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Abstract— Selectively stimulating neuron types within the
brain can enable new treatment possibilities for neurological
disorders and feedback in brain-machine interfaces. Prior
computational work has shown that by choosing a sinusoidal
signal with appropriate amplitude and frequency, one can
obtain one-directional stimulation, i.e., one can stimulate
a mammalian inhibitory neuron without stimulating an
excitatory neuron. However, bidirectional selectivity is not
achievable using just sinusoidal inputs. In this work, which
is also computational, we design novel current waveforms to
achieve this bidirectional selectivity. To do so, we explicitly
exploit the non-linearity of neuronal membrane potential in
response to stimulating currents. These current waveforms
are able to stimulate either of the two neuron-types without
stimulating the other. Further, we are also able to design a
waveform which stimulates both neurons. Moreover, we can
ensure a relatively high firing rate (∼100 Hz) when a neuron-
type is targeted for stimulation.

I. INTRODUCTION
Selective stimulation of neurons based on neuron-type

can greatly enhance the effectiveness of targeted stim-
ulation techniques and treatment methods. Although
techniques to perform electrical stimulation with spatial
localization have been developed both invasively and
noninvasively [1], [2], current-stimulation typically lacks
neuron-type specificity. Work towards selective stimula-
tion of neurons based on neuron-type is already ongoing.
Freeman et al. [3] use different frequencies of sinusoidal
signals to selectively simulate photoreceptors, bipolar
cells, and ganglion cells. Similarly, Im and Fried [4]
show that different frequencies of input could be used to
selectively stimulate ON and OFF brisk transient retinal
ganglion cells (RGCs). However, in these cases, selective
stimulation can only be achieved at a different range
of frequencies for each cell type since frequency is the
only variable used to change the target for stimulation.
Bidirectional selective stimulation cannot be achieved at
the same high frequency using this method.

Limiting stimulation waveforms to sinusoids and view-
ing neural firing rate as a “transfer function,” while a
dominant perspective in the literature, is fundamentally
a linear perspective. This leaves unexplored a more
general class of signals that can exploit the well known
nonlinearity of the neural membrane potential as a
function of the driving current. In a few works, a broader
class of signals is examined. E.g., Twyford et al. [5] use
modulated high frequency signals to achieve bidirectional
stimulation between ON and OFF brisk transient RGCs.
However, this method falls short of “clean” bidirectional
stimulation: the selectivity simply increases the firing

rate of one neuron type over the other, but does not
ensure the undesired neuron does not fire.

In this work, our goal is to develop strategies for
performing bidirectional selective stimulation of two
neuron-types by studying the non-linear dynamics of
neural models, and validating them using computational
neuron models. The benchmark for our work is the work
of Mahmud and Vassanelli [6], who use models of the
same neurons we use. Through variation of frequency
and amplitude of sinusoidal inputs, they show that the
inhibitory neuron can be stimulated without engagement
of the excitatory neuron. However, no bidirectional
selectivity is shown in [6]. Our novel waveforms utilize
differences in the parameters of excitatory and inhibitory
neurons, and obtain “clean” bidirectional stimulation
(i.e. the firing rate of the non-targeted neuron is zero).

In Section II, we define our models for mammalian ex-
citatory and inhibitory neurons and highlight key values
differentiating the neuron types which govern the non-
linear responses of the neurons. Then in Section III, we
detail how signals can be crafted to take advantage of the
differences and create bidirectional selective stimulation
between the models. We demonstrate the flexibility of
our strategies by showing that we can stimulate both
neuron-types simultaneously, or selectively stimulate
either of the neuron-types without engagement of the
other.

II. METHODS
A. Neural Models and the Differences in Cell Dynamics

For demonstrating our selective stimulation strategies,
we use Hodgkin-Huxley (HH)-style models to simulate
the membrane potential of neurons in response to exter-
nal currents. The original squid giant axon model [7]
has, over the years, been adapted to represent other
neuron-types. In our work, we adopt models that are
calibrated against mammalian cortical neurons, namely
an excitatory (pyramidal) neuron and an inhibitory
neuron. For simplicity, we consider only isolated neurons,
i.e. we do not model the effects of the neural network.

To most clearly demonstrate the utility of our tech-
niques, we provide strategies that strictly and signif-
icantly improve on existing literature. Specifically, we
utilize the same models used in an earlier computational
study of Mahmud and Vassanelli [6]. There, as well
as here, the excitatory neuron model is based on [8]
with an additional leakage channel whose parameters are
from [9], and the inhibitory neuron model is from [10].
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Thus, for the same neuron models, our nonsinusoidal
waveforms are able to obtain bidirectional selectivity,
while sinuosidal waveforms in [6] only obtain unidirec-
tional selectivity. In doing so, we exploit the understand-
ing of the nonlinear dynamics of the neural membrane
of the two neuron-types. These dynamics are described
by equations given in (1) and (2) (below) respectively,
where V denotes the membrane potential, C denotes the
membrane capacitance, i denotes the external current
input, EX are the reverse potentials, and ḡX are the
maximum possible conductances of the channels. In
practice, the external current input would be set by
manipulating the activating function of the neuron [12].
The detailed equations as well as values chosen for the
constants can be found in Section IV.

dV
dt

=− 1
C

(
ḡNam3h× (V −ENa)+ ḡKn4 × (V −EK)

+ ḡL × (V −EL)

)
+

i
C

dm
dt

= αm(1−m)−βmm;
dn
dt

= αn(1−n)−βnn

dh
dt

= (αh +βh)(h∞ −h)

(1)

dV
dt

=− 1
C

(
ḡNam3h× (V −ENa)+ ḡKn4 × (V −EK)

+ ḡL × (V −EL)

)
+

i
C

m∞ =
αm

αm +βm
;

dn
dt

= 5(αn(1−n)−βnn)

dh
dt

= 5(αh(1−h)−βhh).

(2)

Here, m, n, and h are variables related to the opening
probabilities of sodium activation, potassium activa-
tion, and sodium deactivation gates respectively, whose
steady-state values as a function of membrane potential
are given in Fig. 1. In addition to the differences in
the steady-state values, what further enables selective
stimulation is the differences in their time constants, i.e.
m, n, h parameters in the two neuron-types approach
their steady-state values at different speeds. The rather
large differences of the time constants are illustrated in
Fig. 2. Note that m in the inhibitory neuron model is
modeled as instantaneous [10] so the time constant is
always zero. For the rest of the paper, we aim to leverage
such differences in the dynamics of the two neurons to
design strategies for bidirectional selective stimulation.

B. Selective Stimulation by Leveraging the Differences
in Cell Dynamics

Examining Fig. 1 and Fig. 2 provides an understanding
of the firing characteristics of neurons that is used to
design selective stimulation strategies. First, we observe
the behavior of the cell parameters as the neurons fire.
We can see that the membrane potential of the neuron
grows rapidly when m and h are high values due to

Fig. 1. Steady-state values for m, n, and h plotted with respect to
membrane potential.

Fig. 2. Time constant values for m, n, and h plotted with respect
to membrane potential with zoomed view of low amplitude time
constants. Note: The excitatory neuron is much slower than the
inhibitory neuron.

the presence of m3h in the differential equation for the
potential. The n4 in the equation contributes more to
neuron recovery than neuron spike initiation. As a result,
our focus is primarily on manipulating m3h. Thus, we can
build the intuition that in order to stimulate a firing
response in a neuron, from a resting state at which m
is low and h is high, an input signal should increase the
value of m sufficiently before the value of h decreases
significantly. This is possible because the m parameter
has a much lower time constant compared to h, so it
responds to changes in the membrane potential more
quickly than the h parameter responds. Additionally, for
the different neuron models, the parameters have differ-
ent time constants and steady-state values. As is shown
in Fig. 2, the excitatory neuron is significantly slower
than the inhibitory neuron, giving us an opportunity to
leverage the different time constants to achieve selective
stimulation. Intuitively, when the neurons are in resting
state, we can selectively stimulate the inhibitory neuron
by using a signal that only the inhibitory neuron is fast
enough to respond; similarly, when the neurons are in
an “inhibited” state (i.e. membrane potential lower than
regular resting state and corresponding elevated h value),
we can selectively stimulate the excitatory neuron by
using a signal such that the quicker h of the inhibitory
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(a) (b)

Fig. 3. An applied current waveform with a small dip followed by
a large spike that stimulates excitatory and inhibitory neurons at
100 Hz. (a) Applied waveform (b) Resulting membrane potentials.

neuron would be fast enough to decrease in response to
the input so inhibitory firing would not occur, while the
slower h of the excitatory neuron would stay high enough
to cause excitatory firing. These intuitions are used in
Section III for tailoring waveforms to neuron-types.

C. Estimating Firing Events
For the results detailed in this paper, neuron firing is

characterized by a discontinuous jump in the amplitude
of the response of the membrane potential. This dis-
continuous jump is identified at a point where a small
increase in applied current waveform magnitude causes a
significant, disproportionate increase in the amplitude of
the response. Any response with amplitude beyond this
discontinuous jump is considered to be characteristic of
a neuron firing.

III. RESULTS
For all the results below, we use periodic signals for

simplicity, and we aim to achieve a firing rate of 100 Hz,
which is experimentally achievable for mammalian neu-
rons during stimulation [11].

A. Non-Selective Signal
First we start with a signal that stimulates both

neurons non-selectively. In order to achieve this, we
choose each cycle of the signal to have a small dip of
5 µA/cm2 amplitude and 5 ms width, followed by a large
spike of 35 µA/cm2 amplitude and 5 ms width, with a
transition time of 1 ms. The short dip in the waveform
increases h by decreasing the membrane potential, and
the large spike in the waveform is large enough such that
it greatly increases m before a significant decrease of h.
As a result, both of the neurons fire. The waveform as
well as the responses of the two neurons are shown in
Fig. 3.

B. Inhibitory-Selective Signal
We now choose a signal that selectively simulates only

the inhibitory neuron. In each cycle, we have a 5 ms
dip of 5 µA/cm2, and a 5 ms spike of 10 µA/cm2. The
short dip in the waveform increases h by decreasing
the membrane potential, and the small spike in the
waveform slightly increases m. In response to this signal,
the excitatory neuron exhibits only small changes due to

(a) (b)

Fig. 4. An applied current waveform with a small dip followed
by a small spike that stimulates only inhibitory and not excitatory
neurons. The small spike is sufficient for only the faster inhibitory
neuron to fire. (a) Applied waveform (b) Resulting membrane
potentials.

the low amplitude of input and its slow dynamics. The
behavior of the excitatory neuron does not meet the firing
criteria specified in Section II-C. On the other hand, the
inhibitory neuron has fast enough dynamics, such that
the negative part of stimulation increases h, and the
closely following positive part allows m to increase. The
combination of increased m and high h allows the neuron
to fire. The waveform for inhibitory-selective stimulation
and the responses of the neurons are shown in Fig. 4.

C. Excitatory-Selective Signal
Finally, in order to demonstrate bidirectional selective

stimulation, we choose a signal that stimulates only the
excitatory neuron. In each cycle of the signal, we have a
5 ms dip of 22 µA/cm2, and a 4 ms spike of 20 µA/cm2. In
response to this applied current waveform, the inhibitory
cortical cell type does not fire. First, the large dip in
the waveform decreases m and increases h greatly by
decreasing the membrane potential. Following that, the
large spike in the waveform increases m in both neurons.
In the inhibitory neuron, since m is starting from too
low of a value due to the negative current phase, and h
is fast enough to decrease, there is no point where both
are high enough for the neuron to fire. As a result, the
inhibitory neuron does not exhibit behavior that meets
the firing criteria specified in Section II-C. However, the
excitatory neuron does fire in response to this applied
current waveform. This is because during the positive
input, h remains high due to its slow dynamics, while the
input is sufficient for m to increase. The input waveform
as well as the resulting membrane potentials of the two
neurons are shown in Fig. 5.

IV. DISCUSSION
As the results have indicated, an understanding of

the m, n, and h plots can be used to tailor responses of
two neuron-types bidirectionally. Specific applied current
waveforms can be used to take advantage of variations in
the time constants of m, n, and h to cause differentiation
in the response of neurons.

Though demonstrated on two specific neuron-types,
this form of analysis can potentially be extended to tailor
waveforms that produce selective stimulation between
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(a) (b)

Fig. 5. An applied current waveform with a large dip followed
by a large spike that stimulates only excitatory and not inhibitory
neurons. Starting from the inhibited state, the large spike increases
m in both neurons, but only the h in the slower excitatory
neuron remains high enough. (a) Applied waveform (b) Resulting
membrane potentials.

other neuron types with altered differential equations,
given that the dynamics of the two neurons are different.
More neuron-types will be considered in future work to
explore the limits and limitations of our strategy.

However, when aiming to stimulate one neuron-type
from a pool of more than two types of neurons, the m,
n, and h plots for the various neuron types would have
to be analyzed pairwise to achieve satisfactory selective
stimulation. The problem can scale quickly when more
neuron-types are considered, so manual examination of
m, n, and h curves becomes impractical. Approaches
involving computationally tuning the applied current
waveforms may ameliorate this issue.

We use single neuron models to illustrate our stim-
ulation strategies in this paper. In the brain, however,
the neurons are interconnected to form networks, whose
effects on the efficacy of selective stimulation is largely
unknown. In future work, it is worth modeling the
network effects on neuron-type selectivity, using network
models such as those in [6].

Another limitation of the results of this study is that
they have only been shown in a simulation context with
waveforms applied to modified HH models. Experimental
validation for the effectiveness of the tailored signals has
not been acquired yet. In practice, neurons, even if of
the same type, may receive altered signals due to neuron
location or orientation, so other forms of signal design
could further increase the stimulation selectivity.

APPENDIX
The supplementary equations that are necessary for

the differential equations of the excitatory neuron are as
follows [8], [9]:

h∞ =
1

1+ e6.2(V+65)

αm =
0.182(V +35)
1− e−(V+35)/9 , βm =

−0.124(V +35)
1− e(V+35)/9

αn =
0.02(V −20)
1− e−(V−20)/9 , βn =

−0.002(V −20)
1− e(V−20)/9

αh =
0.024(V +50)
1− e−(V+50)/5 , βh =

−0.0091(V +75)
1− e(V+75)/5 .

TABLE I
Constants used for the two neuron-types.

Parameter Excitatory Neuron Inhibitory Neuron
C (µF/cm2) 0.75 1

ḡNa (mS/cm2) 3 35
ḡK (mS/cm2) 10 9
ḡL (mS/cm2) 0.1 0.1

ENa (mV ) 60 55
EK (mV ) -90 -90
EL (mV ) -60 -65

The supplementary equations that are necessary for the
differential equations of the inhibitory neuron are as
follows [10]:

αm =
0.1(V +35)

1−e−0.1(V+35) , βm = 4e−(V+60)/18

αn =
0.01(V +34))
1−e−0.1(V+34) , βn = 0.125e−(V+44)/80

αh = 0.07e−(V+58)/20, βh =
1

1+e−0.1(V+28) .

The constants for each neuron type associated with these
equations are summarized in Table I.
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