At this point we have established that if $f : \{-1,1\} \to {\mathbb R}$ then for any $p \leq 2 \leq q$, \[ \|\mathrm{T}_{\sqrt{p-1}} f\|_2 \leq \|f\|_p, \qquad \|\mathrm{T}_{1/\sqrt{q-1}} f\|_q \leq \|f\|_2. \] We would like to extend these facts to the case of general $f : \{-1,1\}^n \to {\mathbb R}$; i.e., establish the $(p,2)$- [...]

## Recent comments

Ohad Klein: In lemma 46 (48) - should it be $i \not \in J'_x$? (In its ...Ohad Klein: Another one - is the symbol "union" is redundant in 37b,c?Ohad Klein: I might be misunderstanding 37b. Suppose k=n=1. Then $E[f^q]...Ohad Klein: I might be wrong, but in ex. 9.31 (i.e. remark 9.29), I trie...Ohad Klein: sorry, my bad, again!Ohad Klein: In 23, is it $q \leq 2+2\epsilon$?Ohad Klein: ctrl+f: Paresval.