Now that we’ve built up some results concerning Gaussian space, we’re motivated to try reducing problems involving Boolean functions to problems involving Gaussian functions. The key tool for this is the Invariance Principle, discussed at the beginning of the chapter. As a warmup, this section is devoted to proving (a form of) the Berry–Esseen [...]

## Recent comments

Ryan O'Donnell: Good catch, thank you Xi.Ryan O'Donnell: Thank you! Sorry for the delay in replying.Ryan O'Donnell: Hi Ming. Here S stands for a fixed (non-random) subset of [...Xi Wu: typo: "our definition of $\mathbf{Inf}_i[f]$ from Chapter 2....Chengyu: Ex 2.c It should be "Suppose ... is an LTF with $\textbf{E}...Ming: I confuse the notation S in Fact 1.7. I wonder that the sym...Ryan O'Donnell: Yes, thanks! Sorry for the delay in replying.