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Abstract We present an overview of the integration of constraint program-
ming (CP) and operations research (OR) to solve combinatorial optimization
problems. We interpret CP and OR as relying on a common primal-dual
solution approach that provides the basis for integration using four main
strategies. The first strategy tightly interweaves propagation from CP and
relaxation from OR in a single solver. The second applies OR techniques to
domain filtering in CP. The third decomposes the problem into a portion solved
by CP and a portion solved by OR, using CP-based column generation or
logic-based Benders decomposition. The fourth uses relaxed decision diagrams
developed for CP propagation to help solve dynamic programming models
in OR. The paper cites a significant fraction of the literature on CP/OR
integration and concludes with future perspectives.
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1 Introduction

Constraint programming (CP) and operations research (OR) have the same
overall goal. They strive to capture a real-world situation in a mathematical
model and solve it efficiently. Both fields use constraints to build the model,
often in conjunction with an objective function to evaluate solutions. It is
therefore only natural that the two fields join forces to solve problems.
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Attempting to unify CP and OR might be unwise if they relied on entirely
different solution methods. However, their methods are not only related, but
complementary, due to the contrasting intellectual origins of the two fields.
This has allowed integrated methods to outperform those that rely solely on
CP or OR techniques in a wide variety of problem areas, sometimes by orders
of magnitude. Furthermore, the potential benefits of integration are, arguably,
only beginning to be reaped, which suggests that CP/OR integration will
continue to be an active research area.

Both CP and OR use what the OR community might call a primal-dual
approach, which combines search with some kind of inference. Search solves the
primal problem of finding a feasible solution (one that satisfies the constraints),
while inference solves the dual problem of proving that a solution is optimal,
or that no solution is feasible. Search frequently takes the form of a branching
mechanism, at least in the context of exact methods. The two fields diverge
when it comes to inference. In OR, it typically appears as problem relaxation,
strengthened by such inferred constraints as cutting planes. In CP, inference
appears as constraint propagation and domain filtering. Both relaxation and
propagation can help find feasible solutions as well.

Operations research is strongly influenced by its historical roots in linear
programming (LP), which formulates problems using inequality constraints.
Much of the field today is based on inequality-constrained mathematical pro-
gramming models, including those of nonlinear programming (NLP), mixed
integer/linear programming (MILP), and mixed integer/nonlinear program-
ming. A model is almost always relaxed by reducing it to a simpler inequality-
constrained model, such as an LP or a convex NLP model, which can be solved
with highly developed methods that exploit its special structure. Relaxation
is essential because it allows the solver to infer a bound on the optimal
value, which reduces branching. The relaxation is often strengthened by valid
inequalities that are inferred from the constraint set.

Operations research is, of course, broader than mathematical programming,
as it encompasses dynamic programming, queuing theory, simulation, and
other areas. Although we focus primarily on mathematical programming, we
will see that dynamic programming, as well as network and matching theory,
also play a significant role in CP.

Constraint programming has roots in logic programming, where a model
has both a declarative and a procedural interpretation. A model is declarative
because its statements can be read as logical propositions that describe the
problem, and it is procedural because the statements can be processed as
instructions for how to find a solution. Something similar to this dual inter-
pretation survives in today’s CP. The statements in a model impose constraints
that describe the problem, even while they invoke algorithms, such as domain
filtering, that lead to a reduction in branching.

Due to these contrasting origins, OR and CP process a model differently as
they conduct a search. OR solves an inequality-constrained relaxation of the
model as a single problem, while CP processes the constraints of the model
individually. This allows OR to combine information from the entire model
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while inferring a bound, but relaxation sacrifices much of the combinatorial
complexity of the problem. The CP approach captures much of the combi-
natorial complexity of individual constraints while inferring reduced domains,
but it must resort to the propagation of domains from one constraint to the
next to obtain a global view. OR partially compensates for the weakness of its
relaxations by strengthening them with valid constraints that capture some
of the special structure of groups of constraints. CP partially compensates for
the weakness of constraint propagation by defining high-level global constraints
that represent a group of simpler constraints.

At least four basic strategies for combining the complementary strengths
of OR and CP have been developed in the literature. They can be summarized
as follows.

Combine relaxation from OR with propagation from CP. This can be ef-
fective when some constraints “relax well” in the sense that they have a tight
inequality relaxation, and others “propagate well.” A relaxation is tight when
its feasible set is similar to that of the original problem, or at least yields a
similar optimal value. Constraints propagate well when their structure allows
significant domain reduction when some variables are fixed (or their domains
reduced), perhaps by branching. The so-called knapsack constraints of OR,
which are linear inequalities with many nonzero coefficients, tend to relax well,
because they serve as their own LP relaxation. Certain groups of constraints
can also give rise to useful valid inequalities, such as the famous Gomory cuts,
which are derived from constraints that are tight in the solution of the LP
relaxation, or the valid cuts derived from subtours and “combs” in the solution
of a relaxed traveling salesman problem. The classical “binary” constraints of
CP, which contain only two variables, generally propagate well, because fixing
(or reducing the domain of) one variable tends to have a significant effect
on the domain of the other. High-level global constraints may also propagate
well, assuming they have been analyzed and implemented in solvers. Examples
include disjunctive and cumulative scheduling constraints, which have been
deeply analyzed and help explain the success of CP in the scheduling domain.

Use OR methods for domain filtering in CP. Network and matching theory,
as well as dynamic programming, are widely used to filter domains for a variety
of global constraints. Edge-finding methods, originally developed in OR, are
indispensable for domain filtering in disjunctive and cumulative scheduling
problems. In addition, since achieving domain consistency for a global con-
straint is frequently an NP-hard problem, it can be helpful to use a more
tractable OR-based relaxation of the constraint as a basis for filtering.

Decompose the problem into parts that suitable for OR and CP, respec-
tively. This can be accomplished with two decomposition methods originally
developed in the OR literature: column generation and Benders decomposition.
Column generation accommodates CP by using it to generate columns in the
pricing subproblem. Benders methods can accommodate CP if they are gener-
alized to “logic-based” Benders decomposition, which allows the subproblem
to be solved by CP.
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Apply constraint propagation to dynamic programming models. If a prob-
lem can be given a recursive model as in dynamic programming, the state-
transition graph for the model can be treated as a decision diagram, and
arcs can be deleted from the diagram much as values from a domain in
a conventional domain store. Normally a relaxed decision diagram is used
rather than an exact one, which tends to grow exponentially. The relaxed
diagram not only allows propagation that is stronger than propagation through
domains, but it provides a valid bound on the optimal value that allows one
to solve a dynamic programming model by branch-and-bound methods when
no inequality-constrained relaxation is available.

After a brief historical overview of CP/OR integration in Section 2, we
expand on the above strategies. Sections 3–5 deal with the first stratregy, the
combination of OR-based relaxation with CP-based propagation. Section 3
first shows how relaxation and propagation can be tightly integrated in op-
timization systems. Section 4 then describes relaxations of global constraints
that can be used for propagation, and Section 5 indicates how such relaxations
can be defined and utilized relative to the entire CP model. The second
strategy, the application of OR to filtering, is the subject of Section 6. It
outlines how such OR methods as matching theory and network flows have
been used to design filters for global constraints. Decomposition strategies
are discussed in Section 7 (column generation) and Section 8 (logic-based
Benders decomposition), both of which combine an OR-based master problem
with a CP-based subproblem. The final strategy is covered in Section 9,
which describes how relaxed decision diagrams that were developed in the
context of CP have been used to solve problems that can be given dynamic
programming models. The paper concludes with perspectives on the future of
CP/OR integration.

2 Historical Overview

We begin with a brief overview of major milestones along the road to OR/CP
integration. A fuller account of the early work can be found in [142].

Domain filtering and constraint propagation were foreshadowed in the OR
literature as early as the 1960s, when Garfinkel and Nemhauser [107] used a
technique then known as implicit enumeration to solve integer programming
models of political districting and other problems. This was before relaxation
methods developed in OR, and it was necessary to reduce branching in some
other way. The OR literature explicitly mentioned CP as early as 1989 [49],
while true integration began in the 1990s.

OR took an early step away from inequality-based modeling in 1990, when
Beaumont [21] replaced integer variables with logical disjunctions and solved
the problem by branching on disjunctions. After an early application to pro-
cessing networks in [117], Hooker and Osorio [152] extended this approach to
“mixed logical/linear programming.” Meanwhile, the integration of propaga-
tion and relaxation in branch-and-cut methods was advocated by Hooker in
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1994 [139] and further explored in a number of publications, such as [43,141].
In the 2000s, it became the basis for integrated solvers like SIMPL [11,252],
which permits modeling with global constraints, and later the award-winning
solver SCIP (“SCIP” is an acronym for “solving constraint integer programs”)
[1,2].

The CP community also pursued integrated methods during the 1990s,
primarily by exchanging information between CP and LP solvers, as advocated
by Little and Darby-Dowman [172]. Papers by Wallace, Novello and Schimpf
[248] and Rodošek, Wallace and Hajian [213] described an implementation
of this mechanism in ECLiPSe, which was perhaps the first general-purpose
solver to combine CP and OR. Régin [208,209] applied matching and network
flow theory to filtering the all-different and generalized cardinality constraints,
while Baptiste, Le Pape and Nuijten [18] applied edge finding to scheduling
constraints. In later work, such OR ideas as reduced-cost variable fixing, linear
relaxations of global constraints, and convex hull relaxations of piecewise linear
functions were brought into CP-based algorithms [97–99,195,206,207]. ILOG’s
OPL Studio [243] and Concert technology (introduced in ILOG Solver 5.0), as
well as NICTA’s G12 system [230], provided modeling languages that invoke
CP and MILP solvers.

While this research was underway, two schemes were introduced for combin-
ing OR and CP in a decomposition method. One uses CP-based column gen-
eration in OR’s well-known branch-and-price method for integer programming
[157,254]. Another development, logic-based Benders decomposition [140,141,
156,153], allows the Benders subproblem to be solved by CP methods and has
become a widely-used vehicle for combining CP and OR.

The 2000s have seen the adaptation of binary and multivalued decision
diagrams to discrete optimization [125,126], particularly when the problem has
a dynamic programming formulation, a much-studied topic in OR. Decision
diagrams provide an alternative approach to global relaxation for bounding
and propagation, as well as to branching [8,37,38].

OR and CP researchers were first brought together in 1995 at an Interna-
tional Joint Workshop on AI and OR, organized by M. L. Ginsberg and J. N.
Hooker at Timberline Lodge on Mt. Hood, USA. The idea of a joint conference
was revived in 1999 with the annual CP-AI-OR workshop (Integration of AI
and OR Techniques in CP for Combinatorial Optimization), which first met in
Ferrara, Italy. It is now an annual conference series with published proceedings.
Papers on hybrid methods regularly appear in CP, OR and mathematical
programming conferences. A department of a major OR journal, INFORMS
Journal on Computing, is dedicated to CP/OR integration.

3 Combining Propagation and Relaxation

One general strategy for integrating CP and OR is to combine constraint
propagation with relaxation. The two techniques are mutually reinforcing,
because propagation can tighten bounds on the variables in an LP relaxation,
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while a relaxation can prove optimality or infeasibility of a problem obtained
during CP-based search.

An early application of this strategy (1995) used an LP relaxation to
prove the optimality of a solution obtained by CP in five minutes for a boat-
party scheduling problem that MILP could not solve in five hours [228]. Other
studies [206,252] combined CP with convex-hull and assignment relaxations
(special cases of LP relaxations), as well as with reduced-cost variable fixing, a
propagation technique based on LP relaxation. This last technique is actually
a special case of a general propagation method based on LP dual multipliers
[149]. Propagation has been used with other kinds of relaxations as well, such as
Lagrangean relaxation [223,55,162], semidefinite programming relaxation [119,
244], and linear quasi-relaxation [46] (a quasi-relaxation excludes some feasible
solutions but no optimal ones). All of these techniques achieved significantly
better performance than the MILP or CP solvers of the time.

Relaxation combined with various kinds of propagation has seen a number
of applications, and we provide only a sampling here. They include single-
vehicle routing [218], truss structure design [46], processing network design
[117,152], resource-constrained scheduling [132,81], multiple machine schedul-
ing [44], shuttle transit routing [204], orthogonal Latin squares [10], and the
multidimensional knapsack problem [194]. Convex hull relaxations of piecewise
linear constraints have been used in a CP context to solve fixed-charge prob-
lems and transportation problems with piecewise linear costs [206], as well as
production planning problems with piecewise linear costs [195,196].

Combining relaxation and propagation can also form the basis of a general-
purpose solver, along the lines developed in a series of papers in the 1990s
and early 2000s [11,43,143,145,154,195,196]. The constraints are processed
individually as in a CP solver, so as to filter domains and generate constraint-
specific relaxations. A domain store for the discrete variables is maintained,
along with the kind of a global LP relaxation one sees in an MILP solver. The
domain store propagates the results of domain filtering for global constraints
in the model. The global relaxation contains the inequality constraints in the
original model along with the constraint-specific relaxations. In addition, a
group of structured inequality constraints in the model, such as fixed-charge
network flow constraints, can be represented with a metaconstraint (analo-
gous to a global constraint). When processed, the metaconstraint generates
cutting planes for the global relaxation that are specifically designed for the
constraint’s particular structure.

This general approach is implemented in SIMPL, mentioned earlier. It is
partially implemented in SCIP, which allows the user to plug in “constraint
handlers” that filter domains. Another solver, SCIL, is focused on MILP
but borrows CP-style modeling by generating specialized cutting planes for
metaconstraints [6].

Nogood constraints, which have long been used in satisfiability (SAT)
solvers in the form of conflict clauses [20], can be used in an integrated solver
as well. This is proposed in [141] and implemented very effectively in SCIP.
When the LP relaxation is found to be infeasible at a node of the branching
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tree, the resulting dual multipliers are used to formulate a nogood based on the
variable assignments that gave rise to the infeasibility. A similar approach that
does not rely on dual multipliers or an LP relaxation is branch and check [141,
234], a variant of logic-based Benders decomposition. In fact, conflict clauses
are special cases of Benders cuts [150,151], and the SAT solvers that use
them can be interpreted as specialized implementations of logic-based Benders
decomposition.

There is perennial debate over whether it is better to combine CP and OR
in a single general-purpose solver, or keep them separate in highly-tuned dedi-
cated solvers. Advocates for separation argue that the extraordinary efficiency
of a dedicated solver, particularly an MILP solver, outweighs the difficulty of
incorporating constraints that are better suited for the other type of solver.
Advocates for integration argue that the jury is still out, because much of the
efficiency of dedicated solvers is due to decades of intense engineering effort
that has not been lavished on an integrated solver. MILP solvers, for example,
have improved by several orders of magnitude using the same basic branch-
and-cut technology. An integrated solver that does not benefit from this kind of
intensive development can already outperform MILP on a variety of problems
[1,2,11,252].

Even if it proves best to exploit the power of dedicated solvers, one can
still profitably combine OR and CP by linking the solvers in a decomposition
method such as CP-based branch and price or logic-based Benders decomposi-
tion. As discussed in Sections 7 and 8, these techniques, particularly the latter,
can achieve orders-of-magnitude speedups over either of the dedicated solvers
used alone.

4 Relaxation of Global Constraints

Many constraint programming languages allow the definition of global con-
straints that represent NP-complete problems. For example, one of the earliest
constraint languages, Alice [170], included the ‘circuit’ constraint to state that
a set of variables represent a Hamiltonian circuit in a graph. Since establishing
domain consistency for such constraint would be NP-hard, it is natural to
design propagation algorithms based on a relaxation of the constraint. In
particular relaxations stemming from OR, such as linear programming and
Lagrangian relaxations, have been used for this purpose.

One of the first systematic applications of linear relaxations in global
constraint propagation was developed in a series of papers by Focacci, Lodi,
and Milano [97,101,100,102]. Using the traveling salesman problem with time
windows as illustrative application, they develop optimization-oriented global
constraints that 1) use the linear programming bound to tighten the domain
of the variable representing the objective, and 2) apply reduced-cost based
variable fixing to filter sub-optimal domain values. Reduced costs can also be
applied to guide and decompose the CP search [186]. In these applications, the
global constraint provides an interface for the finite-domain variables in the
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CP model to the continuous variables in the associated linear programming
model.

The network-flow constraint is an example of a global constraint that, by
definition, has an immediate linear programming model that can be exploited
in CP. It was first proposed in [45] and implemented in the CHIP solver. A
specific application to fixed-charge network flows was developed in [163]. A
generic network flow constraint, that embeds a network simplex algorithm,
was implemented in the Jacop solver [229]. In that work, the flow constraint
is also used to implement flow-based propagators for all-different, cardinality
constraints, and their soft versions. Other implementations of network flow
constraints are presented in [108,87], and extended to explain infeasibilities,
or generate nogoods, based on the linear programming model.

Likewise, one can derive Lagrangian relaxations for global constraints, as
was first done by Caseau and Laburthe [63]. That is, the global constraint now
embeds a Lagrangian relaxation of the combinatorial structure it represents.
Lagrangian relaxations can be appealing for this purpose, as they sometimes
allow very fast combinatorial algorithms instead of linear programming – in
the case of [63] the Held-Karp Lagrangian relaxation is applied as a filter for
weighted Hamiltonian circuits. Moreover, for integer optimization problems
the Lagrangian bound can potentially be stronger than the linear programming
bound. Lastly, Lagrangian relaxations can also be used for variable fixing,
based on the dual multipliers. Sellmann provides a formal study of the use
of Lagrangian relaxations in CP, and in particular shows that sub-optimal
Lagrangian relaxations may yield stronger domain filtering [222]. Recent per-
spectives on CP and Lagrangian relaxation appear in [15,111,104].

Successful applications of Lagrangian relaxations in CP include the trav-
eling tournament problem [30], capacitated network design [225], automated
digital recording [224], network design [77], improved arc-consistency for con-
straint satisfaction problems [162], resource-constrained shortest path prob-
lems [109,121], personnel scheduling with regular expressions [182], multileaf
collimator sequencing for cancer treatment [55], parallel machine scheduling
[90], the traveling purchaser problem [56], the weighted-circuit global con-
straint [26], resource-constrained project scheduling [118], the AtMostNValue
global constraint [52], propagation based on decision diagrams [34], and neural
networks in empirical model learning [174,175].

A recent development in this context is the application of Lagrangian
decomposition to strengthen the optimization reasoning and constraint pro-
pogation in CP. In the variant of Lagrangian decomposition introduced by
Guignard and Kim [122], a given problem is reformulated by introducing a
copy of the variables for pre-specified subproblems, while equality constraints
are added on these variables to ensure that they are assigned the same value.
The Lagrangian decomposition then follows from dualizing these equality
constraints with associated Lagrangian multipliers. This perspective can be
directly applied to CP models, because constraints are individually propagated
– as if defined on a copy of the variables. The implicit equality constraints
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between variables in different constraints of a CP model can therefore be
exploited by a Lagrangian decomposition, as first proposed, simultaneously,
in [33] and [123]. Constraint propagation based on Lagrangian decomposition
can be stronger than pairwise consistency [33]. The application of Lagrangian
decomposition in CP was further studied by Chu et al. [69]. In that work, sub-
problems are solved via search rather than through a specialized propagator,
which allows the application to arbitrary subproblems instead of those defined
by global constraints.

Linear relaxations that define some or all facets of the convex hull of the
feasible set have been developed for several global constraints, including the
element constraint [141], the all-different constraint [141,249,149], and systems
of all-different constraints [9,40,41]. A convex-hull linear relaxation for logical
combinations of cardinality constraints is given in [251] and generalized in [16].
Various MILP models have been proposed for cumulative scheduling [64,149,
242], and the integrality constraints can be dropped to obtain an LP relaxation.
A relaxation that is not based on MILP, but defines a class of valid inequalities
that are sometimes facet-defining, is presented in [149].

5 Linear Relaxations from CP Models

In the previous section, linear or Lagrangian relaxations are inferred from indi-
vidual (global) constraints, which represent a specific combinatorial structure.
This approach can be generalized to arbitrary subsets of constraints, or even
the entire problem. That is, for a given CP (sub)problem, we can create a
linear programming model that serves as a relaxation to the problem. Such
linear model can then be maintained during search and applied for improved
optimization bounds, reduced-cost based variable fixing, or guiding the search.

The first systematic approaches to automatically reformulate CP models
into linear programming models were proposed for this purpose by Rodosek
et al. [213] and Refalo [207]. The approach was further developed and im-
plemented in the eplex library of the constraint logic programming system
Eclipse in [227]. Belov et al. [25] present a related work that automatically
translates CP models in MiniZinc to equivalent linear MIP models, to be
solved by MIP solvers. However, such generic transformations may lead to
poor LP relaxations, especially when many ‘big-M’ constraints are needed.
Stronger linear models may be derived by taking into account the semantic
information in CP models. In particular, Laborie and Rogerie present an
automatically generated linear relaxation for advanced scheduling models, as
used in IBM ILOG CP Optimizer. This LP relaxation can be particularly
helpful for complex objective functions [167].

Naturally, the strongest possible LP relaxations can be derived for specific
applications. In addition to a tailored linear model, this also allows the addition
of problem-specific cuts to strengthen the relaxation. Example applications in
which dedicated LP relaxations are embedded as a global constraint in CP
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models include multi-agent scheduling [136], integrated employee timetabling
and job-shop scheduling [12], and time-dependent sequencing problems [164].

6 OR-Based Filtering Methods

OR methods have made major contributions to domain filtering for global
constraints in CP. Outstanding examples include the all-different constraint,
the generalized cardinality constraint, disjunctive and cumulative scheduling
constraints, the sequence constraint, and the stretch constraint.

The all-different constraint first appeared in 1978 [170]. Filtering algo-
rithms that achieve domain consistency for all-different were derived in the
early 1990s [208] using results from matching theory in the OR literature
[155,177,75], which is in turn based on classical network flow theory. The
OR literature also provided the basis for achieving bounds consistency [181],
namely a result for convex graphs [112]. The generalized cardinality constraint
is filtered using a network flow model [209], and bounds consistency achieved
using a flow-based algorithm that again exploits convexity of the graph [161].

In the 2000s the network-flow based propagation was extended to cost-
based global constraints, by representing them with minimum-cost network
flows. This was first done to establish domain consistency for weighted car-
dinality constraints [210,211]. Minimum-cost network flows have also been
applied to establish domain consistency on soft global constraints for which one
aims to minimize the violation, as was first done for the the soft all-different
constraint [245]. This approach was generalized in [137] and applied to soft
cardinality and soft regular constraints. An overview of soft global constraints
can be found in [135]. Other global constraints that use minimum-cost network
flows include the soft sequence constraint [179], the soft all-different constraint
with preferences [183], the soft cardinality and soft regular constraints with
preferences [184,185], soft global constraints for weighted CSPs [171], and soft
open global constraints [178].

Disjunctive and cumulative scheduling represent one of the key successes
of OR/CP collaboration. It began with the edge-finding algorithms of Carlier
and Pinson, published in the OR literature [58–61]. These algorithms reduce
the time windows within which tasks must execute, based on the fact that
they cannot overlap, and thereby accelerate the search for a feasible sched-
ule. The technology then passed over to the CP community, which further
developed edge-finding methods for disjunctive scheduling [18,190,193] and
extended them to allow incremental updates [62] and setup times [50,103].
These were followed by not-first/not-last rules, which achieve some bound
tightening missed by edge finding [17,84,237]. In the meantime, the cumula-
tive scheduling constraint was introduced [3], which along with its variations,
became a major component of CP’s powerful scheduling technology. A number
of edge-finding algorithms for the constraint appeared [18,62,191,192], along
with “extended” edge finding [18,190], not-first/not-last rules [191,192], and
energetic reasoning [92,93]. Much of this work is described in [18]. Although
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these contributions advanced substantially beyond the original edge-finding
methods, they owe their intellectual inspiration to ideas that came out of the
OR literature.

The sequence constraint [23] also illustrates a remarkable linkage of OR and
CP. While there are elegant polynomial-time filters for achieving domain con-
sistency that do not rely on OR methods [48,246,138], a competitive polytime
filtering method [179] is grounded in deep results from integer programming.
An integer programming model for the constraint has a coefficient matrix that
exhibits the consecutive ones property, which means that the matrix is totally
unimodular, and the problem can be solved by LP alone. Furthermore, it is
known that such a problem can be given a specially-structured LP formulation,
namely a rather unobvious network flow model [4,247]. This provides the basis
for an efficient polytime filtering algorithm.

Dynamic programming, a classical OR technique that dates back to the
1950s [24], can also be used to filter global constraints. For example, it can
be applied to knapsack constraints [239,240]. Constraints of this form are
traditionally propagated using simple bound consistency, which is rather weak.
Dynamic programming can be used instead to establish domain consistency.
Another example is the stretch constraint [200], which is designed for employee
shift scheduling and related applications. It can be efficiently filtered with
a dynamic programming algorithm that is carefully tailored to exploit the
combinatorial structure of the constraint [131]. It can be generalized to the
regular constraint [201] which is applied to represent strings that belong to
the language of a regular expression.

7 Column Generation

Some linear programming models consist of a huge number of variables, as
compared to the number of constraints – perhaps the size of the model even
exceeds the memory of the computer. It is still possible to solve such LPs
efficiently, by recognizing that an optimal solution only needs at most as
many non-zero variables as the number of constraints. Namely, we can start
with an initial (small) subset of variables that permits a feasible LP solution.
After solving the LP, we identify a new variable that may improve the current
solution by evaluating its reduced cost. We then add the new variable to the
LP model and repeat. If there are no variables with a negative reduced cost (for
a minimization problem), the current solution is optimal, by LP theory [71].

This decomposition approach is called column generation, as variables
correspond to columns in the matrix representation of LP models. The LP
defined by the current set of columns is called the (restricted) master problem.
Finding a new variable consists of finding the entries of its column, i.e., the
coefficients of the linear constraints in which the variable appears, which is
done in the pricing problem. Column generation can also be applied to integer
linear programming models, by embedding the procedure in an enumerative
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search called branch-and-price [19]. It is one of the most important and widely
used OR techniques for large-scale optimization.

Column generation is most effective when variables represent a combinato-
rial pattern, for example a work schedule for an employee, the locations on a
route for a truck, or a cutting pattern to divide a bar of steel into sub-pieces.
This means that the pricing problem is a combinatorial optimization problem
– for example, find the minimum-cost schedule, route, or pattern. Therefore,
we can apply a hybrid CP/OR approach: The master problem can be solved
with linear programming, while the combinatorial pricing problem may be
solved with CP. The general CP-based column generation framework was first
proposed by Junker et al. [157] and Yunes et al. [254,255].

Given the popularity of column generation in OR, many dedicated ap-
proaches exist for solving the pricing problem. A major benefit of using CP for
this purpose is the flexibility of generic modeling, which allows to easily adapt
the pricing problem to different specifications. Another benefit is the com-
putational efficiency, especially for highly constrained scheduling problems.
A possible drawback, however, is that the stabilization problem of column
generation may be worse when using CP, as discussed in [214].

CP-based column generation has been successfully applied to a wide range
of applications, including airline crew assignment [157,66,166,94,226], the
traveling tournament problem [88,89], vehicle routing with time windows [215,
216], network design [67], airline planning [115,105,116,106], urban transit
crew management [255], employee timetabling [82,83], physician scheduling
[110], multi-machine scheduling [219], two-dimensional bin packing [202], wire-
less mesh networks [57], radiation therapy delivery [55], graph coloring [120],
technician dispatching [74], and operating room planning and scheduling [85,
86].

8 Benders Decomposition

Benders decomposition is designed for problems that yield a much simpler
problem (the Benders subproblem) when certain variables are fixed. The sub-
problem is solved to obtain one or more Benders cuts that bound the cost
of fixing variables to these or similar values. The Benders cuts are added to
a master problem that is solved to find the next set of values for the fixed
variables. The process is repeated until the optimal values of the master
problem and subproblem converge. Thus the problem decomposes into two
parts that communicate through Benders cuts.

In the original Benders method [27], the subproblem must be an LP, and
the Benders cut is derived from the LP dual. Hooker [140,141] and Hooker
and Ottosson [153] substantially generalized the classical method to logic-
based Benders decomposition, in which the subproblem can in principle be
any optimization or constraint satisfaction problem, and the Benders cuts are
derived from an inference dual. Guidelines for applying the method can be
found in [72,147,149].



Constraint Programming and Operations Research 13

Logic-based Benders decomposition (LBBD) provides a broad scope for
OR/CP collaboration, because the master problem and subproblem can be
attacked with different solvers, one from OR and one from CP. In most appli-
cations, the subproblem is a CP problem, perhaps a scheduling problem. Its
combinatorial nature is no longer a barrier to generating Benders cuts. The
master problem can be solved by whatever OR method is convenient, such as
MILP or a heuristic method. Logic-based cuts must be developed anew for
each problem class, unlike classical Benders cuts, which are always based on
the LP dual in the same way. However, this provides an opportunity to exploit
the special structure of the problem.

The computational advantages of LBBD have been demonstrated in a wide
variety of applications. One of the first [156] was a planning and scheduling
problem in which the master problem (solved by MILP) assigns jobs to ma-
chines, and the subproblem (solved by CP) schedules the jobs subject to time
windows. The subproblem decouples into a separate problem for each machine,
thus making the problem well suited to decomposition. Recently updated
experiments [72] found that LBBD remains several orders of magnitude faster
than the latest MILP technology for this problem, and the advantage over
a dedicated CP solver even greater. Similar results have been obtained for
various planning and scheduling problems [70,129,144,146,148,238].

Other successful LBBD applications that combine OR and CP include
shop scheduling [14,65,128,218], shift scheduling [220], batch scheduling in
chemical plants [180,235], computer processor scheduling [28,29,53,91,133,
173,176,217,221], facility location [95,96,232], concrete delivery [165], stock
cutting [80], space packing [76], vehicle routing [73,212,250], network design
[231], operator counts in planning algorithms [79], home health care [130],
service restoration [114], queuing design and control [233], optimal control of
dynamical systems [47], propositional satisfiability [13], and sports scheduling
[205,241]. LBBD is compared with branch and check in [22] and is implemented
in SIMPL [252] as well as MiniZinc [78].

In [168], Lam and Van Hentenryck integrate column generation, Benders
decomposition and constraint programming in a branch-and-price-and-check
framework for a rich vehicle routing problem with location congestion. The
same authors present in [169] a branch-and-check approach for vehicle routing
problems in which combinatorial cuts are found by general-purpose conflict
analysis using a SAT solver.

9 Decision Diagrams and Dynamic Programming

Decision diagrams [5,7,51] have long been used for circuit design and product
configuration. More recently, Hadžić and Hooker [124–126] adapted decision
diagrams to optimization and, with Anderson and Tiedemann [8,127], showed
that they can be an effective alternative to the traditional constraint store
in CP. Rather than propagate through variable domains, one can propagate
through a decision diagram that represents a discrete relaxation of the prob-
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lem. The connection of decision diagrams to operations research is that they
are well suited for the solution of optimization problems that have dynamic
programming models [35,39,134,113].

Dynamic programming models are normally solved by a recursive process
that enumerates the state space at each stage of the recursion. Because the
state space typically grows exponentially with the number of state variables,
such techniques as state space approximation and approximate dynamic pro-
gramming are often used to resist the “curse of dimensionality” [68,187,203].
Decision diagrams provide the option of solving the problem by a branch-
and-bound technique, and in particular, one that branches on nodes of a
relaxed decision diagram rather than on values of variables [38]. The bounding
mechanism is based on relaxation values obtained from relaxed sub-diagrams
rooted at branching nodes [42,37], much as traditional branch and bound
is based on relaxation bounds obtained from LP relaxations at nodes of the
branching tree. This can lead to significant speedups relative to state-of-the-art
MILP solvers on some problems that have a natural MILP formulation [38].
Its primary potential, however, is in the solution of dynamic programming
models that are not readily formulated as MILP problems [35].

Viewing a dynamic programming model in terms of decision diagrams
can occasionally lead to radical simplification of the problem [113]. This is
accomplished by rearranging costs on the arcs of the decision diagram (which
are immediate costs in the dynamic programming model) so that the diagram
can be reduced to a much simpler diagram.

10 Future Perspectives

The integration of CP and OR has proceeded over a period of nearly three
decades, first rather slowly, but at a gradually quickening pace. It has brought
improved solution methods—sometimes radically improved—to a wide variety
of problems, as well as advances in modeling. The perspective afforded by one
field has lent new insight into the other, which in turn leads to still more
effective methods.

Despite this considerable progress, there remains great potential for further
integration, with the concomitant improvement in both modeling and solution
methods. Any attempt to predict the direction of research is a fool’s errand,
but we can point out some current research activity that shows promise for
further progress, as well as some possible areas for future research.

One active area of current research is the development of advanced modeling
systems that invoke both CP and OR solvers. These include the OPL [243],
miniZinc [188] and Savile Row [189] modeling languages (although the last,
at this writing, invokes only CP and SAT solvers). These systems do not yet
integrate CP and OR at a low level as does the research code SIMPL [253],
but they are moving that direction. For example, miniZinc recently added
SIMPL’s capability to implement logic-based Benders decomposition [78].
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A second active research area, discussed in Section 9, is the introduction
of decision diagrams into constraint solving and optimization. They link the
two technologies by providing both a relaxation and a propagation tool, not
to mention a novel framework for branching. For example, in the context of
constraint programming, decision diagrams provide a generic tool for modeling
and propagating constraints and conjunctions of constraints [134,32,197–199].
In the context of integer programming, recent examples include the use of deci-
sion diagrams for generating cutting planes [236] and for representing nonlinear
objective functions [31]. Lastly, due to the close connection between decision
diagrams and dynamic programming, they also offer alternative methods for
solving dynamic programming problems, such as a branch-and-bound search
that uses bounds from relaxed decision diagrams.

A third area is the employment of Lagrangian relaxation in CP methods,
as described in Section 4. Lagrangian methods have long been a staple of OR
and can be very useful in CP as well, primarily to strengthen propagation.
They can also improve bounds obtained from relaxed decision diagrams [36].
CP-based Lagrangian methods have already seen numerous applications and
hold out significant potential for further contributions to CP technology.

Looking to the future, at least three areas of CP/OR collaboration may
lie on the horizon. One is the development of a highly-engineered solver that
is analogous to CP and MILP solvers but fully integrates the two technologies
along the lines described in Section 3. Such a solver would be linked to a
modeling system that conveys problem structure to the solver through the use
of high-level or global constraints.

A second possible area of collaboration is explanation, which is conceptu-
ally related to duality in optimization. The dual solution of an optimization
problem can be viewed as an explanation of why the solution obtained is
optimal, or why there is no feasible solution. Explanation is important not
only for the sake of interpreting the solution for users, but also for sensitivity
analysis and the identification of Benders cuts. Explanation has received some
attention in CP [54,158–160], while duality has been studied in OR for decades.
Ideally, these two bodies of thought would join forces, at both a theoretical
and practical level, to provide more comprehensive postoptimality analysis.

Another avenue for interaction at the theoretical level is the relationship
between consistency and relaxation. Interestingly, a concept of consistency, as
understood in CP, never developed in the OR literature. Yet both consistency
and relaxation influence the amount of backtracking necessary to solve a
problem. What has not been adequately studied is the theoretical relation-
ship between them: the extent to which techniques designed to strengthen
relaxations, such as cutting planes, also achieve some degree of consistency in a
constraint set, and the extent to which consistency maintenance can strengthen
a relaxation.

The separate evolution of CP and OR was advantageous for a time, as
it allowed the two fields to develop complementary approaches to problem
solving. We have reached a point, however, where there is much to be gained—
and much has already been gained—by recognizing their underlying unity and



16 J. N. Hooker and W.-J. van Hoeve

combining their insights. Perhaps the future will see CP and optimization
taught and practiced as a single field.
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