constraints y22 = y12 , y33 = y13 ,
y35 = y25 , and their associated multipliers. This yields the following three sub-
problems, with respective objective values z1, z2, z3:

z1 = max
{
−λ22[y12 ]− λ33[y13 ] | alldiff(y11 , y

1
2 , y

1
3)
}

z2 = max
{
λ
2

2[y22 ]− λ35[y25 ] | alldiff(y22 , y
2
4 , y

2
5)
}

z3 = max
{
λ
3

3[y33 ] + λ
3

5[y35 ] | alldiff(y33 , y
3
5)
}

This CSP can be considered as a COP with a zero-valued objective function
so that the value z1 + z2 + z3 is an upper bound on the satisfiability of this
problem, for any Lagrangian multipliers; if the bound is below zero, the problem
is unsatisfiable. And so, the optimal Lagrangian decomposition bound is 0. ut

Cost-based domain filtering In addition to pruning the search based on
the overall bound LP (λ) and a given lower bound B, we can apply cost-based
domain filtering. The difference with existing cost-based filtering methods is that
the bounds from the different subproblems can all be conditioned on a specific
variable/value pair. To this end, let zj |xi=v be the optimal objective value for

subproblem j ∈ {1, . . . ,m} in which yji = v. We have the following result:

Proposition 1. If
∑
j zj |xi=v < B then v can be removed from Di.

This result may be particularly effective when there is no single subproblem that
collects all variables. We continue our example to give an illustration.

Example 2. Continuing Example 1, consider the following Lagrangian multi-
pliers (all others are zero): λ22[b] = 0.5, λ33[a] = 0.5, λ35[a] = 0.5. This yields
z1 = −0.5, z2 = 0.5, z3 = 0.5, and a total bound of 0.5. Even though this is not
optimal, when we condition x2 = b or x5 = c, the bound becomes −0.5 in both
cases, and by Proposition 1 we can remove those values from their respective
domains. We can similarly remove values a from D1, b from D2, and c from D3

using the multipliers λ22[c] = −0.5, λ33[c] = 0.5, λ35[c] = 0.5. ut

Example 2 implies the following result:

Proposition 2. Cost-based filtering based on Lagrangian decomposition can be
stronger than pairwise consistency.

Implementation issues To apply Lagrangian propagation efficiently, it is im-
portant that each constraint is optimized efficiently. For many constraints opti-
mization versions are already available [11], to which the Lagrangian costs can be
immediately added. For example, in our experiments we represent constraints by
decision diagrams, which permit to find the optimal solution quickly via a short-
est (or longest) path calculation. Also, cost-based propagators are available that



a. Root node gap comparison b. Performance plot

Fig. 1: Evaluating the impact of the Lagrangian decomposition on systems of multiple
alldiff constraints. (a) compares the root node gap obtained with Lagrangian de-
composition (Mdd Lag Gap) and without (Mdd Gap) and (b) depicts a performance
profile comparing the number of instances solved (N Solved) within a given time limit
(horizontal axis) with Lagrangian decomposition (With Lag) and without (No Lag).

filter sub-optimal arcs from the decision diagram. Second, the search for optimal
Lagrangian multipliers can be done with different methods [14]. Regardless, any
set of multipliers results in a valid relaxation, and we do not necessarily need to
solve the Lagrangian dual to optimality. In our implementation, we compute the
multipliers once at the root node and reuse them during the CP search process.

5 Application: Multiple Alldifferent Constraints

As first application, we consider systems of multiple overlapping alldiff

constraints, as in [1]. These are defined on a set X = {x1, . . . , xn} of variables
with domain {1, . . . , n}. Each alldiff constraint is defined on a subset of vari-
ables Sj ⊂ X, for j = 1, . . . , k. We then consider the following COP:

max

{
n∑
i=1

wixi | alldiff(Sj) ∀j ∈ {1, . . . , k}

}

We generated instances with n = 10, 11, 12, 13, 14, k = 4, and |Sj | = n − 2 for
all j = 1, . . . , 5. For the Lagrangian decomposition, we partition the alldiff

constraints into two arbitrary subsets of size two, and define one multi-valued
decision diagram (MDD) for each subset. In other words, we apply MDD prop-
agation to these subsets of alldiff constraints. The two MDDs thus formed
are the basis for the Lagrangian decomposition, which follows the description in
Section 4 (where the j-th MDD represents constraint set Cj).

We implemented the MDD propagation as well as the Lagrangian decom-
position as a global constraint in IBM ILOG CPO 12.6, similar to [5]. The
(near-)optimal Lagrangian multipliers were computed using the Kelly-Cheney-
Goldstein method [14], using IBM ILOG CPLEX 12.6 as the linear programming



solver. We fix the CP search to be lexicographic in the order of the variables, to
ensure the search tree is the same across all instances. We compare the perfor-
mance with and without Lagrangian multipliers.

In Figure 1.a we show the root node percent gap for the 25 instances (where
the optimal value was obtained by formulating an integer linear program and
solving the instances using CPLEX). The reduction in the gap can be substan-
tial, in some case several orders of magnitude. This reduction in the optimality
gap and additional cost-based filtering due to the Lagrangian multipliers enables
more instances to be solved in shorter computational time, as depicted in Fig-
ure 1.b. Depending on the configuration of the alldiff systems the improvement
can be marginal and in some cases negligible.

6 Application: Set Covering

The set covering problem is defined on a universe of n elements U = {1, . . . , n}.
Given a collection of subsets C1, . . . , Cm ⊆ U and weights wi (i = 1, . . . , n), the
problem is to find a set of elements S ⊂ U of minimum total weight such that all
S ∩Cj is not empty for all j = 1, . . . ,m. Using a binary variable xi to represent
whether element i is in S, the problem can be formulated as the following COP:

min


n∑
i=1

wixi |
∑
i∈Cj

xi ≥ 1 ∀j ∈ {1, . . . ,m}, xi ∈ {0, 1} ∀i ∈ {1, . . . , n}


Instead of defining a subproblem for each separate constraint, we create exact
binary decision diagram (BDD) representations for collections of them. That
is, using the construction method described in [4], we create a BDD by adding
constraints one at the time, until the exact width exceeds a given limit (in our
case 100 nodes on any layer). We then create the next BDD, and so forth. This
forms a partition of the constraint set, each of which is represented by an exact
BDD. For the instances we considered, we construct 10 or 11 BDDs per instance.

We also slightly modify the Lagrangian decomposition method by represent-
ing the original objective function in each of the BDDs, and dualizing constraints

xji = xj
′

i for every pair (j, j′). Hence, the Lagrangian bound is no longer the sum
of the bounds of the respective BDDs, rather the average over the objectives.

In previous work [4], it was shown that the bounds from BDDs were most ef-
fective when the constraint matrix has a relatively small bandwidth. We therefore
used the same benchmark generator to evaluate the impact of the Lagrangian
decomposition for increasing bandwidths. We generated instances with n = 150
variables, randomly generated costs, and uniform-randomly selected subsets Cj
from within a given bandwidth of size 55 to 75 (five instances for each band-
width). To generate the costs, we let c(i) represent the number of subsets Cj
that contain element i. Then the cost for variable xi is taken uniform randomly
in [0.75∗ c(i), 1.25∗ c(i)]. The results are shown in Figure 2, showing the average
over the five instances per bandwidth. Figure 2.a depicts four lines: the optimal



a. Impact of Lagrangian decomposition b. Comparison with single relaxed BDD

Fig. 2: Evaluating the bound from Lagrangian decomposition for set covering problems
of varying bandwidth.

solution (found by CPLEX), the average bound without using Lagrangian de-
composition, the maximum bound without using Lagrangian decomposition, and
lastly the average bound when using the Lagrangian decomposition. Lagrangian
decomposition generates bounds of much better quality than the independent
BDDs. For example, for bandwidth 65 the average bound of 27.53 is improved
to 77.80 using the Lagrangian decomposition, on average.

We also compare the Lagrangian decomposition to the original BDD relax-
ation from [4] that represents all constraints in a single BDD respecting a given
maximum width. A larger width leads to a stronger relaxation and better bounds.
Figure 2.b compares the percent gap (between the lower bound and the optimal
solution) of the BDD relaxation for maximum widths 2,000 and 20,000 with
that of the Lagrangian decomposition. We note that the BDD relaxation with
maximum width 2,000 has about the same memory requirements as the separate
BDDs for the Lagrangian decomposition. As the bandwidth increases, the qual-
ity of BDD relaxation rapidly declines, while the Lagrangian decomposition is
much more stable and outperforms the BDD relaxation (decreasing the gap from
117.6% to 33% for bandwidth 75 and maximum width 2,000). This demonstrates
that Lagrangian decompositions can be used to improve BDD-based optimiza-
tion when a single BDD relaxation can no longer provide sufficient power to
represent the entire problem. We do note, however, that the Lagrangian decom-
position takes more time to compute (on average 60s) compared to the single
BDD relaxation (on average 1.4s for width 2,000 and 17s for width 20,000).

7 Conclusion

We have introduced Lagrangian decomposition in the context of constraint pro-
gramming as a generic approach to improve the constraint propagation process.
The key idea is that we penalize variables in different constraints to take differ-
ent assignments. We have shown how this approach can be utilized for stronger
cost-based domain filtering, and that it leads to improved bounds for systems of
alldiff constraints and set covering problems.
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