An immediate consequence of the Bonami Lemma is that for any $f : \{-1,1\}^n \to {\mathbb R}$ and $k \in {\mathbb N}$, \begin{equation} \label{eqn:2-4-hypercon-k} \|\mathrm{T}_{1/\sqrt{3}} f^{=k}\|_4 = \tfrac{1}{\sqrt{3}^k} \|f^{=k}\|_4 \leq \|f^{=k}\|_2. \end{equation}

[...]

## Recent comments

Ohad Klein: In lemma 46 (48) - should it be $i \not \in J'_x$? (In its ...Ohad Klein: Another one - is the symbol "union" is redundant in 37b,c?Ohad Klein: I might be misunderstanding 37b. Suppose k=n=1. Then $E[f^q]...Ohad Klein: I might be wrong, but in ex. 9.31 (i.e. remark 9.29), I trie...Ohad Klein: sorry, my bad, again!Ohad Klein: In 23, is it $q \leq 2+2\epsilon$?Ohad Klein: ctrl+f: Paresval.