In linear algebra there are two equivalent definitions of what it means for a function to be linear:

Definition 29 A function $f : {\mathbb F}_2^n \to {\mathbb F}_2$ is linear if either of the following equivalent conditions hold:

$f(x+y) = f(x) + f(y)$ for all $x, y \in {\mathbb [...]

## Recent comments

Ohad Klein: In lemma 46 (48) - should it be $i \not \in J'_x$? (In its ...Ohad Klein: Another one - is the symbol "union" is redundant in 37b,c?Ohad Klein: I might be misunderstanding 37b. Suppose k=n=1. Then $E[f^q]...Ohad Klein: I might be wrong, but in ex. 9.31 (i.e. remark 9.29), I trie...Ohad Klein: sorry, my bad, again!Ohad Klein: In 23, is it $q \leq 2+2\epsilon$?Ohad Klein: ctrl+f: Paresval.