The fact that the Fourier characters $\chi_{\gamma} : {\mathbb F}_2^n \to \{-1,1\}$ form a group isomorphic to ${\mathbb F}_2^n$ is not a coincidence; the analogous result holds for any finite abelian group and is a special case of the theory of Pontryagin duality in harmonic analysis. We will see further examples of this in Chapter [...]

## Recent comments

Matt Franklin: Maybe two small typos in the proof of Corollary 11.67 (p. 36...Ryan O'Donnell: I see your point, although in some sense this distinction be...Ryan O'Donnell: Thank you!Ryan O'Donnell: Yep, thanks!Ryan O'Donnell: Great catch, thanks!Matt Franklin: Maybe two small typos in last sentence before Borell's Isope...Matt Franklin: maybe small typo in Remark 11.11 (p. 328 in book): $z \tild...