Now that we’ve built up some results concerning Gaussian space, we’re motivated to try reducing problems involving Boolean functions to problems involving Gaussian functions. The key tool for this is the Invariance Principle, discussed at the beginning of the chapter. As a warmup, this section is devoted to proving (a form of) the Berry–Esseen Theorem.

Continue reading §11.5: The Berry–Esseen Theorem

## Recent comments

Ryan O'Donnell: Yes, thanks!Noam Lifshitz: In exercise 15 (Ex 18 in the book) is it true that $V_j=T_j$...Ryan O'Donnell: Thanks!Matt Franklin: Maybe two small typos in the proof of Corollary 11.67 (p. 36...Ryan O'Donnell: I see your point, although in some sense this distinction be...Ryan O'Donnell: Thank you!Ryan O'Donnell: Yep, thanks!