Let’s summarize the Variant Berry–Esseen Theorem and proof from the preceding section, using slightly different notation. (Specifically, we’ll rewrite $\boldsymbol{X}_i = a_i {\boldsymbol{x}}_i$ where $\mathop{\bf Var}[{\boldsymbol{x}}_i] = 1$, so $a_i = \pm \sigma_i$.)

[...]

## Recent comments

Noam Lifshitz: In corollary 17, should it be $\widehat{\mathrm{Maj}_n}(S) =...Ohad Klein: In 49 (56 in the book), it looks like a typo: $E[f_i(y^(j))]...Ryan O'Donnell: Hope so; I'm quite happy with it so far. (Thanks to all who...Yi Zhang: I got it now!!Yi Zhang: I wonder what happens with cross derivatives, for example ho...David Williamson: I wished we had done this request for names/emails when we m...Ryan O'Donnell: Thanks! It's corrected in the book.