The previous section covered the case of $f \in L^2(\Omega^n, \pi^{\otimes n})$ with $|\Omega| = 2$; there, we saw it could be helpful to look at explicit Fourier bases. When $|\Omega| \geq 3$ this is often not helpful, especially if the only “operation” on the domain is equality. For example, if $f : \{\mathsf{Red}, [...]

## Recent comments

Ryan O'Donnell: Merci!Patrick: I ordered the book off of Amazon and I must say I'm disappoi...Clément Canonne: Hi, In 11.49 (a): it looks like there is an extra "at" in t...Ryan O'Donnell: Thanks!Ryan O'Donnell: Yeah, Chapter 13 doesn't exist. :( On the bright side, the ...Kirill Elagin: “In Chapter 13 we will show” =(Kirill Elagin: Typo (examples 22, bullet 2): “task is to fund”.