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Experimental observations have indicated that all quanta have a wave-like property
and that we can relate those wave-like properties to properties more commonly associated
with localized particles: momentum and energy. Classical waves may carry momentum and
energy, but we have to think in terms of densities rather than well defined, discrete “lumps.”
The wave-particle relations are the de Broglie relations

E = hν = ~ω (1)

p =
h

λ
= ~k, (2)

where the angular frequency ω = 2πν = 2π
T
, T being the period of oscillation of the wave,

and the analogous quantity for spatial variation is the wavenumber, k = 2π
λ

with λ being the
wavelength.

Now we are presented with a difficulty: presumably, whatever the wave represents, it
should have an appreciable amplitude in the neighborhood of the object, it should have a
negligible amplitude far from the object, and it should travel through space with the object.
That is to say, the wave is not a true periodic function because it does not repeat. How then,
do we define λ or T ? How do we construct a “wavy” mathematical object that is localized
to a region of space and time?

Below, we construct mathematical functions that travel. Then we come to the definition
of localized waves that travel and we find that in order to make a localized wave, we have
to include a range of ω’s and the corresponding range of k’s. These are found to correspond
inversely to the size of the region of space and the size of the interval in time over which the
wavy function has appreciable amplitude. This observation, together with the de Broglie
relations, leads directly to the Heisenberg Uncertainty principle.

Traveling functions. Take an arbitrary function of one variable, f(y). This can be made
into a function that travels through space by letting y = a(x− vt) so that f(x, t) = f [a(x−
vt)].

Take a simple parabola, f(y) = y2. Then, f(x, t) = [a(x− vt)]2. At t = 0, the minimum
point is at x = 0. At a later time, t1, the minimum has moved to x = vt1. In fact any point
on the function does the same thing: take a point where the value is fo: at an arbitrary
time,

a(xo − vt) = f 1/2
o (3)

xo =
f
1/2
o

a
+ vt (4)

where xo is the position at which the function equals fo. If v < 0, the function travels in the
opposite direction.

Side note: We can generalize the above to three dimensions by specifying a direction of
travel with a unit vector, n̂:

y = a(n̂ · r− vt). (5)
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This yields an argument that does not change along the direction perpendicular to n̂ since
the dot product is the projection of r onto n̂. The resulting function is constant on such
planes (at a fixed instant of time); it varies and propagates along the n̂ direction. To see
that it propagates, consider any point on a fixed plane perpendicular to n̂ – this fixes the
product n̂ · r and at time, t1, fixes the argument of the function. As t increases, we have to
move to a new plane with larger n̂ · r to find the same value of the argument and thus of the
function. The “plane of constant function” moves along n̂ at speed v.

A particularly important traveling function is the traveling harmonic wave. One reason
this is important is that with a sum of such waves, we can synthesize almost arbitrarily
general traveling functions (this goes under the heading of Fourier synthesis – more on that
later). Here, we will make the replacement a(x− vt) → kx−ωt = k(x− vpt), where vp =

ω
k
.

One example looks like
Ψ(x, t) = A cos(kx− ωt+ δ), (6)

from which we see that, at fixed t, when kx changes by 2π the function goes through one
period and, thus, k = 2π

λ
and similarly, at fixed position, when ωt increases by 2π, the

same thing happens which means that ω = 2π
T

= 2πν. The term δ in (6) is a dimensionless
constant that adjusts the “phase” of the wave – at, say, t = 0, it shifts the positions at
which the peaks (or nodes or minima) occur. (6) travels at vp =

ω
k
(note the consistency of

the units here); vp is called the phase velocity since it gives the speed of travel of a point
(any point) of constant phase. The square of this function is just another function that also
travels at vp:

Ψ2(x, t) = A2 cos2(kx− ωt+ δ) =
A2

2
[1 + cos 2(kx− ωt+ δ)] . (7)

An even more important traveling function is the complex function Ψ(x, t) = Aei(kx−ωt).
This is a traveling complex harmonic wave. It’s called harmonic because both the real and
imaginary parts are harmonic functions:

Ψ(x, t) = Aei(kx−ωt) = A [cos(kx− ωt) + i sin(kx− ωt)] . (8)

Note that if we let A be complex, we can write it in polar form as |A|eiδ in which case Ψ(x, t) =
|A|ei(kx−ωt+δ); so multiplying by a complex number changes the phase and amplitude of
the wave. The square of the amplitude of this complex wave is given by |Ψ|2 = Ψ∗Ψ =
A∗ e−i(kx−ωt) × Aei(kx−ωt) = |A|2 – just a constant, independent of x and t! Compare this
result to Eq. 7.

Both the real and complex harmonic waves are true periodic functions: they both obey
the relations Ψ(x+ λ, t) = Ψ(x, t) and Ψ(x, t + T ) = Ψ(x, t), so the wavelength and period
are well defined quantities. In fact, if one of these functions is supposed to describe the
mysterious quantum waves, then we can use λ and T in the de Broglie relations to relate
the wave properties to particle-like properties, p and E. The only drawback is that these
functions, being periodic, necessarily go on forever in both time and space!

Dispersion relations. Finally, we need to note that ω and k (or their associated T and
λ) are not independent quantities. If Ψ(x, t) is to describe some physical situation and
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if we know the wavelength and the speed of propagation, then we know the frequency of
oscillation: the period, T is the time it takes one wavelength to go past a fixed point in
space or λ = vpT , which we can write as ω(k) = vpk. The relation between ω and k is called
the dispersion relation of the wave. Because vp can depend on k (or ω), different types of
waves will have different dispersion relations, as we illustrate below.

Notice that the dispersion relation for a particular physical system couples the two de
Broglie relations: k gives us ω(k) and

p = ~k (9)

E = ~ω(k). (10)

These equations can also be expressed in terms of ω if we can invert the dispersion relation.
Electromagnetic waves: Here, we know that ν = c/λ or ω(k) = ck (in vacuum) and the

dispersion relation is linear since c is independent of the wavelength. The phase velocity is
then ω

k
= c and a point of constant phase moves at the speed of light. This seems satisfying

and appropriate. Furthermore, using this dispersion relation, we can write the energy of
a photon as E = ~ω = ~ck = pc. This is the relation given by special relativity for the
energy-momentum relationship of a massless object (and the photon has to have zero rest
mass since it travels at c).

Particle waves: In this case, we have to figure out the dispersion relation for these waves
that we do not yet know how to interpret. For the case of a free particle we can do this
using the de Broglie relations. We can assume in this case that the energy is all kinetic:
E = p2

2m
= ~2k2

2m
= ~ω(k). Then,

ω(k) =
~k2

2m
(11)

(a quadratic dispersion relation) and the phase velocity of the wave is vp = ω
k
= ~k

2m
= p

2m
.

But, classically, p = mv, so we find that vp = 1
2
vclassical! Now, we’re not so happy! It looks

like these waves will not move along with the expected position of the particle.
There is one consideration that will allow us to wiggle out of the above quandary. Because

the harmonic, periodic functions we have used above go on forever, they are really not a
satisfying type of wave to describe the motion of a localized object. Maybe once we develop a
localized wavy function (a “wavepacket”), the localized region that has significant amplitude
will move at the right speed even if the points of constant phase we’ve just worked with do
not...

Construction of wavepackets. Adding together harmonic waves of different wavelengths
yields a function of more complex shape. Just adding two of unit amplitude yields

f(x) = eik1x + eik2x (12)

= ei
1

2
(k1+k2)x

(

ei
1

2
(k1−k2)x + ei

1

2
(k2−k1)x

)

(13)

= eikox
(

ei
1

2
(δk)x + e−i 1

2
(δk)x

)

(14)

= 2eikox cos

[

1

2
(δk)x

]

, (15)
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where ko is the average wavenumber and δk = k1 − k2 is the difference (note that we could
have done this in the time domain with exactly the same math – everywhere you see k,
replace it with ω and everywhere you see x, replace it with t). If we are dealing with a real
harmonic function, we can sum cosines by just taking the real part of each of the above
equations (the sum of real parts is the real part of the sum – it’s a linear operation!); we get

R{f(x)} = 2 cos kox cos
1

2
(δk)x. (16)

Isn’t that easier than remembering trigonometric identities? We can sum sines by taking the
imaginary parts (note that that yields a sine times a cosine). And we can deal with arbitrary
phase shifts by factoring the average and difference as we’ve done above (try it out – what
do you get?).

Eq. 15 and its real counterparts are in a useful form: if we suppose, as is often the case,
that δk << ko, then we have a rapidly oscillating function (the first term) multiplying a
slowly varying function (called the “envelope” function). The rapidly oscillating function
with the nominal (or average) frequency is modulated by the slowly varying one. [We’ll look
at examples in class.]

Is (12) and thus, (15), a periodic function? The answer depends on whether k1 and k2
are rationally related. If so, then yes; if not, then no. In either case, however, the qualitative
idea of a modulated rapid oscillation holds. As we make δk/k0 small, there are many large
amplitude oscillations between positions where the envelope function becomes small. In the
limit as δk → 0 (but not at δk = 0), the wavelength of the envelope function goes to ∞
– the modulation function has infinite period (it takes forever for the component waves to
get out of phase with each other). Conversely, for large δk/k0, the component waves rapidly
de-phase and the envelope has a short period.

What we are looking for is a non-periodic or non-repeating function in which the compo-
nent waves de-phase in some finite interval, say δx. The non-repeating requirement argues
that we should include waves with very small differences δk, but the second requirement says
we need to include waves with significantly different periods. We can have it both ways: we
integrate (instead of doing a discrete sum) over a finite interval. The interval width sets the
de-phasing length (or time) and the inclusion in the integration of infinitesimally different
wavenumbers guarantees that the function will not be periodic.

We conclude that the general form for an appropriate function is

f(x) =

∫

dk A(k) eikx, (17)

where A(k) is the weight function that determines the range of k values that receive signif-
icant weight. This formula sums up harmonic waves that are all in-phase at x = 0, so we
expect f(0) to be the maximum possible value. For simplicity, let’s require (for now) that

∫

A(k) dk = 1. (18)

This means that f(0) = 1 (just substitute x = 0 in (17)).
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The simplest A(k) is just a square box:

A(k) =

{

1
δk
, ko −

1
2
δk ≤ k ≤ ko +

1
2
δk

0, otherwise.

}

(19)

It will be convenient to change the integration variable from k to the deviation of k from
ko: k = ko + α. The integration variable is now α and dk = dα since ko is a constant.
This allows us to factor the exponential into a constant term (constant with respect to the
integration variable) times the term we have to integrate: eikx = eikoxeiαx. For the square
distribution (19), Eq. 17 becomes

f(x) = eikox
1

δk

∫ + 1

2
δk

−
1

2
δk

dα eiαx (20)

= eikox
1

i(δk)x

[

ei
1

2
(δk)x − e−i 1

2
(δk)x

]

(21)

Use of the Euler identity, sin θ = 1
2i
[eiθ − e−iθ], then yields

f(x) = eikox
sin β

β
, (22)

where β = 1
2
(δk)x.

As long as δk is small compared to ko (typically the limit in which we’ll be interested),
the conclusion is that we have a rapidly oscillating complex wave, eikox, multiplying a more
slowly varying “envelope” function, sinβ

β
. Note that the factoring trick used above can be

used with arbitrary weight functions, A(k). Pick the average k, call it ko and write A(α).
Particularly if A(α) is a symmetric function, this generally makes the integration simpler
and it shows the separation of the phase oscillation from the envelope function.

The function sinβ
β

has a large lobe around β = 0 and then smaller and smaller lobes at

larger |β| (plots on the next page). We identify the central lobe as the region where the
particle is most likely to be found.1 The size of this region is δβ = 2π since the sine function
goes to zero at ±π. We then have δβ = 1

2
(δk)(δx) = 2π or

δk δx = 4π. (23)

This says that including a range δk of wavenumbers generates a function with a central
lobe of width δx. This is an understandable mathematical observation: we’ve set up the
calculation so that all the component waves in (17) are in-phase at x = 0. The broader
the range of component waves we include (i.e., the larger is δk), the more rapidly these
component waves will get out of phase with each other and the smaller will be the interval
δx.

1The meaning in this case is that the particle is more likely to be found in this interval than in any

other interval of the same size. More on this later when we establish a firm interpretation of the quantum

wavefunction.
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Figure: Wavepacket and its square resulting from a square distribution of frequencies.

We started off saying that we had to assign a wave character to all quanta (through the
de Broglie relations) and that whatever was waving should be large “near” where we expect
the particle to be and should be small “far away”. We find we can make such a function by
summing harmonic waves over some range of wavenumbers. So, now we find that appropriate
functions do not have well-defined wavenumbers to plug into the de Broglie relation p = ~k.
We can define an “average” momentum through po = ~ko but we have to also say that there
is a range of momentum components, δp = ~δk. For the square distribution, multiplying
both sides of (23) by ~ yields,

δp δx = 4π~. (24)

This is related to one of the Heisenberg Uncertainty relations.
The interpretation of the above observations is that the function that we are describing,

that has the wave property, is related to a probability for where the particle will be found
and, at the same time, it tells us the probability for the particle to have a particular value
of momentum. We will later develop a general definition of the widths of these probability
distributions analogous to (but not identical to) δp and δx used here. A highly localized
wave has to have a broad distribution of k’s and therefore of p’s or momenta.

The factor of 4π in (24) is independent of the width of the distribution. However, if we
choose a different shape for A(k), we will get a relation just like (24) but with a different
numerical constant.

Traveling wavepackets. By analogy with (17), we can generate a traveling wavepacket
by doing an integral like

Ψ(x, t) =

∫

dk A(k) ei[kx−ω(k)t] (25)

The complication is that we have to keep track of how ω changes with k. The first approxi-
mation is to assume the range of k’s to be narrow enough that we can approximate ω(k) by
a straight line:

ω(k) = ω(ko) +
dω

dk
|koα = ωo + vgα, (26)
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Where again, we have used k = ko+α and on the right ωo = ω(ko) and vg =
dω
dk

is called the
group velocity. In this approximation,

Ψ(x, t) = ei(kox−ωot)

∫ 1

2
δk

−
1

2
δk

dα A(α) eiα(x−vgt). (27)

For the square distribution (19), this yields the same math as before (see Eq. 20) if we just
replace x with x− vgt:

Ψ(x, t) = ei(kox−ωot)
sin[1

2
(δk)(x− vgt)]

1
2
(δk)(x− vgt)

(28)

Now we have a product of two terms where the envelope function travels at the speed
vg = dω

dk
instead of vp = ω

k
. For electromagnetic waves in vacuum, ω = ck and vp = vg = c:

both the rapid oscillation and the envelope travel at the same speed. For masses with the
dispersion relation ω = ~k2

2m
, vp = ~k

2m
= 1

2
vclassical whereas vg = ~k

m
= vclassical. In both

cases, the envelope that contains the rapid oscillations travels with the appropriate speed to
move with the object. In this approximation, the envelope maintains a constant shape as it
propagates and the uncertainty product, δp δx is constant and is again equal to 4π for this
case (the square distribution). Furthermore, the time it takes the central region to pass a
point in space can be called δt; requiring x to be constant, we ask for the argument of the
sine function in (28)to change by 2π: δβ = 2π = 1

2
(δk)vgδt. The quantity vgδk = δω (by the

definition of vg), with δω being the range of frequencies included in the integral, so we have
the result that

δωδt = 4π, (29)

which is analogous to (23). This is equivalent (with de Broglie) to

δE δt = 4π~, (30)

which says that if the event (ex., an electron striking a detector) can be said to be localized
in time within δt, then we do not know the energy of the object to better than δE.

Once again, changing the form of A(k) will change the numerical coefficient but not
the fact that the “uncertainty product” has to be some finite number. In fact, before we
can really make this claim, we need a more generally applicable definition for the width
that we’ve called δk here (and all the other δ quantities). That definition will turn out to
be a suitable standard deviation of the distribution for each quantity and we will denote
each with a “∆.” Then, we will be able to make the following statement: for any specific
functional form for A(k) (square versus Gaussian versus Lorentzian,...) the products ∆k ∆x
and ∆ω ∆t are constant. If we look over all functional forms, it turns out that the Gaussian
distribution for A(k) corresponds to the smallest coefficient and it is 1/2. So, finally, we can
write the Heisenberg uncertainty principle as

∆p ∆x ≥
1

2
~ (31)

∆E ∆t ≥
1

2
~. (32)
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