Theorem 14 says that if $f$ is an unbiased linear threshold function $f(x) = \mathrm{sgn}(a_1 x_1 + \cdots + a_n x_n)$ in which all $a_i$’s are “small” then the noise stability $\mathbf{Stab}_\rho[f]$ is at least (roughly) $\frac{2}{\pi} \arcsin \rho$. Rephrasing in terms of noise sensitivity, this means $\mathbf{NS}_\delta[f]$ is at most (roughly) $\tfrac{2}{\pi} \sqrt{\delta} [...]

## Recent comments

jake wellens: In Ex. 31 (b), I think we should replace $1/M$ by something ...Grigory Yaroslavtsev: Nice, hope you enjoyed your visit :)Yongzhi: I think that the domain of the function g in Fact 21 should ...El Manolo: I can't figure out ex.12 b) and c) in the proposed way. Tha...R.: Is $\rho\neq 0$ required in 1(f)?R.: Typo: they introduced also introduced “tribes”Chin Ho Lee: they introduced also introduced “tribes” -> they also int...