In this section we will analyze the Fourier coefficients of $\mathrm{Maj}_n$. In fact, we give an explicit formula for them in Theorem 16 below. But most of the time this formula is not too useful; instead, it’s better to understand the Fourier coefficients of $\mathrm{Maj}_n$ asymptotically as $n \to \infty$.

[...]

## Recent comments

Noam Lifshitz: In corollary 17, should it be $\widehat{\mathrm{Maj}_n}(S) =...Ohad Klein: In 49 (56 in the book), it looks like a typo: $E[f_i(y^(j))]...Ryan O'Donnell: Hope so; I'm quite happy with it so far. (Thanks to all who...Yi Zhang: I got it now!!Yi Zhang: I wonder what happens with cross derivatives, for example ho...David Williamson: I wished we had done this request for names/emails when we m...Ryan O'Donnell: Thanks! It's corrected in the book.