The previous section covered the case of $f \in L^2(\Omega^n, \pi^{\otimes n})$ with $|\Omega| = 2$; there, we saw it could be helpful to look at explicit Fourier bases. When $|\Omega| \geq 3$ this is often not helpful, especially if the only “operation” on the domain is equality. For example, if $f : \{\mathsf{Red}, [...]

## Recent comments

Ryan O'Donnell: Yes, thank you! Please keep them coming! :)Ryan O'Donnell: Good idea.Ryan O'Donnell: Absolutely right, thanks.Matt Franklin: In the proof of Theorem 8.66 (middle of p. 225 in book), the...Matt Franklin: The "Condorcet Jury Theorem" is discussed but not named in t...Matt Franklin: In the first line of the proof of Proposition 8.45 (bottom o...Ryan O'Donnell: Great catch, thanks!