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Abstract

This paper presents a new computational method for

fully automated triangular mesh generation, consis-
tently applicable to wire-frame, surface, solid, and non-

manifold geometries. The method, called bubble rrzesh-
ing, is based on the observation that a pattern of tightly
packed spheres mimics a Voronoi diagram, from which
a set of well-shaped Delaunay triangles and tetrahedral
can be created by connecting the centers of the spheres.

Given a domain geometry and a node-spacing function,

spheres are packed on geometric entities, namely, ver-

tices, edges, faces, and volumes, in ascending order of
dimension. Once the domain is filled with spheres, mesh
nodes are placed at the centers of these spheres and are
then connected by constrained Delaunay triangulation
and tet rahedrizat ion. To obtain a closely packed config-
uration of spheres, the authors devised a technique for
physically based mesh relaxation with adaptive popu-
lation control, The process of mesh relaxation signif-

icantly reduces the number of ill-shaped triangles and

tetrahedral.

1 Introduction

A great deal of design time in industry is devoted to
analysis, especially when physical experiments are per-
formed on real components. In order to reduce the
whole product development time, it is therefore desir-
able to computerize analysis by using numerical meth-

ods such as the finite element method (FEM) and the
boundary element method (BEM). Various kinds of
commercial software based on these methods are avail-
able for structural, fluid, and heat transfer analysis.
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To be suitable for analysis software, the geometry of
the shape that was created in the design phase must be

transformed into a discretized model – a mesh – consist-

ing of a collection of cells that must satisfy a number

of geometric and topological conditions dictated by the
method [1]. The operation of transforming a geomet-
ric model, especially a 3D model, into a valid mesh is
highly labor-intensive. Thus a fully automated mesh
generation scheme is desirable.

Conversion of a C.4D model into a mesh is performed

in two steps, shown in Figure 1: ( 1) simplification of

the geometry, and (2) discretization of the geometry

into a mesh. In the first step, to reduce the computa-

tional time and storage space, a geometry is simplified
by means of the following two procedures:

Dimensional thinning. Pipe-like or beam-like geome-
tries are often modeled as one-dimensional curves, M
shown in Figure l(a). Shell-like geometries in which the
thickness is small in rmrnparison with the whole compo-

nent size are approximated as two-dimensional shells,
as shown in Figure 1(b). %Iany mechanical sheet-metal

components and ship hulls have this type of geometry.

Insignificant feature removal. If a geometric fea-
ture, such as a hole, protrusion, or groove, is not mean-
ingful for analysis, it is removed from the model, as
shown in Figure l(c). The criteria for determining
which feat ures can be removed are not straightforward.

For example, a very small groove can cause a fatal stress
concentration in structural analysis, but may negligible

in heat transfer analysis,

After the original geometry has beerr simplified, it

is usually represented as a wire-frame model, a surface
model, or a solid model. In the most complicated case,
however, the geometry is simplified to a non-manifold
geometry, or a union of ID, 2D, and 3D geometries,
as shown in Figure 1 (d), Non-manifold situations also
arise when multiple materials are used in a single com-
ponent; in this case, the material boundaries must be

represented as internal faces or edges.

The simplified geometry is then discretized into a
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three conditions below:

Figure 1: Conversion of a CAD model into a mesh

mesh. A curve is meshed into a series of one-dimensional
beam elements with nodes that lie on the curve. A sur-
face is subdivided into two-dimensional shell elements,

or triangles. A volume is meshed into a collection of

tetrahedral elements.
This paper presents a new triangular meshing proce-

dure, called bubble meshing, that can handle various in-
put geometries, including wire-frame, surface, solid, and
non-manifold, in a consistent manner. In this method,

node locations are obtained by closely packing spheres
in the domain to be meshed and placing nodes at the

centers of the packed spheres. Node connections are

then decided for a complete mesh topology by using con-
strained Delaunay triangulation and tetrahedrization.

This new scheme of node placement contributes to
a significant reduction in the number of ill-shaped el-
ements produced in Delaunay triangulation and tetra-
hedrization.

2 Preliminaries

G=ueA (1)

where G and ex represent a cell complex and an n-cell,
respectively, and dim(e~ ) and (e~) represent the dimen-

sion of e~ and the closure of e~, respectively.

The first condition means that 3D cell complexes can
be represented by a collection of O-cells, l-cells, 2-cells,
and 3-celIs. In a geometric modeling system, these
cells correspond to topological entities, namely, vertices,
edges, faces, and volumes, respectively. The second con-

dition specifies that the boundary of each entity consists
of lower-dimensional entities, making a cell complex al-
ways closed. The third condition prohibits the mutual
intersection of topological entities.

According to this definition, an n-cell is a bounded
subset of 3D Euclidean space that is homomorphic to
an n-dimensional open sphere.

As in most solid modeling systems with boundary rep-
resentation, geometric information is stored under three
categories of geometric entities: points, curves, and sur-
faces, which correspond to vertices, edges, and faces,
respectively.

A point is a coordinate triple in object space,
(x, y, z) E R’. .4 curve is defined over a bounded R’
parametric space, which is then transformed into object
space. In other words, a curve geometry is given as a

mapping from parametric space to object space,

c(9) = (Z(S),7J(S), z(s)), (4)

where s represents a parameter value in parametric

space.

Similarly, a surface is defined over a rectangular re-

gion in R2 parametric space, which is then mapped into
object space:

2.1 Problem Statement
S(IJ,’U) = (X(u, v), y(u, o), z(u,v)). (5)

As mentioned above, possible geometric inputs to

the meshing procedure include wire-frame, surface,
solid, and non-manifold geometries. Because the non-

manifold model, by definition, can represent all types
of geometry, we can simply say that the input to the
mesher is a non-manifold model.

There are various definitions of non-manifold geome-
try [23, 15, 7]; we adopt here the definition proposed by

Masuda, Shimada, Kawabe, and Numao [9, 10].

Non-manifold geometries, G, are cell complexes that

are subsets of 3D Euclidean space. Cell complexes are
mathematically defined aa sets of n-ceffs that satisfy the

The surface can be trimmed by means of trimming

curwes.

The actual curve and surface representations can be of

any form, as long as they are continuous and a derivative
vector can be calculated everywhere on the curves and
surfaces.

Also given to the mesher as input is a desired distri-

bution of mesh element size. In this paper, the element
size is ako referred to as the node spacing, since the size
of a mesh element is measured by the distance between
two adjacent nodes. We denote a desired node spacing
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over the domain as d(x, y, z), given as a function of the

node location in object space.

A mesh M is a set of mesh elements, defined as n-
cells: (1) nodes, which are O-cells in the non-manifold
model; (2) line segments, which are l-cells; (3) triangles,
which are 2-cells; and (4) tetrahedral, which are 3-cells.
Thus,

M = (MO, A41, M2, M3), (6)

where Mo, Ml, M2, and Ikf3 are sets of nodes, line seg-

ments, triangles, and tetrahedra, respectively. A mesh
node is also referred to as the center of a bubble in this
paper; we use the terms mesh node and bubble inter-
changeably in later sections.

In summary, the mesh generation problem we are in-
terested in can be stated as follows:

Given:
● a non-manifold geometric domain, G

. a desired node spacing distribution, d(x, y, z)

Generate:
● a graded, well-shaped, compatible, triangular mesh,

M, of hybrid dimension.

2.2 Previous Methods

There have been several reviews of mesh generation

methods [21, 17, 8]. Ho-Le, in his comprehensive sur-
vey paper [8], gives a systematic classification based on

the temporal order in which nodes and elements are cre-
ated. The resultant classification is well-accepted and
haa been referred to by many other researchers, One
problem, as he also acknowledges in the paper, is that
placement of individual methods into categories is not
easy because many proposed methods consist of sev-
eral sub-processes representing different categories in
the classification.

Sub-processes commonly used in existing mesh-
ing methods include node placement and connection;
coarse domain decomposition; mesh template mapping;
element-level domain decomposition; grid-based spatial
subdivision; and faceting of parametric surfaces in para-
metric space. Typically, one complete meshing scheme
is characterized by a combination of these sub-processes,
performed sequentially or merged into a single process.

Node placement and con nect ion, however, can serve

by themselves as a complete meshing process. In this

process, a mesh is constructed in two stages: (1) node
placement, and (2) node connection. Meshing algor-
ithms of this type have recently become popular on
account of their conceptual simplicity and the availabil-
ity of a robust mathematical algorithm for node connec-
tion, called Delauna.y triangulation or tet rahedrization.
The bubble method proposed in this paper also falls into
the node placement and connection category.

2.3 Delaunay Triangulation

This section briefly reviews Delaunay triangula-

t ion/tet rahedrization and Voronoi tessellation, since
they are closely related to the fundamentals of bubble
meshing.

Efficient algorithms for Delaunay triangulation have
been intensively reviewed and studied in various text-
books [13, 4] and papers [2],

Consider N distinct points p,, 1 s z s N, in the two-
dimensional space R2 or the three-dimensional space

R3, and define the sets V,, 1 < i < N, as

V,={* ll[x–p, ll<[l*–pJllfordli #j}, (7)

where II Ii denotes Euclidean distance in R2 or R3. The
set Vi is considered to consist of Voronoi polygons in R2

and Voronoi polyhedra in R3.

The collection of Voronoi polygons or polyhedra is
called a Voronoi diagram or Dirichlet tessellation. The

boundaries of the Voronoi polygon or polyhedron are

portions of the perpendicular bisectors of the lines join-

ing point p, to point p], when V, and V’ are contiguous.

A vertex of a Voronoi polygon is shared by two other
neighboring polygons, and a vertex of a Voronoi polyhe-
dra is shared by three other neighboring polyhedra. We
can, therefore, construct a triangle by connecting three
points, defined above, in three adjacent polygons, and

a tetrahedron by connecting four points, defined above,
in four adjacent polyhedra. The set of such triangles is

called the Delaunay triangulation, and the set of such
tetrahedra the Delaunay tetrahedrization. Another De-
launay criterion is that a circumscribing circle or sphere
of a Delaunay triangle or tetrahedron does not contain
any other points inside.

Delaunay triangulation is considered suitable for fi-
nite element analysis, because it maximizes the sum of

the smallest angles of the triangles. It creates trian-
gles as nearly equilateral as possible for the given set of

points. The same property holds in three-dimensional
Delaunay tetrahedrization; the triangular faces of the
tetrahedral are as nearly equilateral w possible.

One problem to be noted here is that since the union
of Delaunay triangles or tetrahedra is a superset of the
domain, some extraneous triangles or tetrahedral must
be deleted. It is also necessary to ensure that pairs
of adjacent points on boundaries are connected. Tri-

angulation or tetrahedrization with such constraints is

sometimes called constrained Delaunay triangulation or

tetrahedrization. Algorithms for t his procedure have
been proposed by several researchers, such as: Fang and
Piegl [5]; Sapidis [16]; and Meshkat et. al. [1 1].

2.4 Bad Triangles and Tetrahedra

During node placement, an appropriate number of
nodes must be inserted in a well-distributed configu-
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2.5 Mesh Quality Measurement

w-type ve-fype

(a) Bad friangles

w-fype wv-fype w+w-type

ee-type vf-type ve-type

(b) Bad tetfalwdra

Figure 2: Ill-shaped triangles and tetrahedral

ration, so that no badly distorted or skinny triangles or
tet rahedra are created. Delaunay tessellation does “op-
timize” the element shapes, but the actual quality of
these shapes depends totally on the given configuration
of nodes.

As Dey [3] and Meshkat [11] pointed out, bad trian-
gles and tetrahedra are either thin (i.e. needle-like) or
flat. Such ill-shaped elements must be avoided in anal-
ysis because they increase the analysis error and slow

the solution convergence.

Starting from an equilateral triangle and a tetrahe-
dron, one could create bad elements by moving some
vertices, edges, and faces close to each other. As Figure
2 indicates, there are two types of bad triangle: (1) uv-
type, created by moving two vertices close together, and
(2) ve-type, created by moving a vertex and an edge close

together. Bad tetrahedral have more variety: (1) vu-type,
(2) mm-type, (3) vv+vv-type, (4) ee-type, (5) vf-type, and
(6) ve-type. Among these six types of ill-shaped tetra-
hedron, the vvv-type and the vv+w-type are thin, or
needle-like, while the others are flat.

Previous approaches resolve bad elements by post-
processing, either by moving nodes or by adding and

deleting nodes. In bubble meshing, without using such
post-processing, we can greatly reduce the possibility of
creating these bad elements by defining proximity-based

internode forces and finding a force-balancing configu-
ration; node configurations of bad elements in Figure

2 cause large overlaps and gaps between bubbles, and
thus cannot be stable.

For quantifying mesh quality in triangulation and tetra-

hedrization, we define two kinds of irregularit y: topolog-
ical mesh irregularity and geometric mesh irregularity.

For topological mesh irregularity, we define the follow-

ing measure, similar to that defined by Frey and Field
[6]:

(8)

where $i represents the degne, or the number of neigh-

boring nodes, connected to the ith interior node, and n
represents the total number of interior nodes in the do-
main. Thus, in general, as elements become more equi-
laterid, the mesh irregularity y approaches O, but vanishes
only when all the nodes have D neighbors, a rare situa-
tion. Otherwise, it has a positive value that designates
how much the mesh differs from a perfectly regular tri-
angular lattice.

For geometric mesh irregularity, we define the follow-

ing me-&re, Eg, which is the aspect ratio of an inscribed

circle or sphere to a circumscribing circle or sphere:

(9)

where m represents the number of elements, and Ti and
Ri are the radii of inscribed and circumscribing circles

&

or spheres, respectively. The ratio r, Z?i is at maximum
0.5 for an equilateral triangle and 2/11 for an equilat-

eral tetrahedron. The smaller the value of &g, the more

regular the mesh.

3 Meshing via Bubble Packing

3.1 Method Overview

The bubble method can be summarized as a sequence
oft wo steps: (1) pack spheres, or bubbles, closely in the
domain, and (2) connect their centers by constrained

Delaunay triangulation and tetrahedrization, which se-
lect the best topological connection for a set of nodes by
avoiding small included angles while preserving the com-
patibility of the mesh with the domain. The novelty of
the method is that the close packing of bubbles mimics
a pattern of Voronoi tessellation, correspondhg to well-

shaped Delaunay triangles or tetrahedral [18, 19, 20].
Figure 3(a) depicts this relationship in two dimensions.

In packing bubbles, some gaps and overlaps are in-
evitable, so our aim is to minimize these gaps and over-
laps as much as possible by injecting an appropriate
number of bubbles and placing them at suitable loca-
tions. In implementation, this is realized by (1) mak-
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Figure 3: Delaunay triangles, Voronoi polygons, and

packed bubbles

ing an initial guess, using hierarchical spatial subdivi-

sion (described in detail in Section 3.2); (2) defining
proximity-based repulsive/attractive interbubble forces

(described in detail in Section 3.3); and (3) perform-
ing dynamic simulation for a force-balancing configura-

tion (described in detail in Section 3.4), while adaptively
controlling the bubble population (described in detail in

Section 3.5).

As shown in Figure 4, bubbles, or mesh nodes, are
placed in order of dimension: that is, (1) bubbles
are placed on all vertices (O-cells) in the non-manifold
model, (2) bubbles are placed on all curves ( l-cells), (3)

all surfaces (2-cells) are filled in with bubbles, and (4) all
volumes (3-cells) are filled in with bubbles. Once all the

bubbles have been closely packed in the domain, a mesh
node is placed at the center of each bubble. .4 triangular
mesh is then created by using a constrained Delaunay
triangulation to connect the nodes, The algorithm used
is a modification of the Delaunay triangulation proposed
by Watson [22].

3.2 Initial Bubble Placement

It is essential to obtain a good initial bubble configura-

tion before physically based relaxation, for two reasons.
First, when speed is most critical, the initial bubble
configuration itself can serve as a quick triangulation or
tetrahedrization solution, Second, a good initial guess
will greatly reduce the convergence time of the lengthy
relaxation process later.

To handle general node spacing, we devised a bubble
placement method based on hierarchical spatial subdi-
vision. This method subdivides a curve, a surface, or a
volume hierarchically by using a binary tree, a quadtree,

Q hput
gwmetly
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2D mnh lonwdl

4.@-l
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tatdwdm

3Drn0sh 2DrIudI ID-

Figure 4: Non-manifold

or an octree respectively. In

meshing procedures

this process, the domain

is subdivided and bubbles are inserted until they cover

the entire region without significant gaps or overlaps.

For example, in order to place initial bubbles on a
curve segment, C(s), .sl ~ s s Sl, bubbles are first
placed on the two end points of the domain, C(sl ) and
C(S2). The diameters of these bubbles in object space
are calculated as dl = d(C(.sl )) and d2 = d(C(s2)) by
using a node spacing function, d(x, y, z). The length
of the curve between the end points is then calculated,

and this length is compared to the sum of the two radii,
all/2 + d2/2. If the curve length is longer than the sum

of the radii, a new bubble is inserted at the midpoint,
C((sl +s2)/2), and the curve segment is subdivided into
two sub-segments, SI s (sl + s2)/2 and (sl +s2)/2? <

S2. The same distance check is then performed on each
sub-segment recursively.

For a surface and a volume, initial bubbles are placed
by similar hierarchical subdivision except that we use
oblique cells instead of square cells in order to realize
hexagonal arrangement of the bubbles. Details of this
algorithm are given elsewhere [19].
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3.3 Interbubble Forces

A proximity-based interbubble force is defined so that

a system of bubbles is in equilibrium when bubbles are
closely packed, or “kissing” each other.

As shown in Figure 5(a), a mesh element can be gener-
ated by connecting the centers of adjacent bubbles; for
example, a two-dimensional mesh element (i.e. trian-

gle) can be generated by connecting the centers of three
adjacent bubbles. Similarly, a one-dimensional mesh el-

ement (i.e. line segment) and a three-dimensional mesh

element (i.e. tetrahedron) can be generated by connect-

ing two or four bubbles, respectively.
As noted in Section 2.1, the size of a mesh element

is measured by the distance between two nodes, that is,
the length of a line segment, an edge of a triangle, or an
edge of a tetrahedron. In an ideally tangential configu-
ration as shown in Figure 5(a), this length is equal to
the distance between the centers of two adjacent bub-

bles. Because we adjust bubble diameters to equal a

given node-spacing function, d(x, y, z), the stable dis-

tance 10 between two bubbles z and j is calculated as

the sum of the radii of the bubbles,

d(zi>vi>zi) + d(~j,yj!zj).
10= z

2
(lo)

We now define an interbubbie force f, much like the
van der Waals force, such that a repulsive force is ap-

plied when two bubbles are located closer than the sta-
ble distance /0 (bubbles are overlapping), and an attrac-
tive force is applied when the bubbles lie farther apart

than /0 (there is a gap). As shown in Figure 5(b), the
implemented force -f is defined as a bounded cubic func-
tion of the distance 1 satisfying the following boundary
conditions:

0<1 ~ 1.510
i(~)= {;f’+b~’+c~+d 1.5io <1

j(io) = f(l.51,) = o, f’(o) = o, j’(1,) = -Ill.
(11)

Note that k. represents the corresponding linear spring
constant at the stable distance i.. It is one of the key

physical parameters that govern the behavior of the
bubble system. Also note that, unlike the van der Wads
force, the force defined here has the following character-
istics: (1) the saturation of the force near 1 = O, where 1
is the distance between the centers of the bubbles, pre-
vents the force from growing infinitely large; and (2) the
force is effective only within a specified range, 1<1.510.

With this interbubble force, all the ill-shaped ele-
ments shown in Figure 2 are physically unstable because
they all have some geometric entities located closer or
further than the stable distance predicted by the node
spacing function. Thus, the chance of creating such bad

elements is significantly lowered.

WAiiii10 10

(a) Packed bubbles and mesh elenwnts
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(b) Proximity-based interbubbla forces

Figure 5: Interbubble repulsive/attractive forces

3.4 Physically Based Relaxation

Given the interbubble forces defined in the previous
section, we must now find a bubble configuration that
yields a static force balance. This is not a straightfor-

ward task, for two reasons: ( 1) the defined force is not

linear; and (2) strict geometric constraints are imposed
on each d .o.f. to keep a bubble on a specific curve or
surface. Therefore, a direct solution to the static force-
balance, such as the Newton-Raphson method of mul-
tidimensional root-finding, is not efficient. Instead, we
use dynamic simulation, assuming a point mass at the
center of each bubble and the effect of viscous damping.

Another reason for using dynamics to solve the force-

balancing equation is to obtain continuous remeshing
capability. Whenever the geometry and/or node spacing
is slightly modified, dynamic simulation automatically
produces a new stable configuration of bubbles close to

the original configuration. This feature is useful in, for
instance, structural analyses such as automobile crash
analysis and sheet-metal forming analysis, where the
geometry is continuously deformed.

The governing equation of motion of the ith bubble
is written as follows:

d’xi(t) + c, d~i(t)

‘i dtz ‘T =
fi(t)? i=l. ..n, (12)

where m, denotes the mass, G the damping coeffi-

cient, and xi the position of the ith d.o.f in object
space. Given the initial locations of the bubbles, we in-

tegrate the differential equations through time at each
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time step, using the standard fourth-order Runge-Kutta

method [14]. The integration process is repeated a fixed
number of times specified by the user, or until the sys-

tem reaches equilibrium, a state in which the distance
moved by the bubbles during one time-step in any d.o. f
becomes less than a given small value.

With the above equation of motion, one of the re-
maining tasks is to “design” a combination of physical
parameters, namely, the mass, the damping, and the
strength of the interbubble force. Though this require-
ment is not often mentioned in publications on physi-
cally based approaches, it clearly constitutes a very im-

portant issue, because the characteristics of the system
are all cieterminerl by the above parameters: if the pa-
rameters are not appropriate the system may be very

slow or oscillatory, or. in the worst case, totally unsta-
ble, It is thus vital to select the parameters so that the
system strikes a balance between stability and quick re-
sponse, For this purpose, we first find the representative
linear spring constant, k. for the non-linear interbubble
forces and then apply knowledge about the standard

second-order system consisting of a mass, a damper,

and a linear spring.
one degree of freedom of bubble motion is approx-

imated by the following equation of motion with the
equivalent spring constqrrt k, calculated from k. given
in the previous section:

Although stability and a quick response time are con-
flicting requirements for this second-order system, we
can strike a good balance between them if the damping
ratio is set around 0,7 [12]. Consequently, the physical
parameters of the bubble system should be chosen to
satisfy the following relationship:

<=-!--.0.7. (14)
2&

Note that the linear spring approximation mentioned

above is used only to determine good physical param-
eter values, and not to calculate the force in dynamic
simulation.

Having defined an equation of motion with a good
combination of physical parameters, we consider how to
confine bubbles to curves and surfaces. This is necessary

because bubble locations calculated by numerically in-
tegrating the equation of motion are not geometrically
compatible; that is, bubbles do not lie on the target
curves and surfaces.

Hence, the movement of bubbles must be corrected in
each time step. so that all the bubbles lie exactly on the
target geometries. To explain how to confine bubbles to
a curve, let us denote a geometrically compatible loca-
tion of the itb bubble on a curve as x,(t)in object space

and s(t) in parametric space, and an unconstrained dis-

placement from time t to time t + At as Ax, in object

space, calculated simply by integrating the equation of
motion. The correct, confined location of the bubble on

a curve is obtained as follows:

1.

2.

3.

4.

Calculate the unconstrained displacement vector
Ax, in object space.

Calculate the normalized tangent vector at the bub-

ble location at time t,&, where C’ = ~.

Take the dot product of the unconstrained displace-
ment vector and the normalized tangent vector, and
divide it by the length of the tangent vertor:

~, = A=, (;”
,’ (13)

IC’12

This value gives the corresponding displacement in
parametric space.

Using the displacement in parametric space, the

constrained bubbie location on a curve at time t +

At is recalculated as ml(t+ At) = C(s(t)+ As).

Bubbles are constrained to a surface in a similar
way, using two tangent vectors, S“ = v and
s,’ _ ~sgj~) , instead of C’ as in the case of a curve.

3.5 Adaptive Population Control

In order to pack a necessary and sufficient number
of bubbles within a domain, we devised an automatic
method for adaptively controlling bubble population.
This method examines a local bubble population, re-
moves ezcess bubbles which significantly overlap their
neighbors, and adds bubbles around open bubbles which

lack an appropriate number of neighboring bubbles.

In order to determine whether a bubble is excess or
open, the following overluppzng ratio, ~,. for the ~th

bubble is defined:

where x, is the location of the ith bubble in object space,
xl is the location of the jth adjacent bubble, and n is
the number of adjacent bubbles. This equation adds

the distances to which the double-sized ith bubble pen-
etrates or is separated from its neighboring bubbles. and

then divides the result by the original bubble radius.
In an ideal situation where uniformly sized bubbles

are tightly packed, the standard overlapping ratio of a
bubble on an edge is o = 2.0. that of a bubble on a
face is a = 6.0, and that of a bubble in a volume is
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~ = 12.o; these values correspond to the numbers of

neighboring bubbles. When the overlapping ratio for
the ith bubble is close to the above standard values, the
local bubble population there is appropriate. Too small
a ratio indicates that the bubble has significant gaps
around it, so that one or more bubble must be added in

the vicinity. Too large a ratio indicates that the bubble
population there is too high, and that the bubble must
be deleted. Figure 6 illustrates the relationship between
the overlapping ratio and the bubble population.

The adaptive population control mechanism recog-
nizes and eliminates the danger of deleting or adding
too many bubbles. For example, if two bubbles overlap
each other, each one is considered to have an overlap-
ping neighbor that should, theoretically, be deleted. If
this were done, however, both bubbles would be deleted,
leaving a gap. On the other hand, adding too many

bubbles between two open bubbles could be danger-
ous. The algorithm takes this “double-counting” into

account, however, and deletes or adds just the appro-

priate number of bubbles, usually only one out of every
few that would theoretically be required.

It is also important to note that the bubble popu-
lation check is performed automatically only when the
system of bubbles is relatively stable, that is, when the
maximum velocity of all bubbles is within a small vaiue.

With this adaptive population control mechanism,

none of the ill-shaped elements shown in Figure 2 are
likely to emerge because they are caused by significant
gaps and overlaps between bubbles.

4 Results and Discussion

Figure 7 shows an example of 2D mesh relaxation. In
this example, to show the effect of dynamic simulation
more clearly, initial bubbles are placed randomly with-

0 iterations

&=l.03

1 iteratbn

E= O.77

5 iterations

&= O.69

50 iterations

E= O.38

Figure 7: Physically-based mesh relaxation

out using hierarchical spatiaJ subdivision. As shown at
the top of Figure 7, such a random node configuration
produces many thin or flat triangles. The number of ill-
shaped elements is reduced as the bubbles move into a

force-balancing, or tightly packed, configuration. Given

a random initial configuration with topological irregu-
larity Et = 1.03, the irregularity is reduced to Et = 0.38
after 50 iterations of numerical integration of the equa-
tion of motion,

Figures 8 and 9 illustrate the result of surface-
meshing. Figure 8(a) shows a complicated node-spacing
function,

d(z, y, Z) =
1

(17)
c1 + sin(cz + xy)”

The initial bubble configuration in Figure 8 (b) was cre-
ated by hierarchical spatial subdivision, causing some
gaps and overlaps between bubbles. On account of these
gaps and overlaps, triangulation of the initial bubble

placement produces thin elements and flat elements in

the regions where the node spacing changes, as shown

in Figure 8(c). In dynamic simulation, however, as
the bubbles move into a force-balancing configuration
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(a) Node-spacing function

(a) Force-balancing node placement

(b) Initial bubble placement using

hierarchical spatial subdivision (b) Constrained Delaunay triangulation of

a force-balancing node placement

(c) Constrained Delaunay triangulation of

the initial node configuration

Figure 8: Initial bubble configuration and mesh

and their population is adaptively controlled, these ill-

shaped elements are smoothed out, as shown in Figures
9(a) and 9(b). Table 1 summarizes how the mesh irreg-
ularity is reduced in physically based mesh relaxation.

Figures 10(a) and 10(b) illustrate the close packing of
bubbles on a solid geometry and the resulting 3D mesh
created by constrained Delaunay tetrahedrization. In
this example, a constant node spacing is defined, yield-

Figure 9: Improved bubble configuration and mesh ob-
tained by using physically based mesh relaxation

Table I: Mesh irregularity minimization

r No. of iterations (1 10 50 100

Et (topological) 0.96 0.67 0.53 0.42

Eg (geometrical) 0,31 0.24 0.11 0.04

ing packed bubbles of a uniform size.

Figure 11 shows meshing of a simple non-manifold
geometry consisting of seven vertices, nine edges, five
faces, and one volume. After bubbles have been tightly

packed on these geometric entities, as shown in Figure
1l(a), their centers are connected to give a set of line
segments, triangles, and tetrahedral. Note that geomet-

ric compatibility is satisfied on ( 1) the joint-edge shared
by the volume and the dangling face, and (2) the joint-
vertex shared by the dangling face and the dangling
edge.

A rough estimate of the actual computational time
may be obtained from the fact that the initial bubble
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(a) Close packing of bubbles

(b) 3D mesh consisting of tetrahedral

Figure 10: Uniform tetrahedrization of a 3D solid

placement obtained by hierarchical spatial subdivision

is completed with in a few seconds for a system of up to
1000 bubbles on a typical engineering workstation such
as the IBM RS/6000, while the physically based mesh
relaxation for the same system requires 20 to 40 seconds
to converge. The mesh relaxation stage is more time-
consuming, because of the need to calculate interbubble
forces and overlapping ratios. While a naive pairwise
calculation of these costs 0(n2), where n is the number
of bubbles, it can be reduced to O(n log(n)) by (1) using
constrained Delaunay triangulation or tetrahedrization
to find adjacent bubbles, and (2) calculating forces and

overlapping ratios only between adjacent pairs of bub-
bles.

(a) Close packing of uniformly sized bubbles

(b) Mesh consisting of line segments,

triangles, and tetrahedral

Figure 11: Meshing non-manifold geometry

5 Conclusion

We developed a new computational method for physi-
cally based mesh generation. The novelty of the pro-
posed bubble method is that the close packing of bub-

bles mimics a Voronoi diagram pattern, corresponding
to well-shaped Delaunay triangles and tetrahedral. In
order to find a configuration of closely packed ID, 2D,
and 3D bubbles, two critical problems must to be solved:
(1) where to place bubbles for regular element shapes,
and (2) how many bubbles to inject to fill a region.

Our proposed solution to the first problem is dy-
namic simulation with attractive or repulsive interbub-
ble forces, a mass, and viscous damping effects. For the
second problem of finding the right number of bubbles,
we proposed an adaptive population control mechanism,

In actual implementation, the bubble method gen-
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mated node configurations that

shaped triangles or tetrahedral.
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