§6.4: Applications in learning and testing

In this section we describe some applications of our study of pseudorandomness.


§6.3: Constructions of various pseudorandom functions

In this section we give some constructions of boolean functions with strong pseudorandomness properties.


§6.2: ${\mathbb F}_2$-polynomials

We began our study of boolean functions in Chapter 1.2 by considering their polynomial representations over the real field. In this section we take a brief look at their polynomial representations over the field ${\mathbb F}_2$, with $\mathsf{False}$, $\mathsf{True}$ being represented by $0, 1 \in {\mathbb F}_2$ as usual. Note that in the field ${\mathbb [...]

§6.1: Notions of pseudorandomness

The most obvious spectral property of a truly random function $\boldsymbol{f} : \{-1,1\}^n \to \{-1,1\}$ is that all of its Fourier coefficients are very small (as we saw in Exercise 5.8).


Chapter 6: Pseudorandomness and ${\mathbb F}_2$-polynomials

In this chapter we discuss various notions of pseudorandomness for boolean functions; by this we mean properties of a fixed boolean function which are in some way characteristic of randomly chosen functions. We will see some deterministic constructions of pseudorandom probability density functions with small support; these have algorithmic application in the field of derandomization. [...]

Chapter 5 notes

Chow’s Theorem was proved by independently by Chow [Cho61] and by Tannenbaum [Tan61] in 1961; see also [Elg61].


Chapter 5 exercises, continued


Chapter 5 exercises


§5.5: Highlight: Peres’s Theorem

Theorem 14 says that if $f$ is an unbiased linear threshold function $f(x) = \mathrm{sgn}(a_1 x_1 + \cdots + a_n x_n)$ in which all $a_i$’s are “small” then the noise stability $\mathbf{Stab}_\rho[f]$ is at least (roughly) $\frac{2}{\pi} \arcsin \rho$. Rephrasing in terms of noise sensitivity, this means $\mathbf{NS}_\delta[f]$ is at most (roughly) $\tfrac{2}{\pi} \sqrt{\delta} [...]

§5.4: Degree-1 weight

In this section we prove two theorems about the degree-$1$ Fourier weight of boolean functions: \[ \mathbf{W}^{1}[f] = \sum_{i=1}^n \widehat{f}(i)^2. \]