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1  Introduction 

Component layout plays an important role in the design and usability of many engineering 

products. The layout problem is also classified under the headings of packing, packaging, 

configuration, container stuffing, pallet loading or spatial arrangement in the literature. The 

problem involves the placement of components in an available space such that a set of objectives 

can be optimized while satisfying optional spatial or performance constraints.  

Whereas the technologies for circuit board and IC chip layout have advanced significantly 

during the past two decades and many commercial CAD tools have been available, the same is 

not to be said for three-dimensional mechanical layout methods and tools. While the number of 

components to be placed in a mechanical system is modest compared to that of a VLSI system, 

the increased combinatorial complexity over the two-dimensional layout problem and the 

geometric complexity of 3-D non-uniform components and container spaces make the mechanical 

layout synthesis a challenging task. Current tools available in practice to designers to aid in the 

general mechanical layout process mostly remain at the stages of physical or electronic models 

with the assistance of manual adjustment and visual feedback. The needs arising in the product 

layout and rapid prototyping for compact and complex products, quick turnaround time and 

efficient use of resources justify the development of effective layout synthesis methods for 3-D 

components of complex geometry. 

                                                           
1 Author of contact: (412) 268-3713, cagan@cmu.edu 
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The difficulty in automating the mechanical and electro-mechanical layout process stems 

from 1) the modeling of the design objectives and constraints, 2) the efficient calculation of the 

objectives and constraints, 3) the identification of appropriate optimization search strategies. 
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Figure 1. Major constituent parts for generic layout synthesis. 
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A number of design goals can be modeled as layout objectives. Simulations may be 

necessary to test the thermal, stress or vibration properties of the package. In addition, a set of 

constraints often has to be satisfied to ensure the applicability of the layouts. Efficient 

calculations of objectives and constraints are necessary to solve the layout problem in reasonable 

time since the analyses of objectives and constraints can be computationally expensive and a 

large number of evaluations may be required to achieve convergence. The search space of the 

layout problem is nonlinear and multi-modal, making it vital to identify a suitable algorithm to 

navigate the space and find good quality solutions. 

Figure 1 illustrates the major constituent parts for solving a generic layout problem. 

Geometric representations of components and the container space are necessary for the check of 

interference and clearance. Since the interference calculation between components of complex 

geometry is computationally expensive, different levels of detail may be desirable for coarse and 

refined evaluations at different stages of the problem solving process. The locations and 

orientations of components are the design variables to be determined. Rigid body transformation 

is utilized to record the position and orientation of each component in the global coordinate 

frame. The layout and packaging goals are usually formulated as objective functions. The 

objectives may reflect the cost, quality, performance and service requirements. Various 

constraints may be necessary to specify spatial relationships between components. A common 

constraint is no component overlap and no container protrusion. Other constraints may include 

the proximity or alignment between components. Topological connections are necessary if tube 

routing, for example, is involved in addition to the component placement. The specifications of 

components, objectives, constraints, and topological connections define a layout problem and an 

optimization search algorithm takes the problem formulation and identifies promising solutions 

by evaluating design alternatives and evolving design states. Analyses of objectives and 

constraints vary from problem to problem. However, the optimization search technique and 

geometric representation and the resulting interference evaluation are problem independent and 

are thus the focus for a generic layout tool. 

This paper examines the characteristics of the layout space and provides a survey of the 

current state-of-the-art in technologies for the three-dimensional layout problem. The paper is 

organized as follows: Section 2 shows a fractal analysis of the layout space and a continuum of 

optimization search algorithms as a basis for further discussions on various search techniques and 

their effectiveness. Section 3 reviews the optimization algorithms and geometric representations 

utilized in the layout problem, the advantages and limitations of different methods, and suitable 
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areas of applications. Section 4 discusses the key issues and strategies in building an effective and 

efficient layout synthesis tool. 

2 Layout Space Characteristics and Solution 
Approaches 

2.1 Spectral Density Analysis of the Layout Space 
It is generally agreed that the 3-D layout space is nonlinear and multi-modal. Deterministic 

algorithms are unable to navigate such a space for globally near-optimal solutions, and stochastic 

algorithms are usually required for solutions of good quality. Are there any properties or 

regularities of the space that might help explain why some search methods are more effective than 

others in the layout space exploration? While it is impossible to visualize the space in general 

since it is multi-dimensional and the design variables are coupled, an energy landscape approach 

is utilized here to show the characteristics of the 3-D layout space.  

Sorkin explored the effectiveness of simulated annealing algorithms on VLSI layout space 

(Sorkin, 1991, Sorkin, 1992).  He revealed that the space is fractal-like. A fractal is a geometric 

figure that has built-in self-similarity in which the figure repeats itself on an ever-diminishing 

scale (Peitgen and Saupe, 1988). Fractalness has strong connections to natural shapes such as 

coastlines, snowflakes, clouds, and mountains. A function f is fractal if the distribution of )( 'Xf  

conditional on )(Xf , X, and 'X , is normal with mean 0 and variance proportional to 

HXXd 2' ),( , where H is a parameter in (0,1) that represents the scaling property of the fractal 

space. Since this definition involves probability distribution that is difficult to check, a simpler 

measure of fractalness is to sample over random values of X and 'X for a given function f and 

check the satisfaction of the power-law relation:  

2HX),d(Xf(X)-)f(X' '])E[( 2 ∝ ,          (1) 

where E is the expectation of the function, d(X’, X) is  a function representing the distance 

between state X and X’, or the number of steps it takes to change a state from X to X’.  Equation 

(1) is the mathematical expression of the fractalness, or the self-similarity characteristics.  

The characteristics of the 3-D layout space are analyzed by following the practice 

discussed in Sorkin (1992). A random walk is taken on the 8-cube packing problem, where 8 
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identical cubes are packed into a container of 8 times the size of the individual cubes (Cagan et. 

al, 1998). A random walk is a sequence of points X(t) (t = 0, 1, 2, …) where X(t+1) is generated 

by a random move from X(t). The time-energy series and spectral density of the random walk are 

then examined. The energy (the objective function value) time-series f(X(t)) plot is shown in 

Figure 2 and its spectral density S(f) of the energy time-series f(X(t)) is generated using MATLAB 

and the statistics package S-Plus and shown in Figure 3.  
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Figure 2. Energy versus time-series plot of a random walk on a layout space. 
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Figure 3. Spectral density of the layout space energy time-series. 

The spectral density analysis is used to characterize the time correlations of sampling 

points from the random walk. It can be shown that the spectral density (Figure 3) of a random 

walk on a 3-D layout space has spectral energy which is power-law in frequency, as is reflected 

by the trend of a logarithmic slope (shown by the dashed line) of 
2f

1  holding down to the 

frequency of about 10Hz. Since a random walk is a fractional Brownian motion only if the walk 

steps are significantly smaller than the dimension of the space, the power-law relation applies 

only for the frequencies above a certain point. The fractalness of the layout space is thus inferred 

by the satisfaction of the power-law relation. 

As a comparison, a random walk is taken on the design space of a linear objective function 

(a 45° line) and its energy time-series and spectral density plots are shown in Figure 4 and Figure 

5 respectively. The characteristics of the random walk resembles those of a white noise since the 

energy time-series is uncorrelated from point to point and thus its spectral density turns out to be 
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flat, representing equal energy for all frequencies. In contrast, the energy time-series of a random 

walk on a 3-D layout space consists of more slow (low frequency) than fast (high frequency) 

fluctuations (Figure 3), and the power-law relation as shown in Eq. 1 is satisfied. 

 

Figure 4. Energy versus time-series plot of a random walk on a linear space. 
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energy 
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Figure 5. Spectral density of the linear space energy time-series. 

The layout space, then, as represented by the 8-cube problem, is clearly characterized as 

fractal-like. The implications are that deterministic, downhill search algorithms will generally 

converge to inferior minima. Thus stochastic algorithms are required to solve the general layout 

problem. 

2.2  A Continuum of Search Algorithms 
A continuum is shown in Figure 6 along which a variety of optimization search algorithms 

are placed according to the amount of randomness each method possesses, with deterministic 

methods such as gradient method (GM) on the one end, random search (RS) on the other. It is 

often necessary for an algorithm to have some degrees of randomness to escape from inferior 

local optima because of the fractalness of the layout space. However, too much randomness can 

make the search exhaustive and the convergence difficult to achieve. There is a trade-off between 

the amount of computing time invested and the quality of solutions obtained. While the amount of 

randomness appropriate for an algorithm is problem-dependent and related to the complexity of a 

design space and the expected quality of the design, the desired place for an algorithm on the 
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continuum should be somewhere close to the deterministic end, but have some stochastic 

characteristics. An arrow is placed in Figure 6 to represent a suitable place for the layout 

algorithm, which is not far from deterministic algorithms to ensure efficiency, but at the same 

time has stochastic elements introduced to enable global exploration.  
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Figure 6. A brief continuum of layout search algorithms. 

Various algorithms used in the layout problem are discussed in the next section. The pros 

and cons of each algorithm are summarized and the corresponding positions on the continuum are 

characterized. 

3  Literature Survey 

The layout problem can have different formulations, but it is usually abstracted as an 

optimization problem. An assignment of the coordinates and orientations of components that 

minimizes the cost and satisfies certain placement requirements is sought. The problem can be 

viewed as a generalization of the quadratic assignment problem and therefore belongs to the class 

of NP-hard problems (De Bont, et al., 1988). Consequently it is highly unlikely that exact 

solution to the general layout problem can be obtained in an amount of time that is bounded by a 

polynomial in the size of the problem, resulting in prohibitive computation time for large 

problems. Heuristic algorithms are typically used to generate acceptable solutions. 

Much of the literature concerns with simpler two-dimensional rectangular layout and three-

dimensional cuboid layout. Circuit board layout and glass or metal cutting applications are 

examples of 2-D rectangular layout. Shipping container stuffing and vehicle loading are typical 3-

D cuboid layout problems. 

While it is possible to solve rectangular layout problems with a small number of objects of 

a few sizes using linear programming or branch and bound approaches (Dyckhoff 1990), the 

combinatorial and geometrical complexity makes it hard to obtain optimal solutions to the general 
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3-D layout problem efficiently. Certain approximations of arbitrary shapes of objects may be 

necessary, and heuristics are often used to guide the search for good solutions.  

Recent research efforts have led to several approaches for the layout of 3-D objects of 

complex geometry. The genetic algorithm approaches (Ikonen et al. 1997), simulated annealing 

approaches (Kolli et al. 1996, Cagan et al. 1998), a hybrid approach using a combination of 

simulated annealing and expert systems (Hills and Smith, 1997), and an extended pattern search 

approach (Yin and Cagan, 2000a; Yin and Cagan, 2000b) are among the ones that have shown 

promise.  

This section reviews the related work in layout optimization, with a focus on the following 

two key aspects: 1) the optimization algorithms used for the exploration of the design space and 

the identification of good solutions; and 2) the geometric representation for 3-D components of 

complex shapes and the interference evaluation techniques. 

3.1 Layout Search Algorithms 
A variety of optimization algorithms have been applied to the layout problem. Some of the 

approaches may be efficient for specific types of problems, but often place restrictions on 

component geometry, allowable degrees-of-freedom, and the objective function formulation. 

Others are applicable to a wider variety of problems but may require prohibitively long 

computing time to solve even simplistic problems. Layout algorithms can be classified into 

different categories according to search strategies used for design space exploration. Heuristic 

rule-based algorithms, traditional optimization algorithms, genetic algorithms, simulated 

annealing algorithms, extended pattern search algorithms, and hybrid algorithms are discussed in 

this section. The emphasis is on the mechanical and electro-mechanical applications. The topic 

presented in this section corresponds to the building block of the optimization search algorithm 

shown in Figure 1. 

3.1.1 Heuristic Rule-Based Approaches 

Heuristic rule-based algorithms are often used in operations research to solve packing 

problems. Dowsland and Dowsland (1992) presented a survey of packing problems. The basis for 

heuristic rule-based algorithms is a set of rules to determine efficient packing of boxes into 

containers without any additional restrictions. Since the solution space is large, it is important that 

the search for good solutions is not so exhaustive as to require inordinate amount of computing 

time.  
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Heuristic rules are often derived from common sense or experiences and they can provide 

insights into the mechanisms behind efficient packing. For example, practical constraints such as 

load stability and ease of loading can be incorporated into the rules instead of being checked after 

the completion of the packing.  

Although heuristics can be fairly simple, the range of possible adjustments that may be 

utilized in order to provide improved packing can be considerable. It is clearly not possible to try 

all variations of all placement rules and it is difficult to know which are most likely to lead to 

effective packing for a specific problem. Since heuristics are likely to be domain-dependent, it is 

important to match one’s requirement to the heuristic’s capabilities.  

Wang (1983)  presented an approach to two-dimensional rectangular packing by 

successively “gluing” together pairs of rectangles to produce a set of feasible subsolutions. For 

the non-rectangular packing, the geometric complexity of placing the pieces directly onto the 

stock sheet is generally prohibitive. Adamowicz and Albano (1976) and Israni and Sanders 

(1985) proposed an approach to first nest the pieces into regular modules.  

The wall-building approaches (George and Robinson, 1980, Bischoff and Marriott, 1990) 

are the common methods to deal with 3-D cuboid packing problems. Sections of a container 

across the full width and height are packed first. Identical items are grouped together to develop 

layers. An ordering of boxes based on decreasing volume (Gehring et al., 1990) is used to develop 

layers.  

Dai et al. (1994) proposed a heuristic algorithm for the generation of three-dimensional 

non-cuboid packing. An octree representation (Dai and Cha, 1994a) was used to approximate the 

geometry of the components. The packing algorithm is based on the idea of matching the octree 

nodes to identify the proper order and orientation of the components. The objects are packed into 

the container sequentially and only rotations of multiples of 90 degrees are allowed. The method 

is quite effective in cases where the total volume of packed items is much smaller than that of the 

container but not for problems with tight packing.  

Heuristic algorithms are deterministic methods that are efficient for specific types of 

problems. However, it is difficult to generate rules applicable for components of irregular shapes 

or optimize objectives other than the packing density. These algorithms are typically 

deterministic, falling to the left on the continuum of Figure 6. 
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3.1.2 Traditional Optimization Approaches 

Traditional optimization algorithms, such as branch & bound methods, linear programming 

methods and gradient-based algorithms, can be used to solve a narrow class of packing problems 

efficiently.  

Scheithauer and Terno (1995) presented a branch & bound algorithm to compute optimal 

solutions for instances of the one-dimensional cutting stock problem, where the objective 

function and constraints are linear functions of the design variables. Beasley (1985) proposed a 

linear optimization method with 0/1-variables for the two-dimensional non-guillotine cutting 

problem of rectangular objects using a Lagrangean relaxation and a subgradient iteration to 

compute upper bounds. Only translations of the objects are allowed in these methods. Models for 

the general cases where rotations are used are not linear. For packaging applications, except some 

simpler problems (such as the 1-D bin-packing problem), it can be challenging to find a feasible 

solution to start with. The performance of the algorithm degrades as the problem size increases. 

Gradient-based algorithms use gradient information in seeking the optimal solutions. By 

calculating the gradient of the objective function and then searching in the negative direction, we 

can limit the search to a specific direction. Since the objective function is often nonlinear, a new 

direction at a new state needs to be calculated and the process to be repeated a number of times. 

The gradient information provides some insight into choosing reasonable search directions. In the 

cases where analytical gradient information is unavailable, finite-difference approximations may 

be used.  

Landon and Balling (1994) used gradient-based methods to place and orient 3-D solid 

objects within containers according to spatial and mass property criteria. The gradients of the 

mass properties are calculated by differentiating the appropriate formula with respect to the 

design variable being considered. The objects are modeled using a boundary representation. The 

minimum separation distance between a pair of objects is found by searching for the closest two 

points within the two respective solids. The interference distance is calculated as the distance by 

which an object needs to translate away from the other object in a specified direction until the two 

objects barely touch. Both distances are computed by solving a constrained optimization problem. 

Newton’s method is used to return to the constraint boundary.  

Kim and Gossard (1991) formulated the packaging task as a constrained optimization 

problem. The objective function is an aggregate “energy” function composed of packaging goals 
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and penalty functions. Packaging goals can be described as spatial relationships among 

components. Two common spatial relationships are near and far relationships. They can be 

conceptualized as a translational spring attached to the two objects. The near relationship tends to 

move an object toward another object, and the far relationship holds when the spring behaves like 

a repulsive spring. The near relationship is useful for a compact package and far relationship is 

applicable when an object may be influenced by proximity to another object such as through heat 

transfer or electromagnetic interference. The coplanar, coaxial and parallel relationships are 

represented as equality constraints. This formulation of the packaging problem results in an 

underdetermined system containing more variables than equations. Variables that are not 

determined by equality equations are computed through energy minimization.  

In Kim and Gossard’s work, the solid modeler uses a dual representation of the objects: a 

boundary representation and a constructive solid geometry (CSG) tree. The boundary 

representation is useful for specification of constraints and the CSG tree’s half-space 

representation specifies a solid by unions and intersections of multiple half-spaces. The 

interference between objects is approximated by the translation necessary to eliminate the 

interference. The non-interference constraint as an energy function can be minimized but may not 

be avoided entirely. When the number of objects is large and spatial relationships are complex, 

the computational problems of convergence and efficiency may arise and the constraint 

management can be difficult.  

Gradient-based algorithms are deterministic methods (to the far left on the continuum 

shown in Figure 6) that can significantly reduce the computation time required to converge to an 

optimal solution by limiting search to promising directions. However, the solution is only the 

nearest local optimum with respect to the initial design. Multiple runs from different starting 

points may be necessary because of the fractalness of the layout space. When explicit gradients 

are not available, which is the case for many layout problems, forward difference approximations 

may not be accurate and thus may have misleading effects on the search.  

3.1.3 Genetic Algorithms 

Genetic algorithms (GAs) are search algorithms based upon natural selection. The first step 

in using GAs is to code the problem space. The design variables are mapped into chromosomes 

by a fixed length string of symbols. It is assumed that each individual string represents a unique 

point in the search space. In each iteration of the search process, a population of strings that 

represent a family of the current possible solutions is maintained. The selection, mutation and 
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crossover operators are used to create the new generation of solutions. A fitness function 

evaluates the designs and decides which will be the survivors into the next generation. Selection 

is accomplished by copying strings from the last generation into the new generation based on a 

fitness function value. Mutation is the process of randomly changing one bit of information in the 

string and it prevents GAs from stagnating during the solution process. Crossover is responsible 

for introducing most new solutions by selecting two parent strings at random and exchanging 

parts of the strings.  

GAs have been used in VLSI placement and routing (Schnecke and Vornberger, 1996; 

Cohoon and Paris, 1986) and two-and-a-half dimensional cuboid packing (Wodziak and Fadel, 

1994). Dighe and Jakiela (1995) used GAs to pack 2D polygons by "dropping" them into a 

container.  Ikonen et al. (1997) used GAs to pack 3-D non-convex objects into a cylindrical 

container for rapid prototyping. In his approach, three pieces of information are represented: 1) 

the order in which parts are placed; 2) the orientation of each part; and 3) how parts spatially 

relate to each other. Each chromosome is a list of three sublists of integers. The first sublist is a 

permutation of part numbers being packed. The second sublist is the orientation list, which 

indicates the rotation of each part. To reduce the search space, the number of allowed rotations is 

restricted to 45-degree increments around each coordinate axis. The third sublist is the list of pre-

defined attachment points on the previous part in the permutation sublist the current part is 

attached to. Crossovers are used between the same type of sublists and a higher mutation rate is 

used for the orientation list to prevent some orientation values leading to a non-promising packing 

from being removed from the gene pool too soon. The fitness function uses a penalty-function 

method where infeasible solutions are given a penalty to indicate how much the defined 

constraints are violated. The calculation of intersection between objects is based on the 

intersection of triangles on the tessellated surfaces of the objects. To reduce the number of 

triangles to be checked in the intersection calculation, the bounding boxes of the objects and 

triangles are checked first for intersection.  

The search space for layout is highly discontinuous and multi-modal. How well a genetic 

algorithm does on such a space depends on the evaluation function used and how well it is able to 

differentiate between promising and poor solutions. It has been observed that even a small change 

in the weight factors of the evaluation function can make a big difference to the results a genetic 

algorithm is able to obtain. A small change in a chromosome can also make a great difference in 

the packing solution. For example, layouts with objects slightly disoriented from a good packing 

plan can produce a very low score. Also, it is not easy to choose good mutation and crossover 
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rates to make the algorithm converge properly. The intersection calculation based on pairs of 

triangles is accurate, but may be very slow when the objects are of complex shape and thus the 

number of surface triangles is numerous. Further, the process would be more complicated if 

arbitrary rotations of objects were considered.  

GAs are stochastic algorithms that have a lot of randomness built in; thus they are placed 

close to the random end on the continuum. They are zero-order algorithms that require function 

values only. They are reliable and can deal effectively with non-smooth and discontinuous 

functions. The price paid for this generality is that these methods often require a large number of 

function evaluations to achieve an optimum, even for the simplest of problems. Therefore, they 

are considered most useful for problems in which the function evaluation is not computationally 

expensive. The strength of GAs is their robustness, which is mainly caused by the fact that they 

deal with a sample of candidate solutions at a time and utilize probabilistic transition rules. 

However, the coding and decoding processes can be very long if the number of objects is large. 

Also, there are often limitations in the processes to make the search space manageable.  The 

quality of solutions is dependent on the weight factors in the evaluation function and the relative 

ratio of the selection, mutation and crossover operators, however it is not obvious how to choose 

the values that can lead to a good solution for a specific problem. 

3.1.4 Simulated Annealing Algorithms 

Simulated annealing (Kirkpatrick et al. 1983) is a generally applicable stochastic technique 

based on the analogy between simulating the metallurgical annealing process and solving large 

combinatorial optimization problems. Within the algorithm an initial design state is chosen and 

the value of the objective function for that state is evaluated. A step is taken to a new state by 

applying a move, or operator, from an available move set. This new state is evaluated; if the step 

leads to an improvement in the objective function, the new design is accepted and becomes the 

current design state. If the step leads to an inferior state, the step may still be accepted with some 

probability. This probability is a function of a decreasing parameter called temperature, based on 

an analogy with the annealing of metals, given by: 

T
ÄC

accept eP
−

= ,           (2) 

where ∆C is the change in objective function due to the move and T is the current temperature. 

The temperature starts out high and decreases with time.  Initially, steps taken through the state 
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space (and therefore the objective function space) are almost random, resulting in a broad 

exploration of the objective function space. As the probability of accepting inferior steps 

decreases, those steps tend to get rejected, allowing the algorithm to converge to an optimum 

once promising areas of the objective function space have been found. 

Applications of SA algorithms require specifications of three distinct items (De Bont et al. 

1988): 1) a concise problem representation; 2) a transition mechanism; and 3) a cooling schedule. 

The problem representation consists of a configuration representation and an expression for the 

cost function. The cost function represents the cost effectiveness of different layouts. The 

transition mechanism generates a new configuration from a current one. The difference in cost 

between the two configurations must be calculated and a decision is made whether or not the new 

configuration is to be accepted. The cooling schedule is used to control the temperature in the 

algorithm, and specify the starting value, decrement function, length of generation and the 

stopping criterion.  

Simulated annealing algorithms have shown great success in circuit layout (Sechen, 1988; 

Wong, et al., 1988; Rutenbar, 1989; Hustin and Sangiovanni-Vincentelli, 1987) and significant 

work in the mechanical component layout area was motivated by the circuit layout technology. 

Jajodia, et al., (1992) presented a solution to inter-cell and intra-cell layout problems using SA, 

which addressed the relative placement of equal-dimensional manufacturing entities within a 

discrete solution space in an attempt to minimize the total material flow between these entities. 

The performance of the SA algorithm was compared to other facility layout methods and shown 

to yield either equal or better quality for each of a set of classical test problems. The quality of the 

SA approach is insensitive to the initial starting states.  

Cagan (1994) presented an approach using a combination of shape grammars (Stiny, 1980) 

and simulated annealing to solve the constrained geometric knapsack problem. A 2-D packing of 

half-hexagons into knapsacks of various shapes is solved in polynomial time and space 

complexity.  

Szykman and Cagan (1995, 1997) extended the technology from 2-D VLSI to 3-D 

mechanical and electro-mechanical layout. Their approach can deal with blocks and cylinders 

with rotations constrained to multiples of 90 degrees. A perturbation-based approach was used in 

which infeasible states with component overlap and constraint violations were allowed and 

penalized. The move set includes translation, rotation and swap moves. An adaptive annealing 
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schedule (Huang et al., 1986) was used to control the temperature, and a probabilistic move 

selection strategy (Hustin and Sangiovanni-Vincentelli, 1987) was used to choose moves based 

on their prior performance. The objective function consists of a weighted sum of multiple 

performance measures. Several types of spatial constraints that are characteristic of layout 

problems are defined. These include the global and relative constraints on component locations 

and orientations.  

An integrated approach to 3-D layout and routing was introduced in Szykman and Cagan 

(1996) and Szykman et al. (1998). Routing problems are abundant in engineering applications 

such as routing of pipes, wires and air ducts. The routing cost can be influential in the 

manufacturing of certain products such as HVAC (Heat, Ventilation and Air Conditioning) 

products. Taking the routing cost into account during the component placement stage of the 

layout could significantly improve the quality and reduce the cost of the product layout.  

The specification of a routing task consists of locations of a pair of terminals that must be 

connected for each route. The routing moves include adding, removing, or relocating a bend. The 

adding move selects a route and inserts a new bend at a random location. The remove move 

selects a route and randomly deletes one of its bends. The relocation move changes the location of 

a bend by moving it along a direction by some distance. The layout and routing are carried out 

concurrently. In addition to the layout cost terms, the routing cost (route length and number of 

bends) and the component-route intersection penalty terms are included in the objective function. 

The experiments showed that concurrent layout and routing results in superior solutions over the 

typical layout-then-route approach.  

Kolli et al. (1996) extended the work of Szykman and Cagan by relaxing the restrictions on 

component geometry and rotations. The component geometry can be imported from 

commercially available CAD packages and octree representations are used for quick interference 

evaluation between components of complex shapes. The octree resolution level to be used at a 

particular stage of the annealing algorithm can be adjusted to make the algorithm more efficient. 

At higher temperature, the annealing process essentially performs a random walk through the 

design space and hence does not require a very accurate estimate of the objective function. At low 

temperatures the probability of accepting an inferior state is much lower and only moves that lead 

to a better state are likely to be accepted, thus more accurate evaluations are necessary. Several 

test problems are solved, which include the cube packing and cogwheel packing problems. Cagan 

et al. (1998) further extended the work to include constraint satisfactions. 
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Simulated annealing is a general method for a wide variety of combinatorial problems. The 

method is flexible as well as powerful. Sorkin (1991) has revealed that the behavior of simulated 

annealing depends heavily on the “energy landscape” associated with the optimization problem. 

The success of annealing relies on the overall energy difference of collections of states being 

large compared with the barriers dividing these collections. A large number of evaluations are 

necessary for SA to converge to good solutions. When the objective function is complex, the 

computation can be expensive and time-consuming. Certain approximations of the actual analyses 

may be necessary in order to obtain solutions in reasonable time. Campbell et al. (1997) used a 

hierarchical heat transfer analysis to reduce the computational time of the placement of heat 

generating electronic components.  

SA algorithms are essentially random during the initial stages of the search and become 

more deterministic as the temperature decreases. SA algorithms can be placed near to but to the 

left of GAs on the continuum. 

3.1.5 Extended Pattern Search Algorithms 

Pattern direct search algorithms are a subset of direct search algorithms introduced by 

Hooke and Jeeves (1961). Direct search methods are defined as the sequential examination of trial 

solutions involving comparison of each trial solution with the “best” obtained to that time 

together with a strategy for determining (as a function of earlier results) what the next trial 

solution will be. Torczon and Trosset (1997) surveyed the history of pattern search methods and 

provided some practical suggestions for utilizing them. The search algorithms follow a series of 

exploratory moves defined by pattern matrices to walk through the design space and search for a 

stationary point. They rely exclusively on direct comparisons of function values during the search 

and thus provide a tool suitable for the exploration of a design space that is nonlinear and 

discontinuous, as is the case of the layout problem.  

A basic pattern search method proceeds as follows: An initial state is chosen, and the 

objective function for that state is evaluated. A step is taken to a new state by applying a move 

along a pattern direction by a specified step length. The objective function is evaluated again at 

the new state. The two evaluations are compared, and the better one is chosen; the corresponding 

state is accepted as the current state. The search continues from the current state along the next 

pattern direction, following the same criteria of the new state acceptance. After an iteration of 

explorations along all the pattern directions, the step length is either carried into the next iteration 

if at least one previous move has led to a better new state, or scaled by a factor that is less than 1. 
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The search stops when the step length is smaller than a pre-specified tolerance. Individual pattern 

search methods are characterized by the choices of exploratory moves by which the search 

directions and step size are defined.  

Pattern search methods exhibit several attractive features that suggest they can be the 

methods of choice for nonlinear and non-smooth optimization problems. First, they are gradient-

related methods, but they do not rely on the evaluation of derivatives. This is desirable for the 

cases where derivatives are either unavailable or unreliable. Secondly, pattern search methods 

have good global behavior: a stationary point can be located by starting from an arbitrary initial 

point. Finally, pattern search methods are straightforward and easy to use, which makes 

implementation and parameter tuning a simple task. 

Compared to the probabilistic hill-climbing methods of simulated annealing, pattern search 

methods explore the design space in a more restrictive manner. The moves are allowed only along 

the pattern directions. The step sizes are updated according to certain rules, with large steps used 

early in the search and scaled down gradually during the search. These enable pattern search 

methods to converge with fewer evaluations than simulated annealing does. But the greedy search 

methods of pattern search cannot prevent the solution from being trapped in the inferior local 

optima. Extensions need to be introduced to make the algorithm stochastic and enable it to escape 

from inferior optima for a better design. 

Five extensions (Yin and Cagan, 2000a) were introduced to the basic pattern search 

algorithm to address the characteristics of the layout problem and help convergence to good 

quality solutions. The extensions include: randomized search orders, constraint related search 

directions, occasionally allowed step-jumps, strategically used swapping moves, and judiciously 

chosen hierarchical models. The extended pattern search layout algorithm was applied to a series 

of test cases and industrial applications (Yin et al., 1999) and shown one-to-two orders of 

magnitude improvement in speed over a robust SA algorithm for solutions of equivalent quality. 

Various pattern search heuristics have been incorporated into the algorithm to guide the search 

along promising directions (Yin and Cagan, 2000b). 

The extended pattern search algorithm moves components through the design space, 

evaluates the design states, and makes decisions about the exploratory moves. The moves are 

allowed only along certain directions defined by a pattern direction set. The pattern directions can 

be updated according to the effectiveness of previous moves. The translation moves and rotation 
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moves are interlaced. The swap moves are used only if a loop of translations and rotations at a 

given step size fails to generate any improved state, creating a better chance for the search to 

continue from a better design state. The order of selecting components for exploratory moves and 

the search directions to move along is randomized, making the sequence of the moves less 

deterministic to avoid getting trapped into certain local minima. The step size starts to be large 

and is generally decreased over time. The search stops when a pre-specified minimal step size is 

reached. Step jumps may be used to allow occasional increase in the step size that essentially 

combines the local and global explorations and makes the search more exhaustive by delaying the 

satisfaction of stop criteria. New design states are accepted as the current states whenever an 

improvement in the objective function occurs, and the original state is retained if no such 

improvement is found.  

The extended pattern search algorithm is more deterministic than SA algorithms in terms 

of the move direction, step size, and new state acceptance. However, it has stochastic elements 

that help navigate the fractal space. It places no restrictions on objective function formulation and 

thus is a generally applicable method, found left of center on the continuum.    

3.1.6 Hybrid Approaches 

Hybrid approaches take advantage of two or more search algorithms and combine them in the 

problem solving. Dai and Cha (1994b) presented a hybrid approach of heuristic rules and neural 

network algorithms to solve the two-dimensional rectangular layout. The 2-D packing problem is 

mapped to a Hopfield neural network in which the heights and widths of the rectangles 

represented by neurons and the unused area represented by an energy function. The heuristic rules 

are based on the algorithm proposed by Coffman and Short (1990) to decide the packing order 

and the orientation of the rectangles.  Dai and Cha’s hybrid method was compared to three other 

approaches: a pure heuristic method, a mixed discrete optimization method, and a simulated 

annealing method. The pure heuristic algorithm has high stability, needs little computing time, 

and is very robust in finding feasible solutions. However, it rarely gets superior quality solutions. 

The performance of the mixed discrete optimization algorithm is poor and time-consuming 

because of the existence of a large number of local minima for the packing problem. The 

simulated annealing algorithm has the potential to get arbitrarily close to a global optimum, but is 

terribly slow (note, however, that the authors did not discuss the type of annealing schedule they 

had used; our conjecture is that they used a simple vanilla annealing schedule that would not 

perform well). The hybrid method can find a good solution in reasonable time. The disadvantages 



 21

of using artificial neural networks include their strict demands on the format of the energy 

function and the difficulty in network parameter adjustment.  

Smith et al. (1996) described an application using a combination of a simulated annealing 

method and a knowledge-based system technique for spatial layout. Conflicting requirements 

such as the usage of space, routings and adjacencies need to be negotiated in the design. The 

knowledge-based system represents the design engineer's expertise to formulate problem 

specifications and evaluate candidate solutions. The SA algorithm is used to generate initial 

layout configurations for later manipulation by the knowledge-based system. A cellular 

decomposition of the entire placement space is used. Because of this grid-like layout, non-

orthogonal rotations and translations of non-unit factor are not permitted, limiting the permissible 

packing density. 

The hybrid methods are placed around the center on the continuum: the neural network 

algorithm and the SA algorithm introduce randomness into the layout process while the heuristic 

rules and the knowledge system make the methods less stochastic. 

3.1.7 Summary 

Various layout algorithms are reviewed in this section. The continuum appeared in Figure 

6 is shown again in Figure 7, with the positions for different algorithms marked. 
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Figure 7. A detailed continuum of the layout search algorithms. 

As a recapitulation, heuristic rule (HR) based algorithms and gradient methods (GM) are 

deterministic methods that are efficient for specific types of problems, but the solutions are likely 

to be inferior local optima. Simulated annealing algorithms (SA) and genetic algorithms (GAs) 

are stochastic methods that are applicable to a wide variety of problems. However, the large 

amount of randomness makes the methods inefficient. Hybrid methods (HB) use stochastic 
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methods to navigate the space and heuristic rules or knowledge-based systems to reduce the 

search space, thus they are placed in the center on the continuum. The extended pattern search 

(EPS) algorithm incorporates stochastic elements into an otherwise deterministic pattern search 

method and thus is placed towards the deterministic end on the continuum.    

3.2 Geometric Representation and Interference Detection 
For the general three-dimensional layout/packaging problem, components can be of 

complex geometry and the container space may not be substantially larger than the combined 

spatial occupation of the components to be contained. For better exploration of the search space, 

it is often desirable to allow objects to move through each other and penalize the degree of 

overlap to drive the design into a feasible region. Since the interference calculation is performed 

in each iteration and a large number of iterations are necessary for convergence to a good 

solution, it is vital to choose an appropriate geometric representation scheme and an efficient 

intersection detection algorithm. 

Interference detection is a key issue to many applications such as computer animation, 

virtual reality and robotic path planning. The solution strategy for this difficult problem has to be 

decided considering a trade-off between accuracy and speed. In this section, the generic 

representation schemes of 3-D geometry that are amenable in the layout and packaging 

applications are reviewed. These include the boundary representation, the constructive solid 

geometry, and the bounding volume and multi-resolution models. The topic in this section 

belongs to the component representation, which is a part of the building block of the components 

in Figure 1. 

3.2.1 Boundary Representation 

A boundary model represents the boundary surface of a three-dimensional object as a 

collection of geometric entities such as vertices, edges, and faces. The data structure is based on 

graphs that represent connectivity of the entities. The interference detection is through the pair-

wise intersection tests between lines and faces on the tessellated boundary surfaces. Boundary 

models are the most popular internal representation of three-dimensional geometry in commercial 

solid modeling systems. However, we often need to convert a boundary model to another 

representation suitable for efficient intersection detection. The popular boundary representations 

include vertex-based polygon models, edge-based boundary models, and winged-edge models.  
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The simplest representation of a solid surface is a vertex-based polygonal model consisting 

of lists of vertices and polygonal faces. If a face has holes, it has to be subdivided into a set of 

simpler polygons with no holes. This representation has been widely used in many computer 

graphics file formats. It stores an unordered list of vertices and an unordered list of faces, and 

each face is represented as an ordered list of boundary vertices. It is important that boundary 

vertices are ordered consistently, i.e., either counter-clockwise or clockwise, so that an 

intersection detection algorithm can tell which side of a face is outside. This vertex-based model, 

the simplest representation of solid objects, gives sufficient information to calculate intersections 

between two solids. In the latest version of the virtual reality modeling language, VRML2, 

collision detection is automatically performed between two solids represented using 

IndexedFaceSet, which is essentially a vertex-based polygon model. 

A vertex-based polygonal model does not have edge entities explicitly in its data structure. 

This is because we assume that all the edges are straight lines and that all the faces are planar 

faces. If these assumptions do not apply, edges should be explicitly represented in the data 

structure so that the geometric information of a curved edge can be associated with each edge 

entity in the database. 

An edge-based boundary model consists of: 1) an unordered list of vertices, 2) an 

unordered list of edges, each of which has an ordered pair of two end vertices, and 3) an 

unordered list of faces, each of which has an ordered list of edges.  

While the vertex-based models and edge-based models are sufficient and convenient for a 

simple rendering system, higher level geometric operations such as Boolean set operations and 

intersection detection can benefit from more information on the topological connectivity among 

the geometric entities. Although this same information can be derived from a vertex-based 

polygon model or an edge-based boundary mode, if the information is required repeatedly in 

performing geometric operations we can save computational time for the operations by explicitly 

representing this information on the topological connectivity.  

How much topological information should be represented? If we represent too much 

information, maintaining and updating such information can become a computational bottleneck. 

The optimal choice of how much information should be stored in the data structure depends on 

the types of geometric operations we perform, but in many geometric operations like intersection 
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detection the so-called “winged-edge” data structure and its variations are known to be good 

choices. 

Baumgart first introduced the winged-edge data structure in his Ph.D. thesis (Baumgart, 

1974) as a convenient data structure for polyhedral objects for computer vision. It is a kind of 

edge-based data structure, but each edge entity has more pointers to: 1) the two end vertices; 2) 

four adjacent edges; and 3) two faces that share the edge.  

3.2.2 Constructive Solid Geometry Representation 

In constructive solid geometry (CSG), a solid is represented as a combination of primitives, 

or building blocks, such as cuboid, cones, cylinders, spheres, tori, prisms, and so on. The 

motivation for decomposing a component into a set of primitives is that the intersection tests 

between the simple-shaped primitives are much faster than the tests between the complex original 

geometry. Three essential elements of CSG besides primitives are: 1) rigid transformation, 2) 

regularized Boolean set operations, and 3) binary tree structures (Mortenson, 1997).  

Primitives are first scaled based on specified dimensions, then transformed by a rigid 

motion, or a combination of translations and rotations, and finally merged together by regularized 

Boolean set operations: 1) union, 2) intersection, 3) difference, and 4) complement. Because the 

final geometry changes depending on the order of the operations performed, this order of 

operations is stored in a binary tree structure. CSG is conceptually straightforward and many solid 

modeling systems use the representation as one of the modeling user interfaces.  

3.2.3 Bounding Volume and Multi-Resolution Representation 

The exact interference calculations using the boundary representation or CSG 

representation may not be computationally efficient since the number of pairs of primitives on the 

tessellated surfaces or primitives in CSG representation can be huge if the components are of 

complex geometry and in close proximity. The bounding volume and multi-resolution models are 

often used to approximate the actual geometry and perform the intersection detection quickly 

without significant compromise in accuracy in order to solve the problem in reasonable time. 

Further, hierarchical models work well in stochastic layout methods in that more accurate 

interference analysis can be done at lower levels of the hierarchy while rough analysis useful in 

the early stages of these algorithms can be done at higher levels. The most often used bounding 

volume and multi-resolution representations include sphere tree, octree, and OBB tree.  
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The key to the sphere tree representation is that the symmetries of an object around its 

skeleton suggest ways to place spheres for a tight approximation. Hubbard (1995) used sphere 

hierarchies to compute time-critical intersection detection in a virtual environment. The first step 

in the sphere-tree construction is to build the medial-axis surface (Goldak et al., 1991) or skeleton 

of the object. The method distributes points over the surface of the object and builds Voronoi 

diagrams for the points. The corners of the Voronoi cells define the centers of spheres that closely 

fit the object. Repeatedly merging adjacent pairs of spheres reduces the number of spheres for a 

desired level of detail. For each pair of objects whose bounding spheres have intersection, the 

intersection detection method descends the pair’s hierarchies and tests only child spheres whose 

parents intersect.  

Using spheres as the basis of approximation (Hubbard, 1996; Palmer and Grimsdale, 1995) 

works well in a wide range of situations. Spheres are rotationally invariant, which makes the 

testing computationally efficient. However, broad, flat objects may pose problems in that many 

spheres are necessary to approximate such objects. Also, the pre-process that builds the medial-

axis surface is difficult to implement and slow to run.  

Octrees represent a solid using spatial-occupancy enumeration (Mortenson, 1997). The 

representation starts with an axial-aligned bounding box of the original object, and the box is 

recursively subdivided into eight octants. If any of the resulting octants is full or empty, there is 

no need to subdivide it further. The partially full octants are recursively subdivided until the 

resulting octants are full or empty, or until a pre-specified level of resolution is reached. 

The cost of testing a pair of octants for interference is small and the degree of interference 

is easy to quantify, which is desirable for fast interference evaluation. However, for some 

geometry, such as a set of long-thin oriented polygons, it may take more levels of octrees to fit 

the object tightly. 

An oriented bounding box (OBB) tree (Barequet, et al., 1996) is a rectangular bounding 

box at an arbitrary orientation.  The primary motivation for using OBB is that, by virtue of their 

variable orientation, they can bound a geometry more tightly than octrees and sphere trees. 

Therefore, fewer levels of an OBB tree need to be traversed to process the collision detection for 

objects in close proximity. Gottschalk et al. (1996) developed efficient algorithms for computing 

the hierarchies of tight-fitting OBBs for unstructured models and for the rapid checking of the 

overlap between two OBB trees.  
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The placement of a tight fitting OBB around a collection of polygons makes use of first 

and second order statistics summarizing the vertex coordinates. Two of the three eigenvectors of 

the covariance matrix are used to determine the axes along which the box is aligned. After the 

tight-fitting OBBs are computed, they are represented hierarchically using a top-down approach, 

which subdivides the longest axis of a box and partitions the polygons according to the splitting 

axis. The overlap test between two OBBs uses a separating axis theorem, which projects the 

boxes onto a set of axes. An axis is called a separating axis if the intervals by the projection of 

two boxes do not overlap. Two objects are disjoint if at least one separating axis exists. OBBs are 

efficient for detecting interference, but it is difficult to quantify the degree of interference. 

It is clear that no hierarchical representation gives the best performance all the time. The 

total cost of interference detection varies considerably with the relative placement of the objects. 

The choice of the primitive shapes to construct a hierarchical tree is governed by two conflicting 

constraints. On the one hand, the model should fit the original object as tightly as possible. On the 

other hand, testing two such models for overlap should be as fast as possible. Simple primitives 

like spheres and octrees do very well with respect to the second constraint. However, they cannot 

fit long, thin objects tightly. OBBs provide tight fits, but checking for overlap between them is 

more expensive. Generally speaking, when objects are far apart, hierarchical representations 

based on spheres and octrees work well in practice, while OBBs are more computationally 

efficient when two objects are in close proximity.  

4 Conclusions 

Various optimization search algorithms and their representative layout implementations are 

summarized in this paper. Heuristic rule-based approaches and traditional optimization techniques 

can be used to solve a narrow class of layout problems efficiently, but they are not suitable for 

problems with nonlinear, non-differentiable objective and constraint functions. Stochastic 

algorithms such as GA and SA algorithms are applicable to the general layout problem. However, 

a large number of iterations may be necessary to achieve good convergence and the computation 

can be expensive if the objective function evaluation is time-consuming. 

How much randomness should a layout algorithm contain? On the one hand, it is beneficial 

to make use of the gradient information and go along with the downhill directions until an 

optimal solution is found. On the other hand, it is very unlikely that a solution so found is of good 

quality because of the multi-modal and fractal-like design space. A proper balancing of 

deterministic and stochastic search techniques is necessary for the efficient and effective 
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exploration of the layout space. The extended pattern search algorithm demonstrated substantial 

time-savings over a robust SA algorithm while obtaining good quality solutions through such a 

balancing. The algorithm achieves efficiency by reducing the number of search directions to a 

minimal size while still maintaining a sufficiently rich set of search directions to capture the 

direction of steepest descent. The step size adjustment and the swap moves allow some “jumping 

around” in the layout space to address its fractal characteristics. Domain-specific knowledge and 

heuristics can be incorporated into the algorithm to help reduce the search space and improve 

efficiency. 

Geometric representation and interference detection are an important part of the design 

evaluation for the layout of 3-D components of complex geometry. While there is no single 

representation that performs best for all cases of interference tests in the layout/packaging 

problem, it is recommended to consider the following observations in choosing a geometry 

representation most suitable for a specific problem: 

• In virtually all cases, the usage of some kind of bounding volumes will help reduce the 

computational cost of interference tests; 

• Unless a component’s geometry is identical to that of the bounding volume, box or 

sphere, use hierarchical versions of bounding volumes; 

• If a component’s geometry has a strong directionality, or is aligned to the three 

orthogonal axes for example, as in the case of most automobile components, use octrees 

for computational efficiency and representation simplicity; 

• If a component’s geometry is arbitrarily shaped and its orientation is not axis-aligned, use 

oriented, hierarchical bounding volumes, such as OBB trees and spherical trees; 

• When arbitrarily shaped objects need to be tightly packed, it is more efficient to use 

polygonal models in addition to bounding volumes. A rough interference test should 

follow using bounding objects, while a detailed interference test should be performed 

using a polygonal model; 

• The levels of detail of polygon models should be decided based on how tightly the 

objects need to be packed. 
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Regardless of the types of geometric representations chosen for specific applications, the 

corresponding interference testing routines can be interchangeable for a general layout algorithm.  

A great deal of research efforts has been devoted to the development of computational 

layout approaches and technology is now available for the automated layout synthesis. Future 

research directions include the incorporation of domain-specific knowledge into the layout 

algorithm to make the problem solving process more efficient and the creation of seamless 

interfaces with solid modelers and analysis packages to facilitate the use of the layout tools in 

practice.   
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