With the $(2,q)$ and $(p,2)$Hypercontractivity Theorems in hand, let’s revisit some applications we saw in Sections 1 and 2.
[...]


With the $(2,q)$ and $(p,2)$Hypercontractivity Theorems in hand, let’s revisit some applications we saw in Sections 1 and 2. [...] At this point we have established that if $f : \{1,1\} \to {\mathbb R}$ then for any $p \leq 2 \leq q$, \[ \\mathrm{T}_{\sqrt{p1}} f\_2 \leq \f\_p, \qquad \\mathrm{T}_{1/\sqrt{q1}} f\_q \leq \f\_2. \] We would like to extend these facts to the case of general $f : \{1,1\}^n \to {\mathbb R}$; i.e., establish the $(p,2)$ [...] Although you can get a lot of mileage out of studying the $4$norm of random variables, it’s also natural to consider other norms. [...] An immediate consequence of the Bonami Lemma is that for any $f : \{1,1\}^n \to {\mathbb R}$ and $k \in {\mathbb N}$, \begin{equation} \label{eqn:24hyperconk} \\mathrm{T}_{1/\sqrt{3}} f^{=k}\_4 = \tfrac{1}{\sqrt{3}^k} \f^{=k}\_4 \leq \f^{=k}\_2. \end{equation} [...] As anyone who has worked in probability knows, a random variable can sometimes behave in rather “unreasonable” ways. It may be never close to its expectation. It might exceed its expectation almost always, or almost never. It might have finite $1$st, $2$nd, and $3$rd moments, but an infinite $4$th moment. All of this poor behaviour [...] A decision tree $T$ for $f : \{1,1\}^n \to \{1,1\}$ can be thought of as a deterministic algorithm which, given adaptive query access to the bits of an unknown string $x \in \{1,1\}^n$, outputs $f(x)$. E.g., to describe a natural decision tree for $f = \mathrm{Maj}_3$ in words: “Query $x_1$, then $x_2$. If they [...] The previous section covered the case of $f \in L^2(\Omega^n, \pi^{\otimes n})$ with $\Omega = 2$; there, we saw it could be helpful to look at explicit Fourier bases. When $\Omega \geq 3$ this is often not helpful, especially if the only “operation” on the domain is equality. For example, if $f : \{\mathsf{Red}, [...] Perhaps the most common generalized domain in analysis of boolean functions is the case of the hypercube with “biased” bits. [...] In this section we describe a basisfree kind of “Fourier expansion” for functions on general product domains. We will refer to it as the orthogonal decomposition of $f \in L^2(\Omega^n, \pi^{\otimes n})$ though it goes by several other names in the literature: e.g., Hoeffding, Efron–Stein, or ANOVA decomposition. [...] In this section we will revisit a number of combinatorial/probabilistic notions and show that for functions $f \in L^2(\Omega^n, \pi^{\otimes n})$, these notions have familiar Fourier formulas which don’t depend on the Fourier basis. [...] 

Copyright © 2014 Ryan O'Donnell  All Rights Reserved 
Recent comments