
Heuristics for MDD Propagation in Haddock1

Rebecca Gentzel #2

University of Connecticut, Storrs CT 06269, USA3

Laurent Michel #�4

Synchrony Chair in Cybersecurity, University of Connecticut, Storrs CT 06269, USA5

Willem-Jan van Hoeve #�6

Carnegie Mellon University, Pittsburgh PA 15213, USA7

Abstract8

Haddock, introduced in [11], is a declarative language and architecture for the specification and the9

implementation of multi-valued decision diagrams. It relies on a labeled transition system to specify10

and compose individual constraints into a propagator with filtering capabilities that automatically11

deliver the expected level of filtering. Yet, the operational potency of the filtering algorithms strongly12

correlate with heuristics for carrying out refinements of the diagrams. This paper considers how to13

empower Haddock users with the ability to unobtrusively specify various such heuristics and derive14

the computational benefits of exerting fine-grained control over the refinement process.15

2012 ACM Subject Classification Mathematics of computing → Decision diagrams; Theory of16

computation → Constraint and logic programming17

Keywords and phrases Decision Diagrams18

Digital Object Identifier 10.4230/LIPIcs.CP.202.2719

1 Introduction20

Heuristics are a key ingredient in Constraint Programming. They have been at the core21

of search procedures for decades. The first-fail heuristic [15] is probably the most well-22

known representative of how one can affect the performance of a constraint solver with a23

mere influence on the search strategy that guides the branching process towards the most24

promising variables. Modern constraint programming solvers typically offer a full complement25

of such heuristics including weighted degree [8], impact-based search [23], activity-based26

search [21], conflict-driven search [25], or counting-based search [13] to name just a few. This27

practice is equally common in mathematical programming with strong branching [3, 1] or28

pseudo-cost branching [10] or even machine learning based heuristics [5]. This is also true in29

Boolean satisfiability, with LRB (Learning Rate Branching) [20] and VSIDS (Variable State30

Independent Decaying Sum) [22] being two of the most regarded such heuristics.31

Yet, all these heuristics operate on the level of the entire model and exploit “global32

behaviors” of the solvers. In constraint programming, for instance, the propagators of33

most constraints use a prescribed level of consistency when they execute, which dictates34

the fixpoint they reach. This often leaves little to no room for heuristics to play a role35

within the propagators themselves; however, this is not always true. Cost-based filtering36

propagators [9, 24] can make use of relaxations to derive bounds on the objective function37

of a model and use that signal to filter variable domains. Recently, [7] showed how to seek38

specific Lagrangian multipliers that improve filtering. It is notable that the adoption of39

relaxations within propagators creates opportunities for heuristics.40

Decision diagrams present similar opportunities. When applied to optimization problems,41

multi-valued decision diagrams (MDDs) typically adopt a bounded width (the maximum42

number of nodes in a layer) and therefore employ some form of relaxation to merge nodes43

of the diagram [2, 14, 6]. Such merging decisions induce the presence of paths in the MDD44

© Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve;
licensed under Creative Commons License CC-BY 4.0

CP 2022.
Editors: -; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rebecca.gentzel@uconn.edu
mailto:ldm@engr.uconn.edu
https://orcid.org/0000-0001-7230-7130
mailto:vanhoeve@andrew.cmu.edu
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.202.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Heuristics for MDD Propagation in Haddock

that no longer correspond to solutions, necessitating a search process to seek solutions.45

During the search, internal nodes belonging to layers of the MDD propagator get filtered46

out (possibly leading to the filtering of variable domains) which reduces the layer size and47

prompts refinement phases. Indeed, a depleted layer has room to accommodate more nodes48

that only currently exist in a latent form as part of another, merged node within the layer.49

Merging and refining nodes are core operations that raise key questions about the impact50

of choices made on the quality of the obtained relaxation. The purpose of this paper is to51

explore the impact of such choices and provide the solver user with a way to dictate the52

policies that govern relaxation-inducing choices. Our findings can potentially be applied to53

any solver that uses relaxed decision diagrams [6, 11, 12].54

Haddock [11] provides a specification language and implementation architecture for55

automatic decision diagram compilation. Haddock provides the rules for refining (splitting)56

and filtering (propagating) MDD abstractions. The filtering rules are determined by the57

properties and functions detailed in the specification language, but the refinement process is58

more abstract. While the filtering rules give valuable tools to remove arcs and states from59

the MDD, how the MDD is split determines whether filtering rules are able to find infeasible60

arcs and states and to ultimately filter domains [14].61

Contributions. This paper presents an approach to MDD refinement containing configurable62

heuristics that integrate into Haddock such that all existing Haddock solutions still fit63

the framework. These heuristics allow the tailoring of refinement rules to specific constraints64

or models. The rules for refinement play a large role in MDD propagation, and we present65

insights into why certain refinement rules outperform others.66

Paper Structure. The remainder of the paper is organized as follows. Section 2 introduces67

a motivating example using among constraints. Section 3 reviews the relevant preliminaries,68

including the formalization used in Haddock. Section 4 discusses the heuristics that69

parameterize the refinement strategy. Section 5 treats the aggressiveness of the refinement70

process across layers through the reboot hyper-parameter, while Section 6 reports on the71

empirical results, and Section 7 concludes the paper.72

2 Motivating Example73

The following example explores the impact that state selection can have on the accuracy of74

the relaxation produced by an MDD propagator.75

▶ Example 1. Recall the definition of the among global constraint on an ordered set X of n76

variables [4]. It counts the number of occurrences of values taken from a given set Σ and77

ensures that the total number is between l and u, i.e.,78

among(X, l, u, Σ) := l ≤
n∑

i=1
(xi ∈ Σ) ≤ u.79

Consider two constraints c1 = Among({x1, x2, x3}, l1 = 1, u1 = 2, Σ1 = {1}) and80

c2 = Among({x1, x2, x3}, l2 = 1, u2 = 2, Σ2 = {2}) where each variable has domain {0, 1, 2}.81

An MDD for these constraints is a layered directed acyclic graph with four layers (L0, . . . , L3),82

a source s⊥, and a sink s⊤. Arcs flow from a node in layer Li−1 to a node in layer Li and83

are labeled with a domain value v, stating the assignment xi = v. Every s⊥-s⊤ path denotes84

a candidate solution. Each node carries a state s = ⟨s1, s2⟩ with s1 = ⟨L↓
1, U↓

1 , L↑
1, U↑

1 ⟩ and85

s2 = ⟨L↓
2, U↓

2 , L↑
2, U↑

2 ⟩ with the properties of c1 and c2. Intuitively, L↓
i and U↓

i denote the86

lower and upper bound, respectively, on the number of occurrences of values from Σi on any87

s⊥-s paths in the MDD. L↑
i and U↑

i are similarly defined on s-s⊤ paths.88

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:3

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2

0 1 2

a. Initial MDD with width 1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(1, 1, 0, 2)
(0, 0, 0, 2)

(0, 0, 0, 2)
(1, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

b. After splitting L1

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 0, 1)
(0, 0, 0, 1)

(1, 1, 0, 0)
(0, 0, 1, 1)

(0, 0, 1, 1)
(1, 1, 0, 0)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(0, 0, 1, 1)
(2, 2, 0, 0)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

0 1 20 1 20 1 2

0 12 0 12 0 1 2 0 1 2 0 12 0 12

c. If a full split of L2 were possible

Figure 1 Exact refinement process. Dashed nodes and arcs can be filtered.
Figure 1(a) depicts the MDD at width 1. Assume one imposes a maximum width of 3.89

Refinement begins by splitting L1. As shown in Figure 1(b), L1 can be fully split into three90

states. Next, refinement is performed on L2. A full split is shown for this layer in Figure91

1(c). While the state on the far left is infeasible and can be deleted, five states remain with92

a maximum width of 3. A splitting of this layer partitions the five states into three groups.93

One partitioning strategy is to solely rely on L↓
1. Since there are exactly three values for L↓

194

in these five states (0, 1, 2), the five states group neatly. The result is shown in Figure 2(a).95

An alternative is depicted in Figure 2(b) the grouping is based on the labels of outgoing arcs96

to s⊤ ({1}, {2}, and {0, 1, 2} after filtering infeasible arcs). While the first partition strategy97

still has s⊥-s⊤ paths representing infeasible assignments, e.g. x1 = 0, x2 = 1, x3 = 1, the98

second partition provides an exact MDD despite L2 still harboring merged states. It is clear99

that choices made during refinement impact the accuracy of the MDD and its ability to filter.100

3 Background101

Following [11], we formally define an MDD as a labeled transition system [17]:102

▶ Definition 2. A labeled transition system is a triplet ⟨S, →, Λ⟩ where S is a set of states,103

CP 2022

27:4 Heuristics for MDD Propagation in Haddock

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 0, 2)

(0, 0, 1, 2)
(0, 0, 0, 1)

(1, 1, 0, 1)
(0, 0, 0, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 1, 0, 1)
(0, 1, 0, 1)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 2, 0, 0)
(0, 2, 0, 0)

0 1 2

1 201 2 01 2

0 120 1 20 12

a. Splitting L2 by L↓
1

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

1 20
1 2 01 2

0 120 12 0 1 2

b. Splitting L2 by outgoing arcs

Figure 2 Options for partitioning L2. Dashed arcs can be filtered.

→ is a relation of labeled transitions between states from S, and Λ is a set of labels used to104

tag transitions.105

▶ Definition 3. Given an ordered set of variables X = {x1, . . . , xn} with domains D(x1)106

through D(xn), a multi-valued decision diagram (MDD) on X is an LTS ⟨S, →, Λ⟩ in which:107

the state set S is stratified in n + 1 layers L0 through Ln with transitions from →108

connecting states between layers i and i + 1 exclusively;109

the transition label set Λ is defined as
⋃

i∈1..n D(xi);110

a transition between two states a ∈ Li−1 and b ∈ Li carries a label v ∈ D(xi) (i ∈ 1..n);111

the layer L0 consists of a single source state s⊥;112

the layer Ln consists of a single sink state s⊤.113

An MDD M can represent a constraint set with specific state definitions and transition114

functions. If each solution in the constraint set is represented by an s⊥-s⊤ path in M , and115

vice-versa, M is exact. If M represents a superset of the solutions of the constraint set, it116

is relaxed. In Haddock, states consist of integer-valued sets of properties to represent the117

constraints. We next describe how these are used to automatically compile the LTS, using118

the Among constraint as an illustration. For a complete description, we refer to [11].119

State Properties As mentioned in Example 1, a state for Among(X, l, u, Σ) carries four120

properties, i.e., ⟨L↓, U↓, L↑, U↑⟩, for each node v in the MDD:121

L↓ ∈ Z: minimum number of times a value in Σ is taken from s⊥ to v.122

U↓ ∈ Z: maximum number of times a value in Σ is taken from s⊥ to v.123

L↑ ∈ Z: minimum number of times a value in Σ is taken from v to s⊤.124

U↑ ∈ Z: maximum number of times a value in Σ is taken from v to s⊤.125

We initialize the state for the source s⊥ as ⟨0, 0, −, −⟩ and the sink s⊤ as ⟨−, −, 0, 0⟩.126

Transition Functions The transition between a node a ∈ Li−1 and b ∈ Li is an arc (a, b)127

labeled by a value ℓ ∈ D(xi). We use transition functions T ↓(a, b, i, ℓ) and T ↑(b, a, i, ℓ) to128

derive the property values (the states) for b and a, respectively. For each individual property p,129

we use the function f(s, p, ℓ) for a given state s. For Among, we apply f(s, p, ℓ) = p(s)+(ℓ ∈130

Σ) for each property p in ⟨L↓, U↓, L↑, U↑⟩. For example, we define L↓(b) = f(a, L↓, ℓ),131

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:5

i.e., L↓(a) + (ℓ ∈ Σ). We likewise define L↑(a) = f(b, L↑, ℓ), U↓(b) = f(a, U↓, ℓ) and132

U↑(a) = f(b, U↑, ℓ). The state-level transition functions T ↓ and T ↑ compute all the down or133

up properties of the next state as follows:134

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), −, −⟩
T ↑(b, a, i, ℓ) = ⟨−, −, f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.135

Note that slight variants of both functions that preserve the properties of states b and a,136

respectively, in the opposite directions are equally helpful. Those are:137

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), L↑(b), U↑(b)⟩
T ↑(b, a, i, ℓ) = ⟨L↓(a), U↓(a), f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.138

Transition Existence Function The transition existence function Et(a, b, i, ℓ) specifies139

whether an arc (a, b) with label ℓ ∈ D(xi) exists in the LTS. For Among, this function140

should ensure that the lower bound l is met and the upper bound u is not exceeded, i.e.:141

U↓(a) + (ℓ ∈ S) + U↑(b) ≥ l ∧ L↓(a) + (ℓ ∈ S) + L↑(b) ≤ u.142

Node Relaxation Functions Two states a and b in the same layer Li can be relaxed143

(merged) to produce a new state s′ according to a relaxation function relax(a, b). For144

Among, we can use:145

relax(a, b) = ⟨ min{L↓(a), L↓(b)}, max{U↓(a), U↓(b)},

min{L↑(a), L↑(b)}, max{U↑(a), U↑(b)} ⟩.146

We also call such relaxed states approximate states.147

State relaxation generalizes to an ordered set of states {s0, s1, . . . , sk−1} as follows:148

relax(s0, relax(s1, relax(..., relax(sk−2, sk−1)...))).149

For Among, we maintain MDD-bounds consistency on this expression, i.e., we only maintain150

a lower and upper bound on the count to ensure feasibility and rely on the above relaxation151

function to merge nodes and bound the width of the MDD to at most w states. The usage of152

a relaxation is precisely why we maintain bounds (L and U) in both up and down directions.153

Note that full MDD consistency for Among can be established in polynomial time by154

maintaining a set of exact counts [16].155

Notation For any state s ∈ Li with 1 ≤ i ≤ n, let δ−(s) denote the set of inbound arcs156

from layer Li−1. Likewise let δ+(s) denote the set of outbound arcs into Li+1. We sometimes157

overload notation and use δ−(s) and δ+(s) to also refer to the set of states in Li−1 and Li+1,158

respectively, one can reach from s via those arcs.159

4 Decision Diagram Refinement160

Haddock [11] provides an abstract definition for refining an MDD. For refining one layer,161

it takes a single state, orders all of that state’s incoming arcs, groups these arcs based on162

equivalence classes, and creates new states for each of these equivalence classes [14]. This163

process introduces space for multiple heuristics. Which relaxed state is selected for splitting?164

How should the results of the splitting be ordered and partitioned? This section turns these165

choices into definable heuristic functions building off of the framework of Haddock.166

CP 2022

27:6 Heuristics for MDD Propagation in Haddock

Algorithm 1 refineLayer(Li, [L0, . . . , Li−1], w, ⟨Y, Q, W ⟩)
Require: |Li| ≤ w

Ensure: |Li| = w ∨ appx(Li) = ∅
1: while |Li| < w ∧ appx(Li) ̸= ∅ do
2: let s∗ = arg maxs∈appx(Li) Y (s)
3: let cs = partition(refine(s∗), Q)
4: if |cs| ≤ w − |Li| + 1 then
5: Li = Li \ {s∗} ∪

⋃|cs|
j=1 relax(csj)

6: else
7: let π = permutation(cs) | ∀j, k ∈ 1..|cs| : j ≤ k ⇒ W (sπj) ≤ W (sπk

)
8: Li = Li \ {s∗} ∪

⋃w−|Li|
j=1 relax(csπj) ∪ relax(

⋃|cs|
j=w−|Li|+1 csπj)

Algorithm 1 gives the pseudo-code of the layer refinement. It takes as input layer Li, a167

target width w and three functions Y , W , and Q (shown in red) that are the embodiment168

of the user-definable heuristics. The algorithm makes use of several sub-routines (appx,169

refine, partition, and permutation) that will be explained below. Algorithm 1 refines a170

layer by repeatedly pulling out states that can be refined (if any) and replacing them in the171

layer by more precise versions given the availability of space in the targeted layer. The Y172

function drives the selection of the approximate state to replace, while Q and W govern the173

mechanisms to synthesize the replacement. The section closes with an in-depth discussion of174

refineLayer once all its components are laid out.175

4.1 State Selection with Y176

The first step is to select which state in the layer Li should be refined (line 2 in Alg. 1).177

When the MDD is first constructed, each layer only has one state, so this is trivial. We178

therefore assume that 1 < |Li| < w. Li may contain both exact and approximate states as179

a result of prior merging. The function call appx(Li) returns the subset of states that are180

the results of prior approximations (merges). Ideally, one would wish to refine the layer and181

replace all approximate nodes with exact ones until |Li| = w. The order in which we select182

an approximate state s∗ for refinement is driven by state priority functions:183

▶ Definition 4. A state priority function Y : S → Z takes as input state s = ⟨P0, . . . , Pk−1⟩184

and returns an integer value representing its priority where the larger is the more preferable.185

The refinement will retract the selected state s∗ from the layer and replace it with an186

expansion that consists of one or more new states. The size of this expansion drives the187

remainder of the algorithm. Focusing on Y , several natural choices come to mind. Some188

are based on the local topology of the MDD around the selected state s∗, while others are189

semantics driven and leverage the properties held within s∗. Recall that the layer is an190

ordered set (states are ordered within the layer and have a rank between 0 and the cardinality191

of the set) and that states have topological properties such as the sets of incoming (δ−(s))192

and outgoing (δ+(s)) arcs. While purely syntactic, these properties may be attractive. As193

the newest states are the ones most recently refined, the age of states may be a useful metric:194

▶ Example 5 (Rank heuristics). Let Y (s) = −rank(s) be the heuristic to first select the195

oldest states inserted in the layer. Likewise, one can define Y (s) = rank(s) to first select the196

nodes that were most recently inserted in the layer.197

Another natural option is to consider the in-degree of the state in the MDD to get:198

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:7

▶ Example 6 (Degree heuristics). Let Y (s) = −δ−(s) be the heuristic to first select low199

in-degree states, i.e., states that have few parents in the prior layer.200

▶ Example 7 (Semantics-based heuristic). Consider the constraint Among(X, l, u, Σ) using201

state s = (L↓, U↓, L↑, U↑) with L↓ and U↓ as specified earlier. Define the state selection202

heuristic Y (s) = L↓(s) + L↑(s) to preferentially select a state with the largest lower bound203

on the number of occurrences of values from Σ on any path s⊤ to s⊥. Likewise, the heuristic204

Y (s) = −(U↓(s) + U↑(s)) would select the state with the smallest upper bound on the205

number of occurrences of values from Σ along those paths.206

4.2 Candidate Selection with Q and W207

Once line 2 of Algorithm 1 has executed, state s∗ needs to be refined. To evaluate its208

incoming arcs, we define the function A(s) that collects the set of arcs leading to state s209

from the prior layer:210

A(s) = {pj
ℓj−→ s | pj ∈ Li−1 ∧ ℓj ∈ D(xi)}211

Equipped with A(s∗) one can compute what the true endpoint of each arc should have been212

without relaxation. The outgoing arcs of these endpoints are a subset of δ+(s∗) built by213

removing infeasible arcs from δ+(s∗). Namely for a true descendent s′ computed from an214

endpoint in A(s), we have215

δ+(s′) = {s′ ℓj−→ cj | s
ℓj−→ cj ∈ δ+(s) ∧ Et(s′, cj , i, ℓj)}216

If δ+(s′) = ∅, then the corresponding arc in A(s∗) can be removed from the MDD. With this,217

we can compute K(s∗), the multiset of true descendants according to the remaining arcs in218

A(s∗) thanks to the forward state transition rule T ↓:219

K(s) = {s′ = T ↓(pj , s, i, ℓj) | pj
ℓj−→ s ∈ A(s) ∧ δ+(s′) ̸= ∅}.220

Note how relax(K(s∗)) = s∗ since K(s∗) is none other than the multiset of states that221

would yield s∗ if merged. The refine(s∗) function in Algorithm 1 (line 3) is responsible222

for producing the multiset K(s∗). With unbounded width, one could retain the unique223

states in K(s∗) and add all of them into Li \ {s∗} to upgrade s∗. Otherwise, we need to224

group together states in K(s∗) to be merged. The generic partition function (line 3 in225

Alg. 1) returns a partition of K(s∗) into multisets S1, . . . , Sp, each of which representing an226

approximately equivalent multiset of states. That is, Si ⊆ K(s∗) for 1 ≤ i ≤ p, Si ∩ Sj = ∅227

for 1 ≤ i < j ≤ p, and
⋃p

i=1 Si = K(s∗). The heuristic function Q determines which states228

should be grouped together. For example, if Q is a binary relation that encodes equality,229

partition(K(s∗), Q) must ensure that Q(a, b) holds for all a, b ∈ Si (1 ≤ i ≤ p) and Q(a, b)230

does not hold for all a ∈ Si, b ∈ Sj (1 ≤ i < j ≤ p).231

Whenever |Si| > 1, we can apply the relax function to collapse Si into a single state.232

The resulting states can all be added to the layer if it would not exceed maximum width233

(lines 4-5 in Alg. 1). Otherwise, we need to determine which states to add and which to234

merge. To do this, we use heuristic function W to compute a sorted permutation of the235

partition S1, . . . , Sp. The permutation induced by W identifies the first (and most promising)236

w − |Li| collapsed states for inclusion and merges the remaining ones into a single state.237

To formalize the description above, let us adopt the following definitions:238

CP 2022

27:8 Heuristics for MDD Propagation in Haddock

▶ Definition 8 (Equivalence class). A state equivalence function takes the form Q : S ×S → B.239

It takes as input states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ and returns whether the240

two states are considered similar enough.241

So long as Q is an equivalence relation (reflexive, symmetric, and transitive), Q can generate242

a partition of K(s∗). Naturally, the most direct example is pure equality.243

▶ Example 9 (Equality). Let Q(a, b) be a binary state equivalence function that holds over244

states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ when all properties are point-wise245

equal, i.e., Q(a, b) holds if and only if
∧k−1

i=0 Ai = Bi.246

While combining equal states is helpful, one may wish to group states that are similar247

but not identical. We refer to all other types of state equivalence as approximate equivalence.248

Which properties are used for determining equivalence may be problem dependent. Hence249

the desire to make it programmable. Any states that are deemed approximately equivalent250

are relaxed together by virtue of being members of the same class. The desire to preserve a251

strong relaxation should bias the design of Q to induce the weakest possible losses as a result252

of applying the relax function. To appreciate this semantic use, consider this example:253

▶ Example 10 (Bound Slackness). Consider the constraint Among(x, l, u, Σ) using state254

s = (L↓, U↓, L↑, U↑) as before. It is easy to assess how close the current bounds on the255

number of occurrences of values in Σ are compared to l and u. Given two states a, b ∈ K(s),256

a = T ↓(pa, s, i, ℓa) and b = T ↓(pb, s, i, ℓb). If L↓(a) + L↑(a) and L↓(b) + L↑(b) are equally257

close to l, one would incur a weak loss of precision when merging a with b since merging uses258

min on property L↓, and L↑(a) = L↑(b) = L↑(s) because a and b are derived by only calling259

the forward state transition rule. The same argument applies to the U↓, U↑ properties and260

the distance to the upper bound u. Therefore, let Qt(a, b) be a parametric approximate261

equivalence class (with parameter t) defined as262

Q(a, b) =((l − (L↓(a) + L↑(a)) > t) = (l − (L↓(b) + L↑(b)) > t))
∧((u − (U↓(a) + U↑(a)) > t) = (u − (U↓(b) + U↑(b)) > t))263

Interestingly, setting t = 0 means that states a and b are equivalent as soon as both bounds264

have any amount of slack while t = +∞ means that the inequalities are never satisfied forcing265

each state to stand in a separate class (no relaxations as a result of similar slackness).266

▶ Definition 11 (Weight function). A candidate weight function takes the form W : S → Z.267

It takes as input a state and returns an integer value representing its desirability (smaller is268

better).269

The weight function is used to derive a permutation of K(s∗). Consider the following270

examples that leverage simple structural properties:271

▶ Example 12 (Number of arcs heuristic). Let W (s) = |δ−(s)| be the heuristic that favors272

nodes with fewer antecedents in the layer above.273

▶ Example 13 (Parent rank heuristic). Let W (s) = − maxp∈δ−(s) rank(p) be the heuristic274

that favors nodes with parents that were created in the parent layer the most recently.275

4.3 Composing Heuristics276

Haddock delivers a framework to automatically deliver MDD-driven propagators for277

constraints through specifications that use state definitions together with several functions to278

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:9

capture transition, transition existence, state existence, and relaxations. Perhaps even more279

interestingly, Haddock provides a composition mechanism to produce MDD specifications280

from the conjunction of multiple high-level constraints. Such composite specifications then281

drive the generation of the MDD propagator.282

The addition of heuristics (Y , Q, and W) to modulate the behavior of the underlying283

propagator raises a natural question. When each constraint brings its own preferred heuristics,284

how does one combine them into a single composite heuristic for the propagator? We extend285

the definition of an MDD language from [11] to incorporate the bundle of 3 heuristics:286

▶ Definition 14 (MDD Language). Given a constraint c(x1, . . . , xn) over an ordered set287

of variables X = {x1, . . . , xn} with domains D(x1), . . . , D(xn) the MDD language for c is288

a tuple Mc = ⟨X, P, s⊥, s⊤, T ↓, T ↑, U, Et, Es, R, H = ⟨Y, Q, W ⟩⟩ where P is the set of289

properties used to model states, s⊥ is the source state, s⊤ is the sink state, T ↓ is the forward290

state transition rule, T ↑ is the reverse state transition rule, U is the state update function, Et291

is the transition existence function, Es is the state existence function [11], and H = ⟨Y, Q, W ⟩292

is the trio of heuristics controlling the refinement process.293

4.3.1 Direct Composition294

Consider two MDD languages M1 and M2 for constraints c1 and c2 defined over overlapping295

ordered sets of variables X and Y (X ∩ Y ≠ ∅). Let the language M1 ∧ M2 denote the296

composition of M1 and M2 and associate to it a heuristic bundle HM1∧M2 defined as:297

▶ Definition 15. Given heuristic bundles Hc1 = ⟨Yc1 , Qc1 , Wc1⟩ and Hc2 = ⟨Yc2 , Qc2 , Wc2⟩,298

let HM1∧M2 = ⟨Yc1 +Yc2 , Qc1 ∧Qc2 , Wc1 +Wc2⟩ denote the heuristic bundle of the composition.299

4.3.2 Portfolio Composition300

While direct composition can be effective, it may be sometimes too restrictive. An MDD may301

encapsulate several constraints that disagree on the guidance that they offer individually. In302

such circumstances, it might be preferable instead to base the refinements on the advice of303

a portfolio in which the heuristic bundles coming from each constraint are prioritized. To304

allow for this, we define the refinement portfolio as:305

▶ Definition 16. A refinement portfolio is an ordered list (h1, . . . , hk) of heuristic bundles306

with hi = ⟨Yi, Qi, Wi⟩ for each i ∈ {1, . . . , k}.307

To understand how the portfolio is leveraged, consider the fixpoint algorithm used within308

an MDD propagator for the conjunction of m constraints ∧m
i=1ci shown in Algorithms 2309

and 3. Blue text can be ignored at first as it relates to the reboot and maximum refinement310

described in Section 5. Algorithm 2 is the core of the fixpoint in the MDD propagator. It311

first collects into the list HP all the heuristic bundles to be used. It then proceeds in lines312

3-9 to carry out passes over the layers of the MDD. Each iteration starts with a backwards313

pass going over layers Ln−1 to L0 to update the “up” properties of all states. This can lead314

to the deletion of arcs and states. It then proceeds (line 5) with a down pass to update315

the forward properties of the states that changed, but also to replenish layers that are no316

longer full. Finally, lines 6-7 trim the variable domains to echo the changes done to the317

MDD representation. Any changes prompt another iteration. Algorithm 3 is the crux of the318

forward pass over layers L1 to Ln. The loop in lines 3-8 does the layer refinement while lines319

9-10 compute the update and the pruning of each layer. While Algorithm 3 implies that the320

process iterates over all layers, this is a simplification as the implementation only considers321

changed states in changed layers. That simplification does not affect the layer refinement.322

CP 2022

27:10 Heuristics for MDD Propagation in Haddock

Algorithm 2 mddFixpoint(Mc1∧···∧cm , [x1, . . . , xn], width, reboot, maxRef)
1: let HP = [⟨Y1, Q1, W1⟩, . . . , ⟨Yk, Qk, Wk⟩]
2: let iter = 0
3: repeat
4: changed = computeUp(Mc1∧···∧cm)
5: changed = computeDown(Mc1∧···∧cm

, width, HP, iter, reboot, maxRef) ∨ changed

6: for i ∈ 1..n do
7: trimVariable(xi)
8: iter = iter + 1
9: until ¬changed

Algorithm 3 computeDown(Mc1∧···∧cm , width, HP, iter, reboot, maxRef)
1: let changed = false

2: if iter < maxRef then
3: for hp ∈ HP do
4: let i = 1
5: repeat
6: l = refineLayer(Li, [L0, . . . , Li−1], width, hp)
7: i = (l < i) ? max(l, i − reboot) : (i + 1)
8: until i = n

9: for i ∈ 1..n do
10: changed = pruneLayer(Li) ∨ changed

11: return changed

4.3.3 Refinement Portfolio Options323

Different choices for Q are possible. One could use (for a given constraint c) either an324

approximation Q̃ or pure state equality Q. Alternatively, both can be used in a portfolio325

[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] that uses them in a round-robin style. This first conservatively expands326

with a coarse equivalence, and, if room is still available, uses the finer grain equality.327

4.3.4 Refinement Portfolio with Constraint Ranking328

Another option is to populate the portfolio with heuristic bundles from each constraint329

embedded in the MDD. Given the constraint set {c1, . . . , cm}, one can produce a portfolio330

HP = [⟨Yπ0 , Qπ0 , Wπ0⟩, . . . ⟨Yπm−1 , Qπm−1 , Wπm−1⟩] that permutes the bundles according to331

a user defined ordering π. This can be taken a step further by grouping constraints. Groups332

have a single heuristic bundle obtained through composition. This grouping of constraints333

for MDD refinement bears similarities to propagator groups [18]. Both ideas for portfolios334

compose, expanding HP to include two bundles for each constraint, one that uses Q̃πi
and335

one that uses Qπi
. This preserves the ranking goal by prioritizing constraints with a higher336

rank above constraints of lower rank while always first splitting with Q̃ before Q.337

5 Layer Processing338

5.1 Reboot Distance339

The refinement of a layer in Algorithm 1 may terminate with a full layer (|Li| = w) that340

still hosts approximate states and has the potential for further refinements. As refinements341

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:11

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2

0 1 2

a. A refinement of L1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(1, 1, 0, 1)
(0, 0, 0, 1)

(0, 0, 0, 1)
(1, 1, 0, 1)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

1 2 0 1 2

0 1 2 0 1 2 0 1 2

b. Beginning refinement of L2

Figure 3 Two Among constraints with maximum width=2. Highlighted nodes are approximate.

proceed through layers, a call to refineLayer(Li, . . . that causes the deletion of nodes in Li342

and in some preceding layers Ll can trigger a return to the shallowest layer Ll to immediately343

refine it again as opposed to continuing onward from i. When this happens, the referenced344

loop would ‘reboot’ to layer Ll. It may be desirable to bound how far one might reboot345

with a maximum reboot distance between l and i. To reflect this, we add to computeDown346

the changes in blue on lines 6-7 of Algorithm 3. We further assume that refineLayer is347

modified to return the index of the highest layer l changed during the function call.348

▶ Example 17. Consider an MDD similar to Example 1 with l2 = 2 and maximum width 2.349

After splitting L1, we obtain the graph in Figure 3(a). Nodes are highlighted if their state is350

relaxed. After refining L1 the right state is still relaxed and cannot be refined due to lack of351

space in the layer. While splitting L2, two states in K(s) have no feasible children leading to352

the deletion of the corresponding arcs in A(s). As a result, a state in L1 can be removed as353

shown in Figure 3(b). Without reboot (or reboot = 0), L2 would continue being refined. If354

reboot ≥ 1, the refinement will instead elect to further refine L1 first.355

5.2 Maximum Refinement Iterations356

Algorithm 2 iterates until a fixpoint is reached. It may be wise to bound the number of357

times refinement can occur within one call to the fixpoint. We denote this the maximum358

refinement iterations. The refinement in Algorithm 3 is conditional (line 2) and keeps track359

of the iteration number in Algorithm 2 (lines 2, 8).360

6 Empirical Evaluation361

Haddock is part of MiniC++, a C++ implementation of the MiniCP specification [19]. All362

benchmarks were executed on a Macbook Pro with a 3.1 GHz Intel Core i7-5557U processor363

and 16GB. This section explores the effects of several heuristics on the behavior of the364

Haddock propagator. Specifically, we consider the following experiments:365

Experiment 1 Investigate the impact of the Y and W heuristics.366

Experiment 2 Explore the merits of Q̃, Q, and a portfolio using first Q̃, then Q.367

CP 2022

27:12 Heuristics for MDD Propagation in Haddock

Instance Width 16 Width 32 Width 64
HR LR HD LD HR LR HD LD HR LR HD LD

C-I

MA 1.9 3.4 3.6 6.2 2.2 1.5 1.0 1.9 2.1 1.1 0.6 1.1
LA 5.4 1.5 6.0 2.5 2.3 1.0 1.1 0.9 1.7 0.8 0.6 0.9
MinPI↓ 2.1 0.6 1.4 1.0 1.0 0.7 1.1 0.9 0.4 0.9 0.7 0.8
MinPI↑ 2.2 4.3 5.0 7.9 1.0 1.1 1.2 1.2 1.0 0.9 0.8 1.0
MaxPI↓ 1.7 2.7 1.6 2.2 0.9 1.4 0.9 1.3 0.5 0.6 0.6 0.6
MaxPI↑ 3.7 3.2 5.2 6.7 1.0 1.1 0.8 1.1 1.4 1.0 1.0 0.9

C-II

MA 12.4 9.3 10.6 10.5 5.8 4.5 6.7 4.3 3.8 3.0 4.2 3.2
LA 19.1 14.2 12.3 12.9 5.7 4.9 4.2 4.7 5.0 2.0 3.9 2.7
MinPI↓ 8.1 5.9 5.2 5.2 2.2 6.5 1.4 5.5 2.0 1.0 1.4 0.8
MinPI↑ 8.2 9.9 10.5 10.1 4.0 2.0 4.7 2.1 3.0 1.5 2.8 1.5
MaxPI↓ 6.7 5.7 4.8 4.2 4.7 4.5 1.4 3.2 1.5 1.9 1.3 1.8
MaxPI↑ 7.7 9.0 10.1 9.2 3.8 3.0 3.6 3.4 2.6 2.9 3.2 2.8

C-III

MA 21.2 28.8 27.2 18.4 19.6 20.7 13.7 19.1 15.9 18.6 14.8 19.8
LA 17.7 27.7 30.0 24.7 18.7 14.5 15.6 14.1 19.9 14.4 15.1 16.0
MinPI↓ 16.5 18.1 20.1 15.4 16.7 11.1 10.8 11.2 16.1 11.4 13.9 11.5
MinPI↑ 19.5 29.1 23.8 23.6 16.7 16.3 12.8 16.9 17.1 15.8 12.8 15.4
MaxPI↓ 15.5 21.5 13.4 19.5 17.1 12.9 11.9 16.8 13.7 14.8 13.8 17.0
MaxPI↑ 22.4 26.0 27.0 23.5 16.5 11.8 11.9 11.4 16.4 12.7 12.7 12.4

Table 1 CPU time (seconds) to obtain all solutions for Nurse Rostering using HP =
[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] for different Y (columns) and W (rows) heuristics.

Experiment 3 Explore portfolios where constraint groups are prioritized.368

Experiment 4 Investigate the impact of reboots.369

Experiment 5 Investigate how results carry over to MDD propagators with other constraints.370

Experiment 1: Role of Y and W . First, we evaluate the performance of the Y and W371

heuristics on three “nurse rostering” problems from [16], which ask to schedule nurse work372

shifts over a horizon of 40 days, subject to a collection of Among constraints. There are373

three classes of instances: Class C-I requires at most 6 out of 8 consecutive work days and at374

least 22 out of 30 consecutive work days. C-II uses 6 out of 9 and 20 out of 30, while C-III375

uses 7 out of 9 and 22 out of 30. Each instance also requires 4 or 5 work days each week.376

The portfolio was set to use [⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩]. Namely, layer refinement is driven by377

approximate equivalence first, followed by strict equality when space is still available. Y and378

W are selected among the following options:379

HR Define Y (s) = rank(s) to select the most recent state first.380

LR Define Y (s) = −rank(s) to select the oldest state first.381

HD Define Y (s) = |δ−(s)| to select the state with largest in-degree.382

LD Define Y (s) = −|δ−(s)| to select the state with lowest in-degree.383

MA W (s) = −|δ−(s)| ranks nodes according to decreasing arc set cardinality.384

LA W (s) = |δ−(s)| ranks nodes according to increasing arc set cardinality.385

MinPI↓ W (s) = − minp∈δ−(s) rank(p) ranks nodes with decreasing age of oldest parent.386

MinPI↑ W (s) = minp∈δ−(s) rank(p) ranks nodes with increasing age of oldest parent.387

MaxPI↓ W (s) = − maxp∈δ−(s) rank(p) ranks nodes with decreasing age of youngest parent.388

MaxPI↑ W (s) = maxp∈δ−(s) rank(p) ranks nodes with increasing age of youngest parent.389

Table 1 shows the CPU time taken for each combination of Y and W above. The state390

equivalence function used for approximate equivalence is from example 10 using t = 3,391

maximal reboot distance is 0 and maximum refinement is 10.392

These results indicate that both Y and W have a clear impact on the method. While no393

single pair Y ,W dominate, the LR option for Y seems to fare particularly well. Likewise,394

MinPI↓ and MaxPI↓ appear to be consistently effective. We also observe that implementing395

this generic heuristic framework introduces minimal, if not negligible, overhead.396

Experiment 2: Role of Q̃ vs. Q. Consider the role of the two equivalence heuristics.397

Figure 4 graphs the shortest time and least number of backtracks when Q̃ is used alone, Q is398

used alone, or as a portfolio [Q̃, Q]. At higher widths, the heuristic bundle with Q̃ stagnates399

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:13

Figure 4 CPU time (left) and backtracks (right) for finding all solutions for amongNurse using
different equivalence functions.

0 20 40 60
Width

100

101

102
CP

U
Ti

m
e

(s
ec

on
ds

)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = [Q, Q], C-I
HADDOCK HP = [Q, Q], C-II
HADDOCK HP = [Q, Q], C-III

Figure 5 CPU time (left) and backtracks (right) for finding all solutions for amongNurse with
different constraint group portfolios.

0 20 40 60
Width

10 1

100

101

CP
U

Ti
m

e
(s

ec
on

ds
)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK maxW First, C-I
HADDOCK maxW First, C-II
HADDOCK maxW First, C-III
HADDOCK minW First, C-I
HADDOCK minW First, C-II
HADDOCK minW First, C-III
HADDOCK resW First, C-I
HADDOCK resW First, C-II
HADDOCK resW First, C-III

since the approximate equivalence prevents it from making full use of the width. The bundle400

using Q improves as the width increases, which is good. Yet, the best results come from the401

portfolio which suggest that coarser equivalence is helpful to more judiciously make use of402

the space in each layer and rely on the stricter Q when space is plentiful.403

Experiment 3: Portfolio with constraint groups. Given the three classes of constraints404

that model different aspects (lower bounding the number of work days: minW , upper405

bounding the number of work days: maxW and restricting the number of work days to406

4 or 5 in any given week: resW) it is tempting to rely on 3 constraint groups and use a407

portfolio based on the three bundles of heuristics {H(minW), H(maxW), H(resW)}. To408

simplify, we test three portfolios: minW First ([H(minW), H(maxW ∧ resW)]), maxW409

First ([H(maxW), H(minW ∧ resW)]), and resW First ([H(resW), H(minW ∧ maxW)]).410

Figure 5 shows the results while using ⟨LR, Q, MinPI↓⟩ for each bundle; the results are quite411

spread out. The best performance, on all of C-I, C-II, and C-III, occurs whenever resW is412

the first entry in the portfolio, giving it the first opportunity to drive refinements.413

The characteristics of constraints in resW do explain such a behavior. First, these always414

have the tightest bounds (l = 4 and u = 5). Refining on the tightest constraints may give415

better opportunities for filtering. Second, the resW constraint groups are always the smallest.416

Last, resW constraints are stated over disjoint variable sets and since refinements occur on417

a layer basis (layers are associated to variables) the refinements are more focused.418

Experiment 4: Reboot for Multiple AllDifferent. The assessment of the reboot419

heuristic is done with randomly generated CSPs that use allDifferent constraints, are420

CP 2022

27:14 Heuristics for MDD Propagation in Haddock

Figure 6 CPU time (left) and backtracks (right) for proving infeasibility for Multiple
AllDifferent across different reboot values using HP = ⟨HR, Q, MinP I ↓⟩.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103
CP

U
Ti

m
e

(s
ec

on
ds

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103

104

105

Ba
ck

tra
ck

s

C-I
C-II
C-III
Auto, C-I
Auto, C-II
Auto, C-III
INF, C-I
INF, C-II
INF, C-III

reboot 1 2 3 4 5 6 7 8 Auto INF

A-I Full 39.2% 66.7% 54.5% 83.8% 94.3% 98.0% 98.1% 98.6% 99.5% 100%
Time 671.6 430.7 447.0 0.3 0.5 0.6 1.9 4.0 6.2 452.5

A-II Full 52.2% 66.1% 90.5% 82.5% 94.8% 97.3% 99.3% 99.4% 97.3% 100%
Time 303.5 226.8 435.4 0.4 1.6 1.3 1.8 3.6 1.3 33.0

A-III Full 48.8% 46.8% 27.3% 69.6% 66.7% 97.5% 99.1% 99.4% 99.5% 100%
Time 1834.0 2036.0 1387.2 1202.5 622.6 1.0 1.4 4.4 3.0 725.8

Table 2 Multiple AllDifferent for different reboot values using HP = ⟨HR, Q, MinP I ↓⟩ and
a width of 16. Each row reports the fraction of full reboots and runtime (in seconds).

infeasible and take a non-negligible amount of time to solve with a classic solver. The generator421

uses the parameters ⟨n, d, [(s1, f1, p1), . . . , (sk, fk, pk)]⟩ where n is the number of variables, d is422

the domain size, and each (si, fi, pi) tuple describes a single group of constraints. Group i uses423

(si, fi, pi) to produce a set of AllDifferent constraints. Each constraint ck in that set ranges424

over a random subset (of size ≥ 2) of variables sampled from {xk·fi+1, . . . , xk·fi+si
} where each425

variable has a probability pi of being included. Three instances (available online at http://426

hidden.url.domain) were created from ⟨50, 7, [(3, 1, 1), (6, 6, 1), (10, 1, .3), (8, 5, .6), (20, 7, .2)].427

Performance is measured with time and backtracks to prove infeasibility.428

Figure 6 shows the performance using a heuristic bundle of ⟨HR, Q, MinPI↓⟩ for different429

maximum reboot values with INF representing an unlimited reboot. A dramatic improvement430

in performance occurs around reboots between 4 and 6 that gets erased as the maximum431

reboot increases. When a reboot occurs, the refinement either moves as far back as possible or432

is stopped by the maximum reboot distance (Algorithm 3, line 7). To shed light on Figure 6,433

consider Table 2 that gives the percentage of full reboots across all calls to computeDown434

during the search, that is, reboots that were not cut short. The gains occurs when around435

80 − 90%. By the time reboot = 7, 98% of reboots are full meaning any further increase436

is unlikely to improve refinements but may still add overhead. In the benchmarks, each437

AllDifferent constraint has at most 7, sometimes fewer, variables. Hence, the reboot may438

benefit from staying within the scope of the constraint. A tempting Auto strategy for limiting439

reboots for any variable xi associated to layer Li is as follows. As usual, let vars(c) denote440

the set of variables appearing in c and cstr(x) be the set of constraints mentioning variable441

x. Let L(x) be the layer of variable x. Then,442

related(xi) =
⋃

c ∈ cstr(xi) | |vars(c)|≤ |X|
2

vars(c)443

in reboot(i) = miny∈related(xi) index(L(y)) denotes the layer that the propagator should444

return to when refinement aborts early. The rationale is to consider the shallowest layer of445

variables directly related to xi provided that the constraint connecting them does not cover446

http://hidden.url.domain
http://hidden.url.domain
http://hidden.url.domain

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:15

HR LR HD LD

A-I

MA 755.98 920.56 899.14 917.74
LA 746.80 939.54 925.50 933.94

MinPI↓ 0.91 0.91 0.90 .91
MinPI↑ 795.84 949.96 923.89 935.30
MaxPI↓ 0.90 0.92 0.91 0.92
MaxPI↑ 808.84 961.56 923.37 931.59

A-II

MA 224.45 311.54 304.52 302.08
LA 228.62 318.84 303.10 308.09

MinPI↓ 1.28 1.29 1.33 1.28
MinPI↑ 203.46 267.36 260.42 270.50
MaxPI↓ 1.29 1.29 1.29 1.31
MaxPI↑ 206.10 268.60 259.29 261.77

A-III

MA 2594.93 3240.10 3553.28 3546.93
LA 2595.43 3138.61 3481.61 3622.81

MinPI↓ 1.00 390.37 0.87 0.89
MinPI↑ 2420.01 2926.05 3256.71 3316.82
MaxPI↓ 0.98 375.55 0.87 0.85
MaxPI↑ 2507.99 2938.20 3275.93 3321.35

Table 3 CPU time (sec.) to prove infeasibility for Multiple AllDifferent using Q for different
Y (columns) and W (rows) heuristics with the MDD width = 16.

reboot 0 1 2 3 4 5 6 7 8 Auto INF
Total 0% 14% 44% 54% 66% 75% 85% 87% 93% 49% 100%

CPU Time 5.99 7.29 6.24 7.85 6.72 8.79 9.14 8.77 12.38 6.31 16.12
Backtracks 2960 3682 2672 2848 2187 2280 1735 2030 633 2416 13

Table 4 AIS (n = 11) for different reboot with HP = ⟨HR, Q, MinP I↓⟩ and width = 16.

a majority of the variables in the CSP. Figure 6 and Table 2 give the results. While the Auto447

strategy does not beat the best static reboot value shown, it performs quite well and avoids448

the risk of setting the maximum reboot too small or too large.449

Experiment 5: Similarities across benchmarks. Last, we check how the heuristics450

behave across benchmarks. Table 3 gives results for different Y and W using the All Different451

benchmarks with a reboot of 6. While MinPI↓ and MaxPI↓ are again the clear favorites452

for W , HR appears to be the best option for Y . This differs from Nurse Rostering and453

underlines the usefulness of having programmable heuristics.454

To assess whether Auto performs on other benchmarks, it is tested on the All-Interval455

Series problem (#007 on CSPLIB) measuring the time, number of backtracks, and percentage456

of full reboots when looking for all solutions. Table 4 shows the results with n = 11. Auto457

picks a good compromise somewhere between 2 and 3 which matches the arity of the absolute458

value constraints. Using an infinite reboot pays off in backtracks, but not in run time.459

7 Conclusion460

Heuristics can have a significant impact on the filtering ability of an MDD propagator and461

ultimately on the efficiency of a model. This paper introduces several heuristics that govern462

such behaviors, formalized their integration into a generic framework, and reported on the463

impact they have in practice. Interestingly it led to an automatic setting for the reboot464

heuristic. The keystone of the paper is the recognition that such heuristics should be user465

programmable to get the most out of decision diagram technologies.466

Acknowledgments467

Laurent Michel and Rebecca Gentzel were partially supported by Synchrony. Willem-Jan468

van Hoeve was partially supported by Office of Naval Research Grant No. N00014-21-1-2240469

and National Science Foundation Award #1918102.470

CP 2022

27:16 Heuristics for MDD Propagation in Haddock

References471

1 Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.472

Operations Research Letters, 33, 2005. doi:10.1016/j.orl.2004.04.002.473

2 H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A Constraint Store Based on474

Multivalued Decision Diagrams. In Proceedings of CP, volume 4741 of LNCS, pages 118–132.475

Springer, 2007.476

3 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William Cook. Finding cuts in the477

tsp. Annals of Physics, 54, 1995.478

4 N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Journal of479

Mathematical and Computer Modelling, 20(12):97–123, 1994.480

5 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial481

optimization: A methodological tour d’horizon. European Journal of Operational Research,482

290:405–421, 4 2021. doi:10.1016/J.EJOR.2020.07.063.483

6 D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Decision Diagrams for484

Optimization. Springer, 2016.485

7 Raphaël Boudreault and Claude-Guy Quimper. Improved cp-based lagrangian relaxation486

approach with an application to the tsp. In Proceedings of the Thirtieth International Joint487

Conference on Artificial Intelligence, IJCAI, volume 21, pages 1374–1380, 2021.488

8 Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Revision ordering heuristics for489

the constraint satisfaction problem. In First International Workshop: Constraint Propagation490

and Implementation, 2004. URL: http://www.cril.univ-artois.fr/~lecoutre/research/491

publications/2004/CPW2004.ps.492

9 T Fahle and M Sellman. Cost based filtering for the constrained knapsack problem. Annals of493

Operations Research, 115:73–93, 2002.494

10 J. M. Gauthier and G. Ribière. Experiments in mixed-integer linear programming using495

pseudo-costs. Mathematical Programming, 12, 1977. doi:10.1007/BF01593767.496

11 R. Gentzel, L. Michel, and W.-J. van Hoeve. Haddock: A language and architecture for497

decision diagram compilation. In Principles and Practice of Constraint Programming. CP498

2020, volume 12333 of Lecture Notes in Computer Science, pages 531–547. Springer, Cham,499

2020.500

12 X. Gillard, P. Schaus, and Coppé. Ddo, a Generic and Efficient Framework for MDD-Based501

Optimization. In Proceedings of the International Joint Conference on Artificial Intelligence502

(IJCAI), 2020.503

13 Gilles Pesant Gilles, Claude Guy Quimper, and Alessandro Zanarini. Counting-based search:504

Branching heuristics for constraint satisfaction problems. Journal of Artificial Intelligence505

Research, 43, 2012. doi:10.1613/jair.3463.506

14 T. Hadžić, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compilation of507

constraints into multivalued decision diagrams. In P. J. Stuckey, editor, Principles and Practice508

of Constraint Programming (CP 2008), volume 5202 of Lecture Notes in Computer Science,509

pages 448–462. Springer, 2008.510

15 R M Haralick and G L Elliot. Increasing tree search efficiency for constraint satisfaction511

problems. Artificial Intelligence, 14:263–313, 1980.512

16 S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based Constraint513

Programming. In Proceedings of CP, volume 6308 of LNCS, pages 266–280. Springer, 2010.514

17 R. M. Keller. Formal Verification of Parallel Programs. Communications of the ACM,515

19(7):371–384, 1976.516

18 M. Lagerkvist and C. Schulte. Propagator groups. In Ian Gent, editor, Fifteenth International517

Conference on Principles and Practice of Constraint Programming, Lisbon, Portugal, volume518

5732 of Lecture Notes in Computer Science, pages 524–538. Springer-Verlag, 2009.519

19 Laurent Michel, Pierre Schaus, Pascal Van Hentenryck. MiniCP: A lightweight solver for520

constraint programming, 2018. Available from https://minicp.bitbucket.io.521

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/J.EJOR.2020.07.063
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
https://doi.org/10.1007/BF01593767
https://doi.org/10.1613/jair.3463

R. Gentzel, L. Michel, and W.-J. van Hoeve 27:17

20 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based522

branching heuristic for sat solvers. volume 9710, 2016. doi:10.1007/978-3-319-40970-2_9.523

21 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint524

programming solvers. In Nicolas Beldiceanu, Narendra Jussien, and Éric Pinson, editors,525

Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation526

Problems, volume 7298 of Lecture Notes in Computer Science, pages 228–243. Springer527

Berlin Heidelberg, 2012. URL: http://dx.doi.org/10.1007/978-3-642-29828-8_15, doi:528

10.1007/978-3-642-29828-8_15.529

22 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.530

Chaff: engineering an efficient sat solver. pages 530–535. ACM, 2001. URL: http://doi.acm.531

org/10.1145/378239.379017, doi:http://doi.acm.org/10.1145/378239.379017.532

23 Philippe Refalo. Impact-based search strategies for constraint programming. In Mark Wallace,533

editor, CP, volume 3258 of Lecture Notes in Computer Science, pages 557–571. Springer, 2004.534

24 Meinolf Sellmann, Thorsten Gellermann, and Robert Wright. Cost-based filtering for shorter535

path constraints. Constraints, 12, 2007. doi:10.1007/s10601-006-9006-4.536

25 Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for537

optimal multi-agent pathfinding. Artificial Intelligence, 219, 2015. doi:10.1016/j.artint.538

2014.11.006.539

CP 2022

https://doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
https://doi.org/http://doi.acm.org/10.1145/378239.379017
https://doi.org/10.1007/s10601-006-9006-4
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006

	1 Introduction
	2 Motivating Example
	3 Background
	4 Decision Diagram Refinement
	4.1 State Selection with Y
	4.2 Candidate Selection with Q and W
	4.3 Composing Heuristics
	4.3.1 Direct Composition
	4.3.2 Portfolio Composition
	4.3.3 Refinement Portfolio Options
	4.3.4 Refinement Portfolio with Constraint Ranking

	5 Layer Processing
	5.1 Reboot Distance
	5.2 Maximum Refinement Iterations

	6 Empirical Evaluation
	7 Conclusion

