
THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY
Int J Med Robotics Comput Assist Surg 2007; 3: 323–335. ORIGINAL ARTICLE
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcs.162

Cost- and time-effective three-dimensional
bone-shape reconstruction from X-ray images

Murat Gunay
Mun-Bo Shim
Kenji Shimada*

Department of Mechanical
Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213,
USA

*Correspondence to: Kenji Shimada,
Department of Mechanical
Engineering, Carnegie Mellon
University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, USA. E-mail:
shimada@cmu.edu

Accepted: 30 October 2007

Abstract

Background Three-dimensional (3D) bone shapes need to be created for
visualization and pre-operative surgery planning. Conventionally such shape
data is extracted from volumetric data sets, obtained by three-dimensional
sensors, such as computerized tomography (CT) and magnetic resonance
imaging (MRI). This conventional method is highly labor intensive and time
consuming.

Methods This paper presents a cost- and time-effective computational
method for generating a 3D bone shape from multiple X-ray images. Starting
with a predefined 3D template bone shape that is clinically normal and scaled
to an average size, our method scales and deforms the template shape until
the deformed shape gives an image similar to an input X-ray image when
projected onto a two-dimensional (2D) plane. The hierarchical freeform
deformation method is used to scale and deform the template bone. The
problem of finding the 3D shape of the bond is reduced to a sequence of
optimization problems. The objective of this optimization is to minimize the
error between the input X-ray image and the projected image of the deformed
template shape. The sequential quadratic programming (SQP) is used to solve
this multi-dimentional optimization problem.

Results The proposed X-ray image-based shape reconstruction is more
computationally efficient, cost-effective and portable compared to the
conventional CT- or MRI-based methods. Within a couple of minutes with
a standard personal computer, the proposed method generates a 3D bone
shape that is sufficiently accurate for many applications, such as (a) making
a 3D physical mock-up for training and (b) importing into, and using in,
a computer-aided planning system for orthopedic surgery, including bone
distraction and open/closed wedge osteotomy.

Conclusions Because the proposed method requires only a small number
of X-ray images and a minimum input from the user, the method can serve as
a cost- and time-effective 3D bone shape reconstruction method for various
medical applications. Copyright  2008 John Wiley & Sons, Ltd.

Keywords geometrical reconstruction; free-form deformation; computer-
assisted surgery; three-dimensional modelling

Introduction

This paper presents a cost- and time-effective computational method for
generating a three-dimensional (3D) bone geometry from a few X-ray
images. The resulting 3D shape is adequately accurate and useful in most
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situations where: (a) 3D geometry is needed for
computer-aided planning of orthopaedic surgeries, includ-
ing bone distraction and open/closed wedge osteotomy;
or (b) a 3D physical mock-up is required for training and
education.

3D bone geometries are necessary for visualization
and pre-operative surgery planning. They are typically
extracted from volumetric datasets obtained by 3D
sensors, such as computed tomography (CT) and magnetic
resonance imaging (MRI). The surface of a bone can be
extracted from the volumetric data by using the marching
cube algorithm (1). Although CT-based methods provide
straightforward and versatile solutions for general 3D
geometry reconstruction problems, the boundary edge
extraction in their systems is not fully automatic and is a
time-consuming process.

Our goal is to provide another simple, portable, cost-
and time-effective option for creating a 3D bone geometry
using X-ray images. The new computational method
proposed here is based on the hierarchical free-form
deformation and numerical optimization of deformation
parameters. Starting with a predefined 3D template bone
shape, clinically normal and scaled to average size, our
method scales and deforms the template shape until the
deformed shape produces an image similar to an input
X-ray image when projected onto a two-dimensional (2D)
plane. The control lattice of free-form deformation is
hierarchically subdivided in the area where 2D error
is higher than the given threshold. Finding the 3D
shape of the bone is, thus, reduced to an optimization
problem that minimizes the 2D error, or the difference
between the input X-ray image and the projected image
of the deformed template bone shape. We use sequential
quadratic programming (SQP) (4) to solve the multi-
dimensional non-linear optimization problem.

Through the experimental results, it is shown that the
proposed X-ray-based 3D bone geometry reconstruction
is sufficiently accurate for pre-operative planning, intra-
operative registration and post-operative evaluation of
the majority of osteotomy and distraction cases.

The rest of this paper is organized as follows. After
reviewing previous work, we give a formal statement
of our shape reconstruction problem; the proposed
technical approach is then outlined; next, the results of
computational experiments using the proposed method
are presented, along with some discussion; and finally,
we make some concluding remarks and suggest future
work.

Previous work on 3D shape
reconstruction

There are two categories of methods to create a 3D shape
of an object; one is to extract boundaries of object surfaces
from a volumetric dataset obtained by CT or MRI, and the
other is to reconstruct a 3D shape from single or multiple
2D drawing(s) or image(s). In this section, we do not
review methods in the first category because there is a

comprehensive literature survey available (5). Instead, in
the rest of this section, we review previous methods for
reconstructing a 3D shape from single or multiple 2D
drawings and images.

The problem of 3D shape reconstruction from 2D data
has been studied in at least two areas of research:
(a) computer vision and (b) geometric modelling. Pre-
vious work in each area has a different problem statement
and set of requirements and assumption. None of the
proposed solutions addresses our 3D bone shape recon-
struction problem perfectly.

For example, most computer-vision algorithms are
designed so that they can handle general objects; they
do not take advantage of the fact that the topology
and rough geometry of a bone is known, and thus they
are not efficient. Some work in computer vision uses
pattern recognition techniques based on heuristics. A
set of 2D elementary graphical elements (i.e. straight
lines, rectangles, arcs and circles) is defined to represent
projections. A classification process is then applied to
these elements in order to cluster them according to
distinct pattern characteristics. The heuristic search is then
applied to find the possible patterns that match objects
shown in the image. The algorithms are applicable only
to objects of uniform thickness and the solutions they
generate cannot recover the entire 3D semantics of an
object (6).

The geometric modelling research community has also
worked on the reconstruction of a 3D model from ortho-
graphic engineering drawings, in which an object is
represented by 2D geometric primitives, such as points,
lines and arcs (2,3,5,7–10). A typical reconstruction algo-
rithm consists of the following steps (10): (a) generate
candidate 3D vertices from 2D nodes; (b) construct 3D
edges from 3D vertices; (c) form face loops of the object
from 3D edges; (d) build components of the object from
face loops; and (e) combine components to find the final
solution.

Although 3D shape reconstruction from engineering
drawings has been studied intensively and there are
some commercial systems available, shapes reconstructed
by these systems are limited to a certain class of
geometry – solids bounded by a set of planes, quadric
surfaces and tori. These previous methods in geometric
modelling are thus not applicable to solving our
shape reconstruction problem for free-formed bones.
A more comprehensive literature review on 3D shape
reconstruction can be found in (6).

Problem statement

The 3D bone shape reconstruction problem that we are
interested in can be stated as follows:

Given: X-ray images of a bone taken from different
directions, and a template 3D bone shape that is clinically
normal and scaled to the average size.
Generate: a 3D bone shape that matches the input X-ray
images.
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(a) (b)

Figure 1. Hierarchical free-form deformation lattice: (a) deformation parameters; (b) binary tree subdivision

(a)

(c)

(b)

Figure 2. Input X-ray images and output 3D tibia shape generated: (a) input anterposterior (AP) view; (b) input lateral (LAT) view;
(c) matched silhouette boundaries and the output 3D shape
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Figure 3. Hierarchical free-form deformation process

The X-ray images can be taken from any direction, but
are usually front (anteroposterior, or AP) and side (lateral,
or LAT). The camera calibration algorithm computes the
camera model for each X-ray image by using a small X-ray
marker (6). The control lattice is created so that it is
perpendicular to the principal ray of the camera model.
The template bone shape is then embedded inside the
control lattice and deformed to match the X-ray image.
This process is applied repeatedly through all the X-ray
images to reconstruct the 3D bone shape. The details of
this process are discussed below.

The template 3D bone shape is represented as a closed
shell of a polygonal mesh, consisting of a set of vertices
and a set of faces. It is important that there be no gap

Figure 4. Minimized error between silhouette boundaries of
X-ray images and template bone shape

or overlap between faces. Any gap or overlap will make
it impossible to create a physical mock-up by using a
rapid prototyping process. Also, the resolution of the
template bone shape should be sufficiently fine so that
small features of its shape will still be visible after the
template bone geometry is deformed. One alternative to
the polygonal mesh model of a template bone shape is
to use a model consisting of parametric surfaces, such
as Bézier surfaces and non-uniform rational B-spline
surfaces (NURBS). Although a parametric surface-based
model would increase the accuracy, our current template
polygonal model with 1906 vertices and 3808 triangular
polygons, which we purchased from a commercial vender,
has sufficient resolution for most orthopaedic applica-
tions. If more resolution in the template bone geometry
is necessary, available higher-resolution template bone
geometry can be used. This higher-resolution bone geom-
etry is generated by CT-scanning a healthy bone with a
small slice thickness.

The proposed method generates a 3D bone shape
represented as a polygonal mesh model. This output 3D
bone shape can be used to make a 3D physical mock-up
of the bone, or it can be used in a computer-assisted
orthopaedic surgery planning system. Since we compute
the camera model for each X-ray image by using a X-ray
marker, the system can take more than two X-ray images
taken from non-orthogonal directions (6).

(a) (b)

Figure 5. Mock surgery of correction with rapid prototype model: (a) before distraction; (b) after distraction
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(a)

(c)

(b)

Figure 6. Input X-ray images and reconstructed 3D tibia shape: (a) input AP view; (b) input LAT view; (c) matched silhouette
boundaries and the output 3D shape

Technical approach

In this section we propose a technical approach
to solving our bone shape reconstruction problem
using: (a) hierarchical free-form deformation; and
(b) deformation-parameter optimization.

We consider the following in designing the actual
computational methods. For an efficient and robust
shape reconstruction, we should utilize our knowledge
of: (a) the type of bone shown in the given X-ray
images; (b) the shape and size of a standard, or clinically
normal, bone; and (c) the typical deformation modes
and amount of deformation. This justifies our use of
a template-based deformation approach, detailed in the
following subsection. Also, because each patient’s bone
is different in size, deformation mode and the amount
of deformation, we should construct our computational
methods so that they work in a hierarchical manner, i.e.
starting from a global deformation and gradually adding
local deformations. We thus define the deformation lattice

hierarchically and solve the optimization of deformation
parameters hierarchically.

Hierarchical free-form deformation

Deformation of a 3D polygonal mesh has been studied
intensively in the computer graphics research community
for geometric design and animation. In this paper we
deform a 3D template bone shape using a method based
on one such deformation technique, Sederberg’s free-form
deformation (FFD) (11).

There are two new aspects in using this well-known
FFD technique in our work: (a) FFD is applied to a
new area of application, 3D shape reconstruction from
2D images, instead of to the traditional application
domains of geometric modelling and animation; and
(b) hierarchical and recursive refinement is applied to the
control lattice of FFD to adjust the deformation resolution.
We need to utilize hierarchical refinement because of the
unique nature of our shape reconstruction problem; i.e.

Copyright  2008 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2007; 3: 323–335.
DOI: 10.1002/rcs



328 M. Gunay et al.

Figure 7. Hierarchical free-form deformation process of tibial osteotomy case

we do not know a priori the complexity or severity of the
deformation.

The basic idea of Sederberg’s FFD is that, instead of
deforming the object directly, the object is embedded
in a rectangular space that is deformable. One physical
and intuitive analogy of FFD is that a flexible object is
‘moulded’ in a clear plastic block and the whole block is
deformed by stretching, twisting, squeezing and so on. As
the plastic block is deformed, the object trapped inside
the block is also deformed accordingly. Sederberg uses
the following single Bézier hyperpatch to perform this
deformation:

q(u, v, w) =
n∑

i=0

n∑

j=0

n∑

k=0

pijkBi(u)Bj(v)Bk(w)

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 (1)

where u, v, and w are parameter values that specify the
location of an original point in the control block space,
q(u, v, w) is the location of the point after the deformation,
pijk are points that define a control lattice, and Bi(u), Bj(v),
and Bk(w) are the Bernstein polynomials of degree n, for
example:

Bi(u) = n!
i!(n − i)!

ui(1 − u)n−i (2)

There are two approaches to deforming the template
shape: (a) use a higher-order deformation function with
one control lattice; or (b) use a linear deformation
function with many control lattices and control points.
The optimization problem with many control points, or

optimization parameters, is difficult to solve; however,
the control lattice is subdivided hierarchically, which
subdivides the control lattice in the place in which the
error is greater than the predefined limit value, with
fewer control points. This approach avoids subdividing the
control lattice in unnecessary locations and thus reduces
the computational cost significantly. In our system we
use a linear version of FFD as a unit deformable block.
This is the simplest deformation function, and there are
only eight control points, pi, i = 1, 2, . . . , 8, as shown
in Figure 1a, and they define eight corner points of a
deformable block. Since each point has three translational
degrees of freedom, xi, yi and zi, and each control block
has eight control points, there are 8 × 3 = 24 degrees of
freedom in total. The variation of a deformation with
a linear function is limited compared to a higher-order
function, but we choose to use the linear function because
the complexity of the deformation of a bone is unknown,
usually local, and we would rather increase the resolution
of a deformation as needed by using adaptive refinement
of the control lattice.

We perform this adaptive refinement by using a
hierarchical, recursive, binary-tree subdivision of the
control lattice, as shown in Figure 1b. We prefer the
binary-tree subdivision, rather than a more standard
spatial subdivision of octree subdivision, because our
current target bones are mainly rims, which are
cylindrically shaped. Octree would be a better choice
when a target bone shape is not cylindrical. The
extension from binary subdivision to octree subdivision is
straightforward.
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Optimization of deformation
parameters

Now that we have a way to freely deform a 3D template
bone shape, as described in the previous section, the
problem of finding the 3D shape of the bone is reduced
to an optimization problem, in which the optimum
combination of deformation parameters is searched and
the objective is to minimize the error, or difference
between the input X-ray images and the projected images
of the deformed template shape.

There are two important technical issues to be
addressed in order to solve our shape reconstruction
problem both robustly and efficiently: how should we
measure the error between the input AP and LAT X-ray
images and the deformed 3D template bone?; and shall
we perform the parameter optimization using the X-ray
images at once or separately in sequence?

Regarding the first question, in the current implementa-
tion we choose to utilize silhouette boundaries. We define
a closed silhouette boundary of the bone in each of the
X-ray images. A corresponding closed-silhouette bound-
ary of the deformed template 3D bone is also computed
by projection of the 3D shape to a 2D plane. Because
our goal is to deform the template bone shape until its
silhouette boundary approaches as closely as possible that
of the X-ray images, it becomes a simple task to measure
the area difference between the two silhouette boundaries
and utilize this quantity as the objective function to be
minimized. We denote this area difference A, and it is a
function of all the deformation parameters, i.e.:

A(x1, · · · , x8, y1, · · · , y8, z1, · · · , z8) (3)

Alternatively, we could define an error function based
on a set of fiducial points, the image intensity, or a
combination of these with the above-mentioned silhouette
boundary, but our initial experiments show that the
silhouette boundary can be easily identified in an X-ray
image, and the computation of a boundary silhouette from
the shape of a deformed template bone is efficient.

The second technical issue, whether we should perform
the parameter optimization using the X-ray images at once
or separately in sequence, is also critical in making the
optimization process more robust and efficient. With the
camera modelling presented in (6), we should proceed

Figure 8. Minimized error between silhouette boundaries of
X-ray images and template bone shape of tibial osteotomy case
study

(a) (b)

Figure 9. Osteotomy angle comparison: (a) recontructed (40◦);
(b) CT-scanned (38◦)

with the optimization for each image separately. In
deforming the template bone using the AP view, we
can assume there is no displacement in the z direction,
i.e. zi = 0, i = 1, · · · , 8, and the four pairs of points,
(p1, p5), (p2, p6), (p3, p7), (p4, p8), move together,
i.e. x1 = x5, x2 = x6, x3 = x7, x4 = x8, y1 = y5, y2 = y6,
y3 = y7, and y4 = y8. These conditions together reduce
the number of optimization parameters from 24 to eight.
Since a multidimensional optimization problem like ours
becomes much more unstable and time-consuming as the
number of parameters to be optimized increases, reducing
the number of parameters by two-thirds improves the
robustness and the computational cost drastically. The
optimization problem for the one FFD block for the AP
view is thus stated as:

minimize : A(x1, x2, x3.x4, y1, y2, y3, y4)

subject to : −�x < xi < �x,−�y < yi < �y, i = 1, · · · , 4

where �x is the maximum displacement of a control
point in the x direction and �y in the y direction. The
optimization problem for one control lattice using other
views can be formulated similarly. To solve the above
optimization problem with eight deformation parameters,
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(a)

(c)

(b)

(d)

Figure 10. Femoral osteotomy: (a) AP and LAT X-rays; (b) initial error on AP and LAT images; (c) final error on AP and LAT images;
(d) reconstructed bone geometry

we use the sequential quadratic programming (SQP)
algorithm (4,6).

Results

This section presents results obtained by the reconstruc-
tion method proposed in this paper. The reduction of 2D
error during the reconstruction process was confirmed for
all the test cases. The final output, a 3D bone shape, is
presented for each of these case studies. Since the pro-
posed reconstruction method hierarchically subdivides
the control lattice of free-form deformation, we demon-
strate that the reconstruction algorithm matches given
X-ray images with the projection of the deformed tem-
plate bone shape much better every time the hierarchical
subdivision occurs. The system is implemented in C + +
and runs on a PC with a Windows operating system.
The computational time required for generating a final
tibia shape is less than 100s on an AMD 1.0 GHz PC.
The computational time for the other cases is also within
2 min.

Case study: bone distraction

The purpose of this case study is to demonstrate that
the proposed reconstruction method can accommodate a
locally deformed bone, typical in bone distraction surgery.
The patient’s X-ray images are taken in the AP and LAT
directions, as shown in Figure 2a, b, to be used in the
proposed reconstruction method. Figure 2c shows the
output 3D geometry of the tibia. Figure 3 shows the
process of hierarchical free-form deformation using the AP
view. The first row of the figure depicts the convergence
process of the two silhouette boundaries, one from the
X-ray image and the other from the deformed template
bone. Note that the bottom of the tibia is more severely
deformed and that the finer deformation lattices are used
in this region. Figure 4 shows how the errors between the
silhouette boundary of X-ray images and the template
bone shape are minimized through the optimization
process.

The results of the bone distraction depicted in Figure 5
demonstrate the pre-operative surgery planner for bone
distraction. The surgery planning results of this bone
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Figure 11. Hierarchical free-form deformation process of femoral osteotomy case

distraction are applied to the simulated surgery shown in
the same figure. The surgery planner’s results match the
outcomes of the simulated surgery. The reconstructed
3D bone shape is thus sufficiently accurate for bone
distraction surgery.

Case study: tibial osteotomy

The purpose of this case study is to demonstrate that
the proposed reconstruction method can create a bone
geometry with a sufficiently accurate bent angle for an
osteotomy surgery. Hence, the X-ray images of the tibia
are taken from the AP and LAT directions, as shown
in Figure 6, to be used in the proposed reconstruction
method. Figure 7 shows the hierarchical deformation

Figure 12. Minimized error between silhouette boundaries of
X-ray images and template bone shape of femoral osteotomy
case study

Figure 13. Optimal cutting location and angle of osteotomy

process using the AP view for the osteotomy study. The
first row of the figure depicts the convergence process of
the two silhouette boundaries: one from the X-ray image
and the other from the deformed template bone. Figure 8
shows how the error between the silhouette boundaries
of X-ray images and template bone shape is minimized
through the optimization process. The figure also shows
how the optimization process converges.

The tibia model of the osteotomy case is scanned with
a CT scanner to validate the accuracy of the proposed
method. Since accurate estimation of the deformation
angle is crucial in osteotomy, the deformation angles for
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(a) (b)

Figure 14. High tibial osteotomy: (a) AP and LAT X-ray images; (b) reconstructed shape and tibia

Figure 15. Hierarchical free-form deformation process of femoral osteotomy case

the models are measured by fitting circular cross-sections.
The deformation angle of the output model from the
proposed reconstruction method is only 2◦ different from
the CT-based method, as shown in Figure 9. The accu-
racy of the proposed reconstruction method is sufficiently
close to that of the CT-based reconstruction method for
pre-operative planning of osteotomy. Figure 8 shows the
converging process of the 2D error between the bone con-
tour of the X-ray image and the silhouette boundaries of
the template bone model. The spikes in the graph corre-
spond to the hierarchical subdivision of the control lattice.
The spikes occur because the optimization parameters are
re-initialized after each hierarchical subdivision.

Case study: femoral osteotomy

The purpose of this case study was to demonstrate that
the proposed reconstruction method can create a bone
geometry with a sufficiently accurate osteotomy angle for
a femoral osteotomy surgery. X-ray images of the patient’s
right femur are taken from the AP and LAT directions, as
shown in Figure 10, to be used in the proposed reconstruc-
tion method. Figure 11 shows the hierarchical deforma-
tion process using the AP view in the femoral osteotomy
case. The first row of the figure depicts the convergence
process of the two silhouette boundaries: one from the
X-ray image, and the other from the deformed template
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Figure 16. Minimized error between silhouette boundaries of
X-ray images and template bone shape of HTO case study

bone. Figure 11 shows how the error between the sil-
houette boundaries of X-ray images and template bone
shape is minimized through the optimization process.
Based on these AP and LAT X-ray images of the patient,
the 3D femur shape is generated by using the proposed
reconstruction method, as shown in Figure 10. Figure 12
shows how quickly the optimization process converges.

Our osteotomy planner software, shown in Figure 13,
computes the optimal location for cutting and the
osteotomy angle for correction. This planner computed
10.6◦ as the necessary angular correction for this femoral
osteotomy, and the orthopaedic surgeon who executed
this surgery reported approximately 11◦ of correction by
the conventional planning method based on 2D hand
drawings. The femoral osteotomy study results thus show
that the proposed reconstruction method creates suffi-
ciently accurate 3D bone shape for femoral osteotomy.

Case study: high tibial osteotomy
(HTO)

The purpose of this case study is to demonstrate that
the proposed reconstruction method can create a bone
geometry with a sufficiently accurate osteotomy angle for
high tibial osteotomy surgery. Therefore, the X-ray images
of a tibia with high deformity are taken from the AP and
LAT directions, as shown in Figure 14. These AP and LAT
X-ray images are then used in the presented reconstruction
algorithm to generate a 3D shape of the tibia, as depicted

(a) (b)

Figure 17. Surgical planner for high tibial osteotomy: (a) initial; (b) target

(a) (b)

Figure 18. Cadaver study: (a) AP and LAT X-rays; (b) Reconstructed bone geometry and surgical planner
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Figure 19. Hierarchical free-form deformation process of cadaver case

in Figure 14. The surgical planner generates the results
which match the orthopaedic surgeon’s conventional 2D
surgical plan, as shown in Figure 17. Figures 15 and 16
show how the error between the silhouette boundaries
of X-ray images and template bone shape is minimized
through the optimization process. Note that the top
portion of the tibia is more severely deformed; therefore,
the finer deformation blocks are used in this region.
Figure 16 shows how the optimization process converges.
Moreover, the reconstructed 3D model of the tibia visually
aids the orthopaedic surgeon before and during the mock
surgery of this high tibial osteotomy study.

Case study: cadaver

The purpose of this case study was to test whether
the proposed reconstruction method can create a bone

Figure 20. Minimized error between silhouette boundaries of
X-ray images and template bone shape in cadaver case study

geometry with a sufficiently accurate valgus angle for
the cadaver tibia. The AP and LAT X-ray images of a
cadaver’s right tibia, and the reconstructed 3D model, are
shown in Figure 18. Based on these AP and LAT X-ray
images of the cadaver, the 3D tibia shape is generated by
using the proposed reconstruction method. The virtual
osteotomy planner software, as shown in Figure 18,
computes the necessary location for cutting, and the
osteotomy angle for the changing valgus angle, from 4◦ to
14◦, since the cadaver tibia was not deformed. The surgery
was executed based on the virtual planner results with
prototype surgical tool, as shown in Figure 21. The final
fluoroscopic image, shown in Figure 21, demonstrates
that the reconstructed 3D bone shape is sufficiently
accurate for a computer-assisted orthopaedic surgery
system. Furthermore, Figures 19 and 20 show how the
error between the silhouette boundaries of X-ray images,
and the template bone shape, is minimized through the
optimization process.

Conclusions and future work

We have presented a cost- and time-efficient compu-
tational method that takes as input X-ray images of a
deformed bone and generates a 3D bone shape. The
method starts with a template bone shape and deforms
it until the silhouette boundaries of the template bone
matches the silhouette boundaries shown in the X-ray
images. By using a novel combination of hierarchical
free-form deformation and numerical optimization of
the deformation parameters by sequential quadratic pro-
gramming, the proposed method can find a complete
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(a) (b)

Figure 21. Execution in cadaver study: (a) execution; (b) fluoroscopic image

3D geometry. All the small features and surface texture
included in the template bone data are preserved during
the deformation process, making the output 3D bone look
realistic.

Our X-ray image-based shape reconstruction is more
computationally efficient, as well as more cost-effective
and portable, compared to standard 3D sensor-based
methods. Although the final 3D shape of our method
can be less accurate than by using CT because of our
minimum input of X-ray images, the method creates
a 3D shape sufficiently accurate for most applications
in training or computer-aided planning of orthopaedic
surgeries, including bone distraction and open/closed
wedge osteotomy.

Experimental results show that if the angle between
two X-ray images is known, final reconstructed model
accuracy will be improved. It can also be assumed
that AP and LAT X-ray images are orthogonal to each
other if the angle is between 80◦ and 100◦. Rotational
deformity of a bone smaller than 10◦ is neglected in
the current reconstruction algorithm. These observations
are based on the volumetric error computation method
presented in (6). Furthermore, a reconstructed 3D
bone model is sufficiently accurate for manufacturing
a rapid prototype model, such that it can be used
for training and planning of most tibial and femoral
osteotomies.
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