Scheduling Black-box Mutational Fuzzing
ACM CCS 2013

Maverick Woo
Carnegie Mellon University
pooh@cmu. edu

Our Crew

—
—
—
—
C—
—
o

o

P
" -
L1 } -
=
/_.

Maverick Woo Sang Kil Cha Samantha Gottlieb David Brumley

The Story

1 Introduction

A General (or professor) walks into & cramped cubicle, telling
the lone security analyst (or graduate student) that she has
one week 1O find a zero-day exploit against 2 certain popular
0S distribution; o]l the while making it sound as «f this task
is as easy a5 catching the next bus- Although our analyst
has access tO geveral programt analysis tools for finding bugs
8, 10, 11, 21] and generating exploits |4; 9], she still faces &
harsh reality: the target 0S distribution contains thousands
of programs, each with potentlally tens or evell hundreds
of yet undiscovered bugs- What tools should she use€ for
this mission”? Which programs should she analyze, and 1N
what order? How much time should she dedicate to & given
program? Above all, now can she maximize Der 1ikelihood of
hin the given time budget?

success wit

Typical Exploit Generation

Bug Finding

. Bug Triage .

crashes

bugs

Exploit
Generation

Sc ..
heduling is Equally Important

1 lntroduction
fessor)

walks into 2 cramped cubicle, telling

A General (or pro
analyst (OT graduate student) that she has

the lone security
find a zero-day exploit against 2 certain popular
' ing it sound as «f this task

. Although our analyst
for finding bugs

everal program an
its 4, 91 she still faces 2

and generating exp
] ion contains thousands
en hundreds

she use for
ze, and in

am? Above all, how

progr
hin the given

success wit
Allocation

Scheduling Black-box Mutational Fuzzing

Scheduling Black-box Mutational Fuzzing

Termi-
Test nation

Fuzzer Input > Program< %

A common program testing technique popularized by
Miller et al. in late 1980s [18]

* Use a fuzzer to generate test inputs to program-under-test

» Atits simplest, look for crashes—memory corruption,
uncaught exceptions, failed assertions, etc.

Scheduling Black-box Mutational Fuzzing

Seed
Input

PRNG(j)

A4utated

Input

Ternu
natlon

= o

A black-box fuzzer observes a program'’s 1/0 behavior only
 cf. Whitebox Fuzzing by Godefroid et al. 2012 [11]
* Simplification: only distinguish termination vs. crash

Detect anomaly by mutating a valid input (= seed)

Scheduling Black-box Mutational Fuzzing

Seed
Input

PRNG(j)

\/>{ Fuzzer

Mutated

Input

Program

Termi-
< nation

HE

A black-box fuzzer observes a program’s I/0 behavior only
 cf. Whitebox Fuzzing by Godefroid et al. 2012 [11]

» Simplification: only distinguish termination vs. crash

Given a seed input s and a mutation ratio r:

1. Selectd =r x |s]| bits in s uniformly at random
2. Flip each selected bit with probability 1

Scheduling Black-box Mutational Fuzzing

Input nation
_/->{ Fugger | Mutated | <

Input Program
PRNG(j)

Key Observations:

1. We can reproduce a program crash by storing
(a) the seed input and (b) the PRNG seed

2. Mutation = uniform sampling from the Hamming cube of
radius d centered at s

10

Scheduling Black-box Mutational Fuzzing

Seed

\I% Mutated
Input

PRNG(j)

Term1
natlon

1. We can reproduce a program

(a) the seed input and (b) the PR iAW 1Ty) &
2. Mutation = uniform sampling BRGS0
radius d centered at s (ii) seed inputs

Key Observations:

(iii) mutation ratio r

11

Scheduling Black-box Mutational Fuzzing

Seed

\I% Mutated
Input

PRNG(j)

Term1
natlon

1. We can reproduce a program

(a) the seed input and (b) the PR iAW 1Ty) &
2. Mutation = uniform sampling BRGS0
radius d centered at s (ii) seed inputs

(iii) 0.04%

Key Observations:

12

Scheduling Black-box Mutational Fuzzing

Seed

\I% Mutated
Input

PRNG(j)

Term1
natlon

1. We can reproduce a program

(a) the seed input and (b) the PR iAW 1i 41191 00) &
2. Mutation = uniform sampling =

Key Observations:

radius d centered at s “(program, seed) pair”

in this talk

13

Scheduling Black-box Mutational Fuzzing

A fuzz campaign comprises a sequence of epochs:
1. takes a list of (program, seed) pairs as input

2. at the beginning of each epoch, picks one (program, seed)
pair to fuzz based on data collected from previous epochs

We investigate two epoch types:

* Fixed-run: fixed number of fuzz runs in each epoch
— implemented in CMU CERT BFF v2.6 [14]

* Fixed-time: fixed amount of time in each epoch
— proposed in this paper
— slightly harder to implement

14

Problem Statement

Given a list of K fuzz configurations {(p,, s;), ", (Pw Sk)}, the
Fuzz Configuration Scheduling (FCS) problem seeks to
maximize the number of unique bugs discovered in a fuzz
campaign that runs for a duration of length T.

Important Assumptions:

1. Only one configuration can be fuzzed within an epoch
2. Separate program analysis of (p, s,) is not allowed

3. Bugs from different (p, s;) are disjoint

See paper for

discussions

15

How to Solve the FCS Problem?

Two competing goals during a fuzz campaign:

Explore each (p, s;) Exploit knowledge of
sufficiently often so (p, s;) that are likely
as to identify pairs to yield new bugs
that can yield new bugs by fuzzing them more
Good News:

* Clearly a Multi-Armed Bandit (MAB) problem!

16

Multi-Armed Bandits

17

MAB in Berlin

18

How to Solve the FCS Problem?

Two competing goals during a fuzz campaign:

Explore each (p, s;) Exploit knowledge of
sufficiently often so (p, s;) that are likely
as to identify pairs to yield new bugs
that can yield new bugs by fuzzing them more
Good News:

* Clearly a Multi-Armed Bandit (MAB) problem!
* Lots of published MAB algorithms

— provably optimal algorithms for many settings, e.g.,
Auer et al. 2002 [2] handles certain adversarial cases

19

How to Solve the FCS Problem?

Bad News: recognizing “FCS € MAB” is not enough

Given a list of K fuzz configurations {(p,, s;), ", (px Sx)}, the
Fuzz Configuration Scheduling (FCS) problem seeks to
maximize the number of unique bugs discovered in a fuzz
campaign that runs for a duration of length T.

1. Classic MAB: once you identify a good beer, it stays good
=> drink it often to accumulate rewards ©

2. Our Setting: each program has a finite number of bugs
=> bug exhaustion gives a diminish of return ®

We are not aware of MAB algorithms that cater to our case...
= We need our own algorithms!

20

How to Solve the FCS Problem?

Bad News: recognizing “FCS € MAB” is not enough

Given a list of K fuzz configurations {(p,, s;), ", (px Sx)}, the
Fuzz Configuration Scheduling (FCS) problem seeks to
maximize the number of unique bugs discovered in a fuzz
campaign that runs for a duration of length T.

1. Classic MAB: once you identify a good beer, it stg

= bug exhaustion gives a dimig

We are not aware of MAB algorith
= We need our own algorithms!

21

Scheduling Black-box Mutational Fuzzing

Seed

Input
‘/>{ Fuzzer %Z;a;:d -

PRNG(j)

Key Observations:

Program

Termi-
< nation

e

1. We can reproduce a program crash by storing
(a) the seed input and (b) the PRNG seed

radius d centered at s

2. Mutation = uniform sampling from the Hamming cube of

22

Modeling Black-box Mutational Fuzzing

Input nation
_/->{ Fugger | Mutated | <

Input Program
PRNG(j)

Consider the repeated fuzzings of a fixed (p,, s;) and let
outcome,(j) denote the j-th outcome in the sequence:

* Termination = 1D 0
* Crash = bug ID obtained from bug triage

Key Observation:
BMF is memoryless, i.e., outcome,(j) are L.L.d. RVs for a fixed i

23

Coupon Collector’s Problem (CCP)

Suppose every box of breakfast cereal comes with a coupon
that is randomly chosen among M different coupon types

 How many boxes do you expect to buy before you have
collected at least one coupon of each type?

Traditional Setting
* Coupon types are uniformly distributed = (M log M)

Our Setting

* Bugs do not occur uniformly at random = Weighted CCP
* Prevalence of different bugs is unknown ahead of time

24

Coupon Collector’s Problem (CCP)

Suppose every box of breakfast cereal comes with a coupon
that is randomly chosen among M different coupon types

 How many boxes do you expect to buy before you have
collected at least one coupon of each type?

Traditional Setting
* Coupon types are uniformly distributed = (M log M)

Our Setting
* Bugs do not occur uniformly at random =S\ SRR by
* Prevalence of different bugs is unknown BN WAENNEY

25

WCCP w/ Unknown is Intractable

No Free Lunch Theorem
(you did pay the registration, right?)

- VS.

26

WCCP w/ Unknown is Intractable

No Free Lunch Theorem
Wolpert and Macready 2005 on [22] -= VS

* “Any two optimization --
algorithms are equivalent when their performance
is averaged across all possible problems”

27

“Bring Your Own Prior”

No Free Lunch Theorem
Wolpert and Macready 2005 on [22] -- . VS

* “Any two optimization . 1
algorithms are equivalent when their performance

is averaged across|all possible problems”

Circumvention may be possible!

* NFL Theorem does not apply if we
focus on distributions that are more
likely to occur in practice

* More accurate model = More
accurate predictions = More bugs

28

Rule of Three

Q: Suppose we have flipped a biased H-T coin n times and
every time it comes up H. Does Pr|T] have to be small?

A: No, solongas Pr|T] < 1, our observation is always possible

Confidence Intervals: See discussion

Pr[T] < 3/nin 95% of all “parallel universes” [REEIAZIS(0
1997 [15]

Usage:
1. Suppose (p, s;) has yielded n different outcomes so far
2. Collectively call all n outcome types H

3. With 95% confidence, Pr|[T (i.e., new outcome)] < 3/n

29

Algorithm Design Space

We explore 3 dimensions in algorithm design and present:
* 2 Epoch Types

— fixed-run

— fixed-time 2*(3+2*5)=
« 5 MAB Algorithms 26 Scheduling

— Round-Robin Algorithms

— Uniform-Random
— EXP3.S.1 from Auer et al. 2002 [2]
— Weighted-Random

— e-Greedy w.r.t. belief metrics
e 5 Belief Metrics

30

Belief Metrics

The belief over (p,, s;) is a heuristic to estimate the likelihood
of yielding a new outcome in the next fuzz run of this pair

* Weighted-Random & ¢-Greedy both bias towards pairs with
higher belief

3
@ RPM = 3/4runs =—> @ DENSITY = #bugs /4,1

#runs #runs Qee&
—_ S
% time spent ® RGR = #bllgS % time spent <
\ 4 \ 4
®EWT=3/times é@RATE=#bugS/
pent time spent
5 #bggs

\) \)
| |

No Prior With “Bug Prior”

31

The Evaluation Challenge

1. Find large & representative data sets

If an algorithm performs well on such data sets, then we gain
confidence that it is superior for current practice

2. How good is an algorithm, really?

[s an algorithm that finds 200 bugs in 10 days good or bad?
= Need to know max #bugs that can be found in 10 days,
but this is circular! We are trying to solve this problem!

3. How to try many algorithms affordably?
Yes, we tried way more than 26 combinations... ©

32

How To Pull Th

http://s3.amazonaws.com/rapgenius/filepicker%2FgkTHRLQsyzS3MggKloYA_money.jpg

33

How To Pull This Off

Step 1. Select two representative datasets:

Intra-Program: 100 randomly-sampled seeds for FFMPEG
Inter-Program: 100 file converters in Debian w/ valid seeds

Step 2. Fuzz each of the 200 pairs on EC2 for 10 days—

48,000 CPU hours (~5.5 CPU years) later:

Dataset #runs #crashes #bugs

Intra-program 636,998,978 906,577 200

Inter-program | 4,868,416,447 415,699 223
Table 1: Statistics from fuzzing the two datasets.

Step 3. Build the FuzzSiM replay system to simulate any
scheduling algorithm with no additional fuzzings

34

FuzzSim Overview

I 1
I [}
I 1
1 cheduling
—-—-"".I*_""'""_ ! M ! Algorithms
ime 1 1
Budget (7) : :
1 : Y
5 v ' /g [/
o : : | Scheduler |
Seed ||[P| Fuzzer —>| Bug Triage [————> ™ Simu | —>
1 1
]
Fuzzing Triage Simulation

Figure 1: FuzzSiMm architecture.

 Example log entry:
(p=FFMPEQG, s=a.avi, timestamp=100, run=42, PRNG=17)
e Can simulate any schedule using log files

— Including Offline Optimal (= dynamic prog. for BOUNDED KNAPSACK)

#bugs found for each belief

Dataset Epoch MAB algorithm RPM EWT Density Rate RGR
e-Greedy 72 7 87 88 32
Fixed-Run Weighted-Random 72 84 84 93 85
Uniform-Random 72
EXP3.S.1 58
Intra-Program Round-Robin 74
e-Greedy 51 94 51 109 58
Fixed-Time Weighted-Random 67 94 58 100 108
Uniform-Random 94
EXP3.S.1 95
Round-Robin 94
e-Greedy 90 119 89 89 41
Weighted-Random 90 131 92 135 94
Fixed-Run Uniform-Random 89
EXP3.S.1 72
Inter-Program Round-Robin 90
e-Greedy 126 158 111 164 117
Fixed-Time Weighted-Random | 152 157 100 167 165
Uniform-Random 158
EXP3.S.1 161
Round-Robin 158

Table 2: Comparison between scheduling algorithms.

36

Dataset Epoch MAB algorithm RPl\:éIé bu}g\?vaoungeig;yeacfl{la:)eelliGR
e-Greedy 72 7 87 88 32
Fixed-Run Weighted-Random 72 84 84 93 85
Uniform-Random 72
EXP3.S.1
Intra-Program Round-Robin
—Creed 109 58
Fixed-Ti . 100 108
Recommendation 1:
Use Weighted :
) S 89 41
Random w/ Rate 135 94
Fixed-Ru
Inter-Program Round-Robin
e-Greedy 126 158 111 164 117
Fixed-Time Weighted-Random | 152 157 100 67 165
Uniform-Random 158
EXP3.S.1 161
Round-Robin 158

Table 2: Comparison between scheduling algorithms.

37

#bugs found for each belief

Dataset Epoch MAB algorithm RPM EWT Density Rate RGR
e-Greedy 72 7 87 88 32
Fixed-Run Weighted-Random 72 84 84 93 85
Uniform-Random 72
EXP3.S.1 58
Intra-Program Round-Robin 74
_Creec Q/ 51 109 58
Fixed-Ti . gi 100 108
Recommendation 2: o5
Use Fixed-Time)4
:) 89 89 41
Campaigns 92 135 94
Fixed-Ru 89
IXP3.5. 72
Inter-Program Round-Robin 90
e-Greedy 126 158 111 164 117
Weighted-Random | 152 157 100 167 165

Fixed-Time Uniform-Random

EXP3.S.1
Round-Robin

158
161
158

Table 2: Comparison between scheduling algorithms.

38

Comparison with CERT BFF v2.6

CERT BFF is the state-of-the-art fuzzing framework
— Supports fuzzing one program w/ multiple seeds
— Varies mutation ratio online
— Fixed-run epochs
— Weighted-Random MAB algorithm
— use Density (#bugs /4ryns) as belief

Fixed-time Weighted-Random Rate finds

on average 1.5x more bugs in our datasets
(at a fixed mutation ratio)

39

#bugs

Intra: FFMPEG Dataset

Offline
100 - H’T
J%ensity
e RPM
50 -
0_
I I I I I I I I
3 4 5 6 7 8 9 10

days
Inter: File Converters Dataset
Offline
200
t
150 - e Egﬁ
% Density
£ 100 -
50
0 -
1 1 1 1 1 1 1I0

40

Future Work

Vary mutation ratio
e m mutation ratios = m-fold cost increase

Online bug triage
* triage time is currently being discounted

Other program testing techniques

* black-box generational (grammar-based) fuzzing?
* concolic execution?

41

Start

Summary

Not Enough!

42

Summary

Start

Not Enough!

43

Start

Summary

44

MAB

Start

WCCP

Not Enough!

Summary

NFL

%2/ Rule of Three

45

MAB

Start

WCCP

Not Enough!

Summary

kg Algorithm

NFL

Design

Rule of Three

46

MAB

Start

WCCP

Not Enough!

Open 5%
Summary science S&

Algorithm
Design

Rule of Three

NFL

47

http://security.ece.cmu.edu/fuzzsim/

FuzzSim!'l: Black-box Fuzzing Simulator

Black-box mutational fuzzing is an effective, albeit simple, way to find bugs in software.
FuzzSim is a black-box fuzzing scheduling simulator that can test various seed selection
algorithms. The main purpose of this tool is to ask the following question: given a set of
programs and seeds, what is the best way to schedule fuzzing of the programs on the seeds to
maximize the number of unique bugs found within a fixed amount of time?

Installation

FuzzSim Download Page

Download FuzzSin

R 17
=

Download files from the below:

fuzzsim.0.1.tgz (MD5: 0420abf52d6d74014fac8607fedc99ea)
fuzzdata-intra.tgz (MD5: 3dd151054c01e14d39e25edale48dd35)
After downloading fuzzdata-inter.tgz (MD5: Oa3ec7c2b1550812a87d517cbf2e82c2)

S tar xvfz fuzzs
$ ecd fuzzsim-0.1]

$./configure
$ make

Quick Start

To see the usage, type:

48

