
ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions

Jiyong Jang, Maverick Woo, and David Brumley
{jiyongj, pooh, dbrumley}@cmu.edu

1 Unpatched Code Clones
Programmers should never fix the same bug twice. Unfortunately, buggy code often gets copied from project to project and each
project fixes the bug independently, which means resources are wasted to diagnose the same bug repeatedly. We call clones
of buggy code that has been fixed in only a subset of projects unpatched code clones. Unpatched code clones are latent bugs
which are likely to be vulnerable and can cause a serious vulnerability window—the time frame between when a vulnerability
is disclosed and when a project containing the vulnerable code clone is fixed.

For example, the patch presented in Listing 1 was issued in July 2009 to fix a heap overflow bug in libvorbis. The patched
vulnerability can cause a program crash or arbitrary code execution via a maliciously-crafted OGG file [3]. Unfortunately, we
found 93 unpatched code clones of this bug in our November 2011 dataset. Projects including mplayer and libtritonus-java
in Debian, and mednafen and libvorbisidec in Ubuntu, and ffdshow and guliverkli in SourceForge all had the same vulnerable
unpatched code. In this case, a total of 93 packages were exposed to this known vulnerability for over 800 days past the initial
patch date.

--- a/lib/res0.c
+++ b/lib/res0.c
@@ -208,10 +208,18 @@

info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);

+ /* check for premature EOP */
+ if(info->groupbook<0)goto errout;
+

for(j=0;j<info->partitions;j++){
int cascade=oggpack_read(opb,3);

- if(oggpack_read(opb,1))
- cascade|=(oggpack_read(opb,5)<<3);
+ int cflag=oggpack_read(opb,1);
+ if(cflag<0) goto errout;
+ if(cflag){
+ int c=oggpack_read(opb,5);
+ if(c<0) goto errout;
+ cascade|=(c<<3);
+ }

info->secondstages[j]=cascade;

acc+=icount(cascade);

Listing 1: Patch in libvorbis for CVE-2009-3379

To study how widespread the problem of unpatched code clone truly is and to provide a tool that can help developers fight
against it, we developed ReDeBug [5], a system to quickly find unpatched code clones in code bases at the scale of entire
OS distributions. Using ReDeBug, we examined over 2.1 billion lines of code from all packages in Debian Lenny/Squeeze,
Ubuntu Maverick/Oneiric, all C and C++ projects in SourceForge, and also the Linux kernel. ReDeBug identified 15,546
unpatched copies of known vulnerable code from 376 Debian/Ubuntu security-related patches. ReDeBug uses syntax-based
pattern matching, which allows it to (i) scale to entire OS distributions, (ii) support many different languages, and (iii) guarantee
zero false detections.

• Scalability: To give a sense of the scale necessary to find all unpatched code clones, observe that Debian Squeeze alone
contains 16 GB of non-empty and non-comment code, spanning over 348 million lines. Using ReDeBug on a machine
with a 3.40 GHz i7 CPU and SSD, we were able to scan the 2.1 billion lines of code in our entire dataset against 1,634
buggy code patterns in under 3 hours. With the ability to rapidly search for unpatched code clones, ReDeBug can
be used to improve the security of code bases in day-to-day development by promptly checking for copies of known
vulnerabilities automatically.

1

• Support for many different languages: OS distributions include programs written in a variety of languages. For example,
Debian Squeeze consists of 288 million lines of C/C++, 24 million lines of JAVA, 14 million lines of Python, 12 million
lines of Perl, 5 million lines of PHP, and so on. To handle such a large variety of languages, ReDeBug uses a simple, fast,
and language-agnostic syntax pattern matching approach to find unpatched code clones. We realize that there are more
advanced matching algorithms that are applicable when the code is correctly parsed, and that such algorithms will likely
find even more unpatched code clones. The challenge is, however, in the building of robust parsers for each language,
which has proven difficult even for professional software assurance companies [1]. While we encourage future developers
to add parsing support to ReDeBug, for now ReDeBug opts for simpler robust algorithm that works across a wide variety
of languages.

• Zero false detection rate: There are two types of false reports any clone detection algorithms can make. The first type
is a syntactic “false detection”. This happens when an algorithm says an unpatched code clone is present when it is not.
ReDeBug eliminates false detections by performing a slower but exact match after all potential matches have been rapidly
identified. In contrast, advanced heuristic matching algorithms used to find more code clones can suffer a higher false
detection rate. It is important to report only true matches to developers; otherwise, they would end up wasting resources
to examine the false reports. The second type is a semantic “false positive”. This happens when an algorithm detects an
unpatched code clone, but the clone is used in a non-vulnerable way such as when checks have been inserted in earlier
locations. Though ReDeBug inevitably can have false positives just like any other syntax-based method, we argue that
false positives still present problems because the code can be used in a vulnerable way due to a change in the future.

2 ReDeBug
ReDeBug is available for download as an open source tool on our website http://security.ece.cmu.edu/redebug/.
ReDeBug is written in Python to make the tool (i) easy to use without the need to compile first, (ii) useful on multiple plat-
forms, and (iii) simple to extend with language-specific optimizations. The website also offers an online unpatched code clone
detection service where developers can submit their code to test if it contains known vulnerabilities stored in our database. If
a match is found, a report showing both the original buggy code and unpatched code clones found in the submitted code is
presented.

$ redebug.py -h
usage: redebug.py [-h] [-n NUM] [-c NUM] [-v] patch_path source_path

positional arguments:
patch_path path to patch files (in unified diff format)
source_path path to source files

optional arguments:
-h, --help show this help message and exit
-n NUM, --ngram NUM use n-gram of NUM lines (default: 4)
-c NUM, --context NUM print NUM lines of context (default: 10)
-v, --verbose enable verbose mode (default: False)

Listing 2: Help message of ReDeBug
A full technical description of ReDeBug has been presented in [5]. Here we concentrate on how to use ReDeBug to find

unpatched code clones in practice. As shown in Listing 2, ReDeBug takes two positional arguments: 〈patch path〉 and
〈source path〉. The first refers to the top-level patch directory from which we extract original buggy code snippets, and the
second points to the top-level directory of the source tree to be checked. As optional arguments, -n defines how many lines
of code are to be considered as a unit of code to compare, -c sets how many surrounding lines of code are to be reported as
context, and -v enables verbose output.

ReDeBug consists of three major components: (i) PatchLoader, which extracts original buggy code snippets from patch
files, (ii) SourceLoader, which matches source files against known buggy code, and (iii) Reporter, which generates
a report after performing exact-matching test. We explain each component of ReDeBug with an example of identifying the
unpatched code clone for the CVE-2009-3379 vulnerability in the Debian mplayer package.

PatchLoader: ReDeBug takes patch files in the UNIX unified diff format, which is popular among open source developers.
Listing 1 shows a patch for the CVE-2009-3379 vulnerability in libvorbis in the unified diff format. A unified diff patch
consists of a sequence of diff hunks where each hunk includes the filename of a modified file, deleted source code lines that
are prefixed by a “-”, and inserted source code lines that are prefixed by a “+”. Modifications are represented as deletions of
old source code lines followed by insertions of new source code lines.

1. Consider a set of patches Pi. ReDeBug extracts original code snippets P ′
i from Pi by excluding the lines prefixed by

a “+” symbol. This is because the inserted lines are not present in original buggy code. The surrounding context lines

2

http://security.ece.cmu.edu/redebug/

are included to conservatively identify unpatched code clones. ReDeBug requires only the patches but not the pre-patch
source code. This allows ReDeBug to save significant space because we do not have to keep the original source code.

2. ReDeBug normalizes the extracted original buggy code P ′
i to P̄i by removing whitespaces except new lines and con-

verting all characters into lower-case. We keep new lines since patches in the unified diff format operate at the line
level. ReDeBug also identifies file types using the libmagic library, and performs language-specific normalization to
increase the probability of identifying unpatched code clones. For example, for C, C++, and JAVA, we remove single
line comments (//), multi-line comments (/* */), and curly brackets ({}). The code in Listing 3 shows the normalized
buggy code extracted from the code in Listing 1. Regular expressions for such language-specific optimization are defined
in common.py, which can be easily extended to add more optimizations and support other languages.

info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);
for(j=0;j<info->partitions;j++)
intcascade=oggpack_read(opb,3);
if(oggpack_read(opb,1))
cascade|=(oggpack_read(opb,5)<<3);
info->secondstages[j]=cascade;
acc+=icount(cascade);

Listing 3: Normalized buggy code

3. ReDeBug slides a window of n-lines over the normalized code P̄i. For example, we have 5 windows from the code in
Listing 3 when n = 4: lines 1–4, 2–5, 3–6, 4–7, and 5–8. For each window w, we apply a list of hash functions H to
build a list of hash values hi = {h(w)|w ∈ P̄i, h ∈ H}. At present, ReDeBug utilizes 3 hash functions: FNV-1a hash1,
djb2 hash, and sdbm hash2 (refer to common.py). The default context in a diff file is 3 lines of code. Therefore, we
can guarantee each window has at least 1 changed line by setting n ≥ 4 (the default n is 4).

SourceLoader: ReDeBug builds a Bloom filter [2] for each source file to check the presence of known vulnerabilities. For
example, ReDeBug checks for the CVE-2009-3379 vulnerability in the code in Listing 4 as follows:

info->begin=oggpack_read(opb,24);
info->end=oggpack_read(opb,24);
info->grouping=oggpack_read(opb,24)+1;
info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);

for(j=0;j<info->partitions;j++){
int cascade=oggpack_read(opb,3);
if(oggpack_read(opb,1))

cascade|=(oggpack_read(opb,5)<<3);
info->secondstages[j]=cascade;

acc+=icount(cascade);
}

Listing 4: Source code snippet from mplayer package

info->begin=oggpack_read(opb,24);
info->end=oggpack_read(opb,24);
info->grouping=oggpack_read(opb,24)+1;
info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);
for(j=0;j<info->partitions;j++)
intcascade=oggpack_read(opb,3);
if(oggpack_read(opb,1))
cascade|=(oggpack_read(opb,5)<<3);
info->secondstages[j]=cascade;
acc+=icount(cascade);

Listing 5: Normalized source code snippet

1. ReDeBug normalizes source file Fj to F̄j in a similar way by removing whitespaces except new lines and converting all
characters into lower-case. Then, language-specific optimizations such as comment removal are applied according to the
identified file type. For example, the code in Listing 4 is normalized into the code in Listing 5.

2. ReDeBug slides a window of n-lines over the normalized source code F̄j . We hash each window w using the same list
of hash functions H . Specifically, for each h ∈ H , we set the h(w)-th bit of the Bloom filter BFj to 1. Each source file
is now represented by its corresponding Bloom filter.

3. ReDeBug tests if a normalized source file F̄j includes normalized buggy code P̄i by checking if every bit in the locations
specified by hi is set to 1 in BFj . For example, for all the hash values hi generated from the code in Listing 3, we check
if the corresponding bits are set to 1. If at least one of the bits is 0, that means the corresponding window of P̄i is not
present in F̄j . ReDeBug only records the pair (P̄i, F̄j) as a potential match if F̄j contains the entire P̄i.

Reporter: For every pair (P̄i, F̄j) recorded, ReDeBug verifies if P̄i really occurs in F̄j . A Bloom filter may cause false
detection due to hash collisions. This is why ReDeBug performs exact match to eliminate any possible false detection due to
the use of Bloom filters. For example, the code in Listing 5 indeed contains the buggy code in Listing 3. Finally, ReDeBug
reports the Debian mplayer package contains an unpatched code clone of CVE-2009-3379. The report also presents a pair of the
patch in Listing 1 and the matched source code in Listing 4, which helps developers to easily inspect the identified unpatched
code clone.

1http://isthe.com/chongo/tech/comp/fnv/
2http://www.cse.yorku.ca/∼oz/hash.html

3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Debian
Lenny

Ubuntu
Maverick

Linux
Kernel

2.6.37.4

Source
Forge

Debian
Squeeze

Ubuntu
Oneiric

T
h
e

n
u
m

b
er

 o
f

u
n
p
at

ch
ed

 c
o
d
e

cl
o
n
es

δ1
δ2

1,141
697

3

8,711

1,048 943

341 361
0

1,537

484
280

Figure 1: Unpatched code clones in Σ1 and Σ2

 0

 1000

 2000

 3000

 4000

 5000

 6000

2001 2006 2007 2008 2009 2010 2011

T
h
e

n
u
m

b
er

 o
f

u
n
p
at

ch
ed

 c
o
d
e

cl
o
n
es

21

1,928

429

1,046

5,379

3,740

3,003

Figure 2: Unpatched code clones from patches in different years

3 Security-Related Bugs
Using ReDeBug, we analyzed over 2.1 billion lines of source code from several OS distributions to comprehend the current
trends of unpatched code clones. Table 1 shows the detailed breakup of our collected source code dataset. The Early 2011
dataset (Σ1) consists of all source packages from Debian 5.0 Lenny, Ubuntu 10.10 Maverick, Linux Kernel 2.6.37.4, and all
C/C++ projects in SourceForge. The Late 2011 dataset (Σ2) contains all source packages from Debian 6.0 Squeeze and Ubuntu
11.10 Oneiric. For the SourceForge packages, we used version control systems such as Subversion, CVS, and Git to obtain up-
to-date packages; then we excluded non-active code branches such as branches and tags directories. For source packages
in Debian and Ubuntu, we applied existing patches, e.g., debian/patches/, because those patches can be included during
a build. As a result, the source packages we checked were patched with all available and included patches on the download
date.

Distributions Lines of Code Date
Collected

Early
2011
(Σ1)

Debian Lenny 257,796,235 Jan 2011

Ubuntu Maverick 245,237,215 Mar 2011

Linux Kernel 2.6.37.4 8,968,871 Mar 2011

SourceForge (C/C++) 922,424,743 Mar 2011
Late
2011
(Σ2)

Debian Squeeze 348,754,939 Nov 2011

Ubuntu Oneiric 397,399,865 Nov 2011

Total 2,180,581,868 -

Table 1: Source code dataset

Dataset # files # diffs Date
Released

Pre-2011 Patches (δ1) 274 1,079 2001–2010

2011 Patches (δ2) 102 555 2011

Total 376 1,634 -

Table 2: Security-related patch dataset

In order to find security-critical bugs, we collected security-related patches from Debian/Ubuntu security advisories that
included the information about the corresponding packages and patches/diffs. We downloaded 376 security-related patches
whose file names had recognizable CVE numbers, and gathered 1,634 diffs from these CVEs. As described in Table 2,
pre-2011 patches (δ1) were available at the time of collecting Σ1, and 2011 patches (δ2) were released between the download
dates of Σ1 and Σ2.

In total, ReDeBug found 15,546 unpatched code clones in the two datasets Σ1 and Σ2. Figure 1 shows the detailed breakup
of unpatched code clones identified in Σ1 and Σ2 when querying for δ1 and δ2. We considered three scenarios to understand
the current situation of unpatched code clones.

• {δ1 & δ2}→Σ1: The unpatched code clones found in Σ1 using δ1 and δ2 approximate how many (potentially) vulnerable
packages an adversary may be able to spot when a patch becomes available. 10,248 unpatched code clones were detected
in the SourceForge dataset. The old stable, but still supported on the download date, Debian Lenny and Ubuntu Maverick
also had 1,482 and 1,058 unpatched code clones respectively. When security-related bugs are fixed in the original
packages, it is important to detect such serious vulnerabilities early before an adversary identifies them.

• {δ1 & δ2} → Σ2: The unpatched code clones identified in Σ2 using δ1 and δ2 roughly indicate how new versions of an
OS respond to previously known security vulnerabilities. Debian Squeeze and Ubuntu Oneiric included 1,532 and 1,223
such unpatched code clones respectively. We reported the 1,532 unpatched code clones identified in Debian Squeeze

4

packages to the Debian security team and package developers. So far, 145 real bugs have been confirmed by developers
either by private emails or by issuing a patch. This showcases the real world impact of ReDeBug. For some examples of
the identified unpatched code clones, please refer to our paper [5] and our website http://security.ece.cmu.
edu/redebug/.

• δ1 → Σ1 vs. δ1 → Σ2: We investigated how many unpatched code clones persisted from the previous version of an OS
to the latest version of an OS. In our evaluation, we compared the 1,838 unpatched code clones from δ1 in Σ1 and the
1,991 unpatched code clones from also δ1 in Σ2. Among these 3,829 clones, 1,379 persisted. Figure 2 shows the number
of unpatched code clones identified from patches released in different years. Note that 21 of the unpatched code clones
are security vulnerabilities that were patched over a decade ago (in 2001). This indicates that unpatched code clones are
long-lived in modern OS distributions.

In some cases, unpatched code clones may be found in dead code, e.g., vulnerable code that is present but not included at
build time or vulnerable code that is included but never gets executed due to logical conditions. The former usually happens
when external library code is embedded in a source package, but the package is written to prefer the available system library to
the embedded library. Dead code, however, may still be a latent vulnerability in that the accompanied vulnerable library code
can be used depending on the availability of the system library during compilation on the user’s machine. For C, specifically,
we compile code with an assert statement inserted into the identified buggy code region and look for its corresponding assembly
in the binary file to weed out such cases.

else
*d++ = *src;

- ++src;
- --len;
+ if (len > 0) {
+ ++src, --len;
+ }

}

*d = ’\0’;
return dest;

(a) Patch for CVE-2009-4016

- while (*src && (len > 0)) {
+ while (*src && (len > 1)) {

if(*src & 0x80) {

*d++ = ’.’;
--len;

+ if(len <= 1)
+ break;

...
else

*d++ = *src;
++src;
--len;

}

*d = ’\0’;
return dest;

(b) Another patch for CVE-2009-4016

Figure 3: Different fix for CVE-2009-4016

ReDeBug may have false positives when unpatched code clone is present but not vulnerable. For example, from the patch
for CVE-2009-4016 shown in Figure 3a, an unpatched code clone was detected in ircd-ratbox package. The package
maintainer informed us that the integer underflow vulnerability was fixed in a different location as shown in Figure 3b which
shows two new checks to guard against the vulnerable code. As a result, this unpatched code clone is used in a way that makes
it unexploitable. ReDeBug and all other syntax-based approaches share the same problem.

Code Duplication: In order to understand the current situation of code clones, we performed a large scale experiment to
measure the overall amount of copied code in OS distributions. We measured this at two different granularities: the function
level and the token (n-lines of source code) level.

First, for all C/C++ source files in the Debian Lenny code base, we roughly identified functions using the following Perl reg-
ular expression:

/ˆ \w+?\s[ˆ;]*? \([ˆ;]*?\)\s*({ (?:[ˆ{}]++|(?1))*})/xgsm

We realize that an regex may not be able to recognize all functions—that would require a complete parser. However, for our
evaluation this is sufficient to provide an estimate of code duplication at the function level. We identified a total of 3,230,554
functions and measured their pairwise similarity using the Jaccard index. As shown in Figure 4, most of the function pairs had
very low similarity (below 0.1), which is natural because different packages would have dissimilar code for different function-
ality. However, surprisingly, 694,883,223 pairs of functions had more than 0.5 similarity, and 172,360,750 of them were more
than 90% similar. The result clearly shows a significant amount of code cloning and this suggests that unpatched code clones
will continue to be important and relevant in the future.

Second, we calculated the total fraction of shared tokens in each file for the SourceForge dataset. As shown in Figure 5,
about 30% of files were almost unique (0–10% shared tokens). In contrast, more than 50% of files shared more than 90% of
tokens with other files, which shows that code cloning is common within the SourceForge community as well. Note that 100%
of shared tokens in a file does not necessarily mean it is copied from another file as a whole. For example, this could also
happen when a file consists of small fractions from multiple files.

5

http://security.ece.cmu.edu/redebug/
http://security.ece.cmu.edu/redebug/

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

0.
0-

0.
1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

0.
9-

1.
0

N
u
m

b
er

 o
f

fu
n
ct

io
n
 p

ai
rs

 i
n
 D

eb
ia

n
 L

en
n
y

Similarity among functions

Figure 4: Similarity among functions

 0

 10

 20

 30

 40

 50

 60

0-
10

%

10
-2

0%

20
-3

0%

30
-4

0%

40
-5

0%

50
-6

0%

60
-7

0%

70
-8

0%

80
-9

0%

90
-1

00
%

P
er

ce
n
ta

g
e

o
f

fi
le

s
in

 t
h
e

S
o
u
rc

eF
o
rg

e
d
at

as
et

Fraction of shared tokens

Figure 5: Fraction of shared tokens

4 Related Work
Existing research has focused on finding all code clones, which is a harder problem than just identifying unpatched code clones.
Finding all code clones potentially requires comparison among all code pairs, whereas identifying unpatched code clones can
be done with a single sweep over the dataset. This line of research uses a variety of matching heuristics based upon high-level
code representations such as CFGs and parse trees. For example, CCFinder [7] generates a token sequence from a program
using a lexer and transforms the token sequence based on language-dependent rules. A suffix-tree based matching algorithm
is then used to determine similar code. CP-Miner [8] parses a program, hashes its tokens into numeric values, and then runs
the frequent subsequence mining algorithm to detect clone-related bugs. Deckard [6] and DejaVu [4] both build parse trees and
represent structural information of a parse tree as a vector, and then cluster the vectors with respect to the Euclidean distance.
An advanced heuristic matching, however, can suffer a higher false detection rate. For example, 73% of bug reports from
CP-Miner and 37% of bug reports from DejaVu were false code clones. Furthermore, implementing good parsers is a difficult
problem with which even professional software assurance companies struggle [1]. Of course, once that has been done, it will
yield a robust level of abstraction that is not available to ReDeBug today.

5 Conclusion
We presented ReDeBug—a system to efficiently detect unpatched code clones. ReDeBug is designed to handle a large code
base, e.g., an entire OS distribution written in a wealth of languages. We analyzed over 2.1 billion lines of real code and
identified 15,546 unpatched copies of known vulnerable code. This shows that the problem of unpatched code clone is persistent
and recurring. The practical impact of ReDeBug has been confirmed by the 145 real bugs that were found and fixed in Debian
Squeeze packages. It is our hope that ReDeBug can help developers to enhance the security of their code in day-to-day
development.

Acknowledgment
This research was supported in part by sub-award PO4100074797 from Lockheed Martin Corporation originating from DARPA
Contract FA9750-10-C-0170 for BAA 10-36. This research was also supported in part by the National Science Foundation
through TeraGrid resources provided by Pittsburgh Supercomputing Center. We would like to thank the anonymous referees of
our related paper [5] and Debian developers for their feedback in this work.

References
[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few

billion lines of code later: using static analysis to find bugs in the real world. Communications of the ACM, 53(2):66–75, 2010.
[2] Burton H. Bloom. Space/Time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7):422–426, 1970.
[3] National Vulnerability Database. CVE-2009-3379. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3379. Page

checked 9/11/2012.
[4] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su. Scalable and systematic detection of buggy inconsistencies in source code.

In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications, 2010.

6

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3379

[5] Jiyong Jang, Abeer Agrawal, and David Brumley. ReDeBug: finding unpatched code clones in entire os distributions. In Proceedings of the IEEE
Symposium on Security and Privacy, 2012.

[6] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and accurate tree-based detection of code clones. In
Proceedings of the international conference on Software Engineering, 2007.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilinguistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654 – 670, 2002.

[8] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: finding copy-paste and related bugs in large-scale software code. IEEE
Transactions on Software Engineering, 32:176–192, 2006.

7

	Unpatched Code Clones
	ReDeBug
	Security-Related Bugs
	Related Work
	Conclusion

