Theorem 14 says that if $f$ is an unbiased linear threshold function $f(x) = \mathrm{sgn}(a_1 x_1 + \cdots + a_n x_n)$ in which all $a_i$’s are “small” then the noise stability $\mathbf{Stab}_\rho[f]$ is at least (roughly) $\frac{2}{\pi} \arcsin \rho$. Rephrasing in terms of noise sensitivity, this means $\mathbf{NS}_\delta[f]$ is at most (roughly) $\tfrac{2}{\pi} \sqrt{\delta} [...]

## Recent comments

Ohad Klein: In lemma 46 (48) - should it be $i \not \in J'_x$? (In its ...Ohad Klein: Another one - is the symbol "union" is redundant in 37b,c?Ohad Klein: I might be misunderstanding 37b. Suppose k=n=1. Then $E[f^q]...Ohad Klein: I might be wrong, but in ex. 9.31 (i.e. remark 9.29), I trie...Ohad Klein: sorry, my bad, again!Ohad Klein: In 23, is it $q \leq 2+2\epsilon$?Ohad Klein: ctrl+f: Paresval.