Theorem 14 says that if $f$ is an unbiased linear threshold function $f(x) = \mathrm{sgn}(a_1 x_1 + \cdots + a_n x_n)$ in which all $a_i$’s are “small” then the noise stability $\mathbf{Stab}_\rho[f]$ is at least (roughly) $\frac{2}{\pi} \arcsin \rho$. Rephrasing in terms of noise sensitivity, this means $\mathbf{NS}_\delta[f]$ is at most (roughly) $\tfrac{2}{\pi} \sqrt{\delta} [...]

## Recent comments

Ryan O'Donnell: Yes, thanks!Dmitry Sokolov: Exercise 28. Maybe $A \in \{-1, 1\}$ istead of $A \in \mathb...Ryan O'Donnell: Fixed, thanks!Ryan O'Donnell: It's the Holder conjugate of $q$ (i.e., the number satisfyin...Gautam Kamath: Is $q'$ defined here?Gautam Kamath: On this page, Hölder is displaying for me as H{ö}lder - is t...Ryan O'Donnell: Yes, you're right. This is not a well-written proof by the ...