An immediate consequence of the Bonami Lemma is that for any $f : \{-1,1\}^n \to {\mathbb R}$ and $k \in {\mathbb N}$, \begin{equation} \label{eqn:2-4-hypercon-k} \|\mathrm{T}_{1/\sqrt{3}} f^{=k}\|_4 = \tfrac{1}{\sqrt{3}^k} \|f^{=k}\|_4 \leq \|f^{=k}\|_2. \end{equation}

[...]

## Recent comments

Ryan O'Donnell: Good catch, thank you Xi.Ryan O'Donnell: Thank you! Sorry for the delay in replying.Ryan O'Donnell: Hi Ming. Here S stands for a fixed (non-random) subset of [...Xi Wu: typo: "our definition of $\mathbf{Inf}_i[f]$ from Chapter 2....Chengyu: Ex 2.c It should be "Suppose ... is an LTF with $\textbf{E}...Ming: I confuse the notation S in Fact 1.7. I wonder that the sym...Ryan O'Donnell: Yes, thanks! Sorry for the delay in replying.