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ABSTRACT
Recommendations are central to the utility of many pop-
ular e-commerce websites. Such sites typically contain a
set of recommendations on every product page that enables
visitors and crawlers to easily navigate the website. These
recommendations are essentially universally present on all
e-commerce websites. Choosing an appropriate set of rec-
ommendations at each page is a critical task performed by
dedicated backend software systems.
We formalize the concept of recommendations used for dis-
covery as a natural graph optimization problem on a bipar-
tite graph and propose three methods for solving the prob-
lem in increasing order of sophistication: a local random
sampling algorithm, a greedy algorithm and a more involved
partitioning based algorithm. We first theoretically analyze
the performance of these three methods on random graph
models and characterize when each method will yield a so-
lution of sufficient quality and the parameter ranges when
more sophistication is needed. We complement this by pro-
viding an empirical analysis of these algorithms on simulated
and real-world production data from a retail website. Our
results confirm that it is not always necessary to implement
complicated algorithms in the real-world, and demonstrate
that very good practical results can be obtained by using
simple heuristics that are backed by the confidence of con-
crete theoretical guarantees.

1. INTRODUCTION

1.1 Web Relevance Engines
The digital discovery divide [15] refers to the problem of
companies not being able to present users with what they
seek in the short time they spend looking for this informa-
tion. The problem is prevalent not only in e-commerce web-
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sites but also in social networks and micro-blogging sites
where surfacing relevant content quickly is important for
user engagement.

BloomReach is a big-data marketing company that uses the
client’s content as well as web-wide data to optimize both
customer acquisition and satisfaction for e-retailers. Bloom-
Reach’s clients include top internet retail companies from
around the country. In this paper, we describe the structure
optimizer component of BloomReach’s Web Relevance En-
gine. This component works on top of the recommendation
engine so as to carefully add a set of links across pages that
ensures that users can efficiently navigate the entire website.

1.2 Structure Optimization of Websites
An important concern of retail website owners is whether
a significant fraction of the site is not recommended at all
(or ‘hardly’ recommended) from other more popular pages
within their site. One way to address this problem is to
try to ensure that every page will obtain at least a baseline
number of links from popular pages so that great content
does not remain undiscovered, and thus bridge the discovery
divide mentioned above. If the website remains connected,
this also ensures a simple conductance for the underlying
link graph.

We use this criterion of discoverability as the objective for
the choice of the links to recommend. We start with a small
set of already discovered or popular nodes available at a site,
and want to use this set to make as many new nodes discov-
erable as possible. This objective leads to a new structural
formulation of the recommendation selection problem. In
particular, we think of commonly visited pages in a site as
the already discovered pages, from which there are a large
number of possible recommendations available (using more
traditional information retrieval methods) to related but less
visited peripheral pages. The problem of choosing a limited
number of pages to recommend at each discovered page can
be cast with the objective of maximizing the number of pe-
ripheral non-visited pages that are redundantly linked. We
formulate this as a recommendation subgraph problem, and
study practical algorithms for solving these problems at scale
with real-life data.

1.3 Recommendation Systems as a Subgraph
Selection Problem

Formally, we divide all pages in a site into two groups: the
discovered pages and the undiscovered ones. Furthermore,
we assume that traditional recommendation systems [1, 23,
25] provide us with a large set of related candidate undiscov-
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ered page recommendations for each discovered page using
relevance metrics. In this work, we assume d such related
candidates are available per page creating a candidate rec-
ommendation bipartite graph (with degree d at each discov-
ered page node). Our goal is to analyze how to prune this
set to c < d recommendations such that globally we ensure
that the number of undiscovered pages that have at least
a ≥ 1 recommendations to them in the chosen subgraph.
This gives the (c, a)-recommendation subgraph introduced
in Section 3.1. Even though the case of a = 1 reduces to
a polynomially solvable version of a matching problem, the
more usual cases of a > 1 are most likely NP-hard prohibit-
ing exact solution methods at scale. Even the simple ver-
sions that reduce to matching are too computational expen-
sive on memory and processing to run on real-life instances

1.4 Our Contributions
We introduce three simple heuristic methods that can be
implemented in linear or near-linear time and thoroughly
investigate their theoretical performance. In particular, we
delineate when each method will work effectively on popu-
lar random graph models, and when a practitioner will need
to employ a more sophisticated algorithm. We then evalu-
ate how these simple methods perform on simulated data,
both in terms of solution quality and running time. Finally,
we show the deployment of these methods on BloomReach’s
real-world client link graph and measure their actual perfor-
mance in terms of running-times, memory usage and accu-
racy. It is worthwhile to note that the simplest of the three
methods that we propose (sampling) can be easily adapted
to the incremental dynamic setting when the set of pages
and candidate recommendations is changing rapidly.

To summarize, our contributions are as follows.

1. The development of a new structural model for recom-
mendation systems as a subgraph selection problem for
maximizing discoverability (Section 3).

2. The proposal of three methods (sampling, greedy and
partition) with increasing sophistication to solve the
problem at scale along with associated theoretical per-
formance guarantee analyses (Section 4). In particu-
lar, we show very strong theoretical bounds on the size
of the discoverable set for the sampling algorithm in
the fixed degree random graph model (Theorem 1); in
the Erdös-Renyi model for the greedy algorithm (The-
orem 7) and for a partition-based algorithm (Theo-
rem 10).

3. An empirical validation of our conclusions with simu-
lated and real-life data (Section 5). Our simulations
show that sampling is the least resource intensive and
performs satisfactorily, while partition is the most re-
source intensive but performs better for small values
of discoverability threshold a; Greedy is the overall
best-performer using a single pass over the data and
producing good results over a variety of parameters.
In the tests with real retailer data, we see these trends
broadly reflected in the results: Greedy performs well
when c gets moderately large giving almost optimal
starting from a = 2. The partition method is promis-
ing when the targeted a value is low. Sampling is
typically worse than greedy, but unlike the partition

algorithm, its performance improves dramatically as c
becomes larger, and does not worsen as quickly when
a gets larger.

2. RELATED WORK
Recommendation systems have been studied extensively in
the literature, broadly separated into two different streams:
collaborative filtering systems and content-based recommen-
der systems [2]. Much attention has been focused on the
former approach, where either users are clustered by consid-
ering the items they have consumed or items are clustered
by considering the users that have bought them. Both item-
to-item and user-to-user recommendation systems based on
collaborative filtering have been adopted by many industry
giants such as Twitter [12], Amazon [20] and Google [6] and
Netflix [5].

Content based systems instead look at each item and its
intrinsic properties. For example, Pandora has categorical
information such as Artist, Genre, Year, Singer, Tempo etc.
on each song it indexes. Similarly, Netflix has a lot of cate-
gorical data on movies and TV such as Cast, Director, Pro-
ducers, Release Date, Budget, etc. This categorical data can
then be used to recommend new songs that are similar to
the songs that a user has liked before. Depending on user
feedback, a recommender system can learn which of the cat-
egories are more or less important to a user and adjust its
recommendations.

A drawback of the first type of system is that is that they
require multiple visits by many users so that a taste profile
for each user, or a user profile for each item can be built.
Similarly, content-based systems also require significant user
participation to train the underlying system. These condi-
tions are possible to meet for large commerce or entertain-
ment hubs, but not very likely for most online retailers that
specialize in a just a few areas, but have a long-tail [3] of
product offerings.

Because of this constraint, in this paper we focus on a recom-
mender system that typically uses many different algorithms
that extract categorical data from item descriptions and uses
this data to establish weak links between items (candidate
recommendations). In the absence of other data that would
enable us to choose among these many links, we consider
every potential recommendation to be of equal value and fo-
cus on the objective of discovery, which has not been studied
before. Using heuristics for building this graph is not only
practical, but is theoretically sound as well [24]. In this way,
our work differs from all the previous work on recommenda-
tion systems that emphasize on finding recommendations of
high relevance and quality rather than on structural naviga-
bility of the realized link structure. However, while it’s not
included in this paper for brevity, some of our approaches
can be extended to the more general case where different
recommendations have different weights (See Theorem 5).

On the graph algorithms side, our problem is related to
the bipartite matching and more generally, the maximum
b-matching problems. There has been considerable work
done in this area. In particular, both the weighted matching
and b-matching problems have exact polynomial time solu-
tions [11]. Furthermore the matching problem admits a near
linear time (1 − ε)-approximation algorithm [9], while the
weighted b-matching problem admits a 1/2-approximation
algorithm [18]. However, all such algorithms are based on
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combinatorial properties of matchings and b-matchings, and
do not carry over to the more important version of our prob-
lem when a > 1.
Finally, our problem bears resemblance to some covering
problems. For example, the maximum coverage problem
asks for the maximum number of elements that can be cov-
ered by a fixed number of sets and has a greedy (1 − 1/e)-
approximation [22]. However, as mentioned earlier, our
formulation requires multiple coverage of elements. Further-
more note that the collection of sets that can be used in the
redundant coverage are all possible subsets of c out of the
d candidate links, and is expressed implicitly in our prob-
lem. The currently known theoretical methods for maximum
coverage heavily rely on the submodularity of the objective
function, which our objective doesn’t satisfy. Hence the line
of recent work on approximation algorithms for submodular
maximization does not apply to our problems.

3. OUR MODEL
We model the structure optimization of recommendations by
using a bipartite digraph, where one partition L represents
the set of discovered (i.e., often visited) items for which we
are required to suggest recommendations and the other par-
tition R representing the set of undiscovered (not visited)
items that can be potentially recommended. If needed, the
same item can be represented in both L and R.

3.1 The Recommendation Subgraph Problem
We introduce and study this as the the (c, a)-recommen-
dation subgraph problem in this paper: The input to
the problem is the graph where each L-vertex has d recom-
mendations. Given the space restrictions to display recom-
mendations, the output is a subgraph where each vertex in
L has c < d recommendations. The goal is to maximize the
number of vertices in R that have in-degree at least a target
integer a.

Note that if a = c = 1 this is simply the maximum bipartite
matching problem [21]. If a = 1 and c > 1, we obtain a
b-matching problem, that can be converted to a bipartite
matching problem [11]. The typical and interesting cases
when a > 1 is most likely NP-hard, ruling out the possibility
of efficient exact algorithms.

We now describe typical web graph characteristics by dis-
cussing the sizes of L, R, c and a in practice. As noted
before, in most websites, a small number of ‘head’ pages
contribute to a significant amount of the traffic while a long
tail of the remaining pages contribute to the rest [8, 14, 19].
This is supported by our own experience with the 80/20 rule,
i.e. 80% of a site’s traffic is captured by 20% of the pages.
Therefore, the ratio k = |L|/|R| is typically between 1/3 to
1/5, but may be even lower.

From our own work at BloomReach (and by observing rec-
ommendations of Quora, Amazon, and YouTube), typical
values for c range from 3 to 20 recommendations per page.
Values of a are harder to nail down but it typically ranges
from 1 to 5.

3.2 Practical Requirements
There are two key requirements in making graph algorithms
practical. The first is that the method used must be very
simple to implement, debug, deploy and most importantly

maintain long-term. The second is that the method must
scale gracefully with larger sizes.

Graph matching algorithms require linear memory and super-
linear run-time which does not scale well. For example, an e-
commerce website of a client of BloomReach with 1M prod-
uct pages and 100 recommendation candidates per product
would require easily over 160GB in main memory to store
the graph and run exact matching algorithms; this can be
reduced by using graph compression techniques but that
adds more technical difficulties in development and main-
tenance. Algorithms that are time intensive can sometimes
be sped-up by using distributed computing techniques such
as map-reduce [7]. However, efficient map-reduce algorithms
for graph problems are notoriously difficult. Finally, all of
these methods apply only to the special case of our problem
when a = 1, leaving open the question of solving the more
interesting and typical cases of redundant coverage when
a > 1.

3.3 Simple Approximation Algorithms
To satisfy these practical requirements, we propose the study
of three simple approximate solutions strategies that not
only can be shown to scale well in practice but also have
good theoretical properties that we demonstrate using ap-
proximation ratios.

• Sampling: The first solution is a simple random sam-
pling solution that selects a random subset of c links
out of the available d from every page. Note that this
solution requires no memory overhead to store these
results a-priori and the recommendations can be gen-
erated using a random number generator on the fly.
While this might seem trivial at first, for sufficient
(and often real-world) values of c and a we show that
this can be optimal. Also, this method is very easy
to adapt to the case when the underlying graph is dy-
namic with both nodes and edges changing over time.
Furthermore, our approach can be extended to the case
where the recommendation edges have weights repre-
senting varying strengths of association as is typically
provided by the traditional methods that generate can-
didate recommendation links1.

• Greedy: The second solution we propose is a greedy
algorithm that chooses the recommendation links so
as to maximize the number of nodes in R that can
accumulate a in-links. In particular, we keep track
of the number of in-links required for each node in
R to reach the target of a and choose the links from
each node in L giving preference to adding links to
nodes in R that are closer to the target in-degree a.
This method bears close resemblance in strategy with
greedy methods used for maximum coverage and its
more general submodular maximization variants.

• Partition: The third solution is inspired by a theo-
retically rigorous method to find optimal subgraphs in
sufficiently dense graphs: it partitions the edges into
a subsets by random sub-sampling, such that there is
a good chance of finding a perfect matching from L to
R in each of the subsets. The union of the matchings

1We omit a full description of this result for brevity.
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so found will thus result in most nodes in R achiev-
ing the target degree a. We require the number of
edges in the underlying graph to be significantly large
for this method to work very well; moreover, we need
to run a (near-)perfect matching algorithm in each of
the edge-subsets which is also a computationally ex-
pensive subroutine. Hence, even though this method
works very well in dense graphs, its resource require-
ments may not scale well in terms of running time and
space.

As a summary, the table below shows the time and space
complexity of our different algorithms.

Sampling Greedy Partition

Time O(|E|) O(|E|) O(|E|
√
|V |)

Working Space O(1) O(V ) O(|E|)

Figure 1: Complexities of the different algorithms (assuming
constant a and c)

In the next section, we elaborate on these methods, their
running times, implementation details, and theoretical per-
formance guarantees. In the section after that, we present
our comprehensive empirical evaluations of all three meth-
ods, first the results on simulated data and then the results
on real data from some clients of BloomReach.

4. ALGORITHMS FOR
RECOMMENDATION SUBGRAPHS

4.1 The Sampling Algorithm
We present the sampling algorithm for the (c, a)-recommen-
dation subgraph formally below.

Data: A bipartite graph G = (L,R,E)
Result: A (c, a)-recommendation subgraph H
for u in L do

S ← a random sample of c vertices without
replacement in N(u);
for v in S do

H ← H ∪ {(u, v)};
end

end
return H;

Algorithm 1: The sampling algorithm

Given a bipartite graph G, the algorithm has runtime com-
plexity of O(|E|) since every edge is considered at most once.
The space complexity can be taken to be O(1), since the ad-
jacency representation of G can be assumed to be pre-sorted
by the endpoint of each edge in L.

We next introduce a simple random graph model for the
supergraph from which we are allowed to choose recommen-
dations and present a bound on its expected performance
when the underlying supergraph G = (L,R,E) is chosen
probabilistically according to this model.

Fixed Degree Model: In this model for generating the
candidate recommendation graph, each vertex u ∈ L uni-
formly and independently samples d neighbors from R with
replacement. While this allows each vertex in L to have the

same vertex as a neighbor multiple times, in reality r � d is
so edge repetition is very unlikely. This model is similar to,
but is distinct from the more commonly known Erdös-Renyi
model of random graphs [16]. In particular, while the degree
of each vertex in L is fixed under our model, concentration
bounds can show that the degrees of the vertices in L would
have similarly been concentrated around d for p = d/r in the
Erdös-Renyi model. We prove the following theorem about
the performance of the Sampling Algorithm. We denote the
ratio of the size of L and R by k, i.e., we define k = l

r
.

Theorem 1. Let S be the random variable denoting the
number of vertices v ∈ R such that degH(v) ≥ a in the
fixed-degree model. Then

E[S] ≥ r
(

1− e−ck+
a−1
r

(ck)a − 1

ck − 1

)

To get a quick sense of the very good performance bounds
reflected in this theorem, please see Figure 2 that plots
the approximation ratio as a function of ck for the (c, 1)-
recommendation subgraph problem, as well as Figure 3 that
shows how large c needs to be (in terms of k) for the solution
to be 95% optimal for different values of a, both in the fixed
degree model.

Proof. We will analyze the sampling algorithm as if it
picks the neighbors of each u ∈ L with replacement, the
same way the fixed-degree model generates G. This variant
would obviously waste some edges, and perform worse than
the variant which samples neighbors without replacement.
This means that any performance guarantee we prove for
this variant holds for our original statement of the algorithm
as well.

To prove the claim let Xv be the random variable that rep-
resents the degree of the vertex v ∈ R in our chosen sub-
graph H. Because our algorithm uniformly subsamples a
uniformly random selection of edges, we can assume that H
was generated the same way as G but sampled c instead of
d edges for each vertex u ∈ L. Since there are cl edges in H
that can be incident on v, and each of these edges has a 1/r
probability of being incident on a given vertex in L, we can
now calculate that

Pr[Xv = i] =

(
cl

i

)
(1− 1

r
)cl−i

(
1

r

)i
≤ (cl)i(1− 1

r
)cl−i

(
1

r

)i

Using a union bound, we can combine these inequalities to
upper bound the probability that degH(v) < a.
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Pr[Xv < a] =

a−1∑
i=0

(
cl

i

)(
1− 1

r

)cl−i(
1

r

)i

≤
a−1∑
i=0

(
cl

r

)i(
1− 1

r

)cl−i

≤
(

1− 1

r

)cl−(a−1) a−1∑
i=0

(ck)i

≤
(

1− 1

r

)cl−(a−1)
(ck)a − 1

ck − 1

≤ e−ck+
a−1
r

(ck)a − 1

ck − 1

Letting Yv = [Xv ≥ a], we now see that

E[S] = E

[∑
v∈R

Yv

]
≥ r

(
1− e−ck+

a−1
r

(ck)a − 1

ck − 1

)

We can combine this lower bound with a trivial upper bound
to obtain an approximation ratio that holds in expectation.

Theorem 2. The above sampling algorithm gives a
(
1− 1

e

)
-

factor approximation to the (c, 1)-graph recommendation
problem in expectation.

Proof. The size of the optimal solution is bounded above
by both the number of edges in the graph and the number
of vertices in R. The former of these is cl = ckr and the lat-
ter is r, which shows that the optimal solution size OPT ≤
rmin(ck, 1). Therefore, by simple case analysis the approxi-
mation ratio in expectation is at least
(1− exp(−ck))/min(ck, 1) ≥ 1− 1

e

For the (c, 1)-recommendation subgraph problem the ap-
proximation obtained by this sampling approach can be much
better for certain values of ck. In particular, if ck > 1, then
the approximation ratio is 1−exp(−ck), which approaches 1
as ck →∞. When ck = 3, then the solution will be at least
95% as good as the optimal solution even with our trivial
bounds. Similarly, when ck < 1, the approximation ratio is
(1 − exp(−ck))/ck which also approaches 1 as ck → 0. In
particular, if ck = 0.1 then the solution will be at 95% as
good as the optimal solution. The case when ck = 1 repre-
sents the worst case outcome for this model where we only
guarantee 63% optimality. Figure 2 shows the approxima-
tion ratio as a function of ck for the (c, 1)-recommendation
subgraph problem in the fixed degree model.

Figure 2: Approx ratio as a function of ck

For the general (c, a)-recommendation subgraph problem,
if ck > a, then the problem is easy on average. This is
in comparison to the trivial estimate of cl. For a fixed a,
a random solution gets better as ck increases because the
decrease in e−ck more than compensates for the polynomial
in ck next to it. However, in the more realistic case, the
undiscovered pages in R too numerous to be all covered even
if we used the full set of budgeted links allowed out of L,
i.e. cl < ra or rearranging, ck < a; in this case, we need to
use the trivial estimate of ckr/a, and the analysis for a = 1
does not extend here. For practical purposes, the table in
Figure 3 shows how large c needs to be (in terms of k) for the
solution to be 95% optimal for different values of a, again in
the fixed degree model.

a 1 2 3 4 5

c 3.00k−1 4.74k−1 7.05k−1 10.01k−1 13.48k−1

Figure 3: The required ck to obtain 95% optimality for
(c, a)-recommendation subgraph

We close out this section by showing that the main result
that holds in expectation also hold with high probability for
a = 1, using the following variant of Chernoff bounds.

Theorem 3. [4] Let X1, . . . , Xn be non-positively corre-
lated variables. If X =

∑n
i=1Xi, then for any δ ≥ 0

Pr[X ≥ (1 + δ)E[X]] ≤
(

eδ

(1 + δ)1+δ

)E[X]

Theorem 4. Let S be the random variable denoting the
number of vertices v ∈ R such that degH(v) ≥ 1. Then S ≤
r(1−2 exp(−ck)) with probability at most (e/4)r(1−exp(−ck)).

For realistic scenarios where r is very large, the above theo-
rem gives very tight bounds on the size of the solution, also
explaining the effectiveness of the simple sampling algorithm
in such instances.
The results presented in this section can be naturally ex-
tended to weighted models as shown by the theorem below.
The proof is left out due to space constraints.

Theorem 5. Let G = Kl,r be a complete bipartite graph
where the edges have i.i.d. weights and come from a distri-
bution with mean µ that is supported on [0, b]; Assume that
ckµ ≥ 1 + ε for some ε > 0. If the algorithm from Section
4.1 is used to sample a subgraph H from G and S is the set
of vertices in R of incident weight at least one, then

E[S] =
∑
v∈R

E[Xv] = r

(
1− exp

(
−2lε2

b2

))
4.2 The Greedy Algorithm
We next analyze the natural greedy algorithm for construct-
ing a (c, a)-recommendation subgraph H iteratively. In the
following algorithm, we use N(u) to refer to the neighbors
of a vertex u.

The algorithm loops through each vertex in R, and consid-
ers each edge once. Therefore, the runtime is Θ(|E|). Fur-
thermore, the only data structure we use is an array which
keeps track of degH(u) for each u ∈ L, so the memory con-
sumption is Θ(|L|). Finally, we prove the following tight
approximation property of this algorithm.
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Data: A bipartite graph G = (L,R,E)
Result: A (c, a)-recommendation subgraph H
for u in L do

d[u]← 0
end
for v in R do

F ← {u ∈ N(v)|d[u] < c};
if |F | ≥ a then

restrict F to a elements;
for u in F do

H ← H ∪ {(u, v)};
d[u]← d[u] + 1;

end

end

end
return H;

Algorithm 2: The greedy Algorithm

Theorem 6. The greedy algorithm gives a 1/(a+1)-approxi-
mation to the (c, a)-graph recommendation problem.

Proof. Let RGREEDY , ROPT ⊆ R be the set of vertices
that have degree ≥ a in the greedy and optimal solutions
respectively. Note that any v ∈ ROPT along with neigh-
bors {u1, . . . ua} forms a set of candidate edges that can be
used by the greedy algorithm. Each selection of the greedy
algorithm might result in some candidates becoming infea-
sible, but it can continue as long as the candidate pool is
not depleted. Each time the greedy algorithm selects some
vertex v ∈ R with edges to {u1, . . . , ua}, we remove v from
the candidate pool. Furthermore each ui could have degree
c in the optimal solution and used each of its edges to make
a neighbor attain degree a. The greedy choice of an edge
to ui requires us to remove such an edge to an arbitrary
vertex vi ∈ R adjacent to ui in the optimal solution, and
thus remove vi from further consideration in the candidate
pool. Therefore, at each step of the greedy algorithm, we
may remove at most a+ 1 vertices from the candidate pool
as illustrated in Figure 4. Since our candidate pool has size
OPT , the greedy algorithm can not stop before it has added
OPT/(a+ 1) vertices to the solution.

Figure 4: One step of the greedy algorithm. When v selects
edges to u1, . . . , ua, it can remove v1, . . . , va from the pool
of candidates that are available. The potentially invalidated
edges are shown in red.

This approximation guarantee is as good as we can expect,
since for a = 1 we recover the familiar 1/2-approximation

of the greedy algorithm for matchings. Furthermore, even
in the case of matchings (a = 1), randomizing the order in
which the vertices are processed is still known to leave a con-
stant factor gap in the quality of the solution [17]. Despite
this result, the greedy algorithm fares much better when we
analyze its expected performance. Switching to the Erdös-
Renyi model [10] instead of the fixed degree model used
in the previous section, we now prove the near optimality
of the greedy algorithm for the (c, a)-recommendation sub-
graph problem. Recall that in this model (sometimes re-
ferred to as Gn,p), each possible edge is inserted with prob-
ability p independent of other edges. In our version Gl,r,p,
we only add edges from L to R each with probability p inde-
pendent of other edges in this complete bipartite candidate
graph. For technical reasons, we need to assume that lp ≥ 1
in the following theorem. However, this is a very weak as-
sumption since lp is simply the expected degree of a vertex
v ∈ R. Typical values for p for our applications will be
Ω(log(l)/l) making the expected degree lp = Ω(log l).

Theorem 7. Let G = (L,R,E) be a graph drawn from the
Gl,r,p where lp ≥ 1. If S is the size of the (c, a)-recommen-
dation subgraph produced by the greedy algorithm, then:

E[S] ≥ r − a(lp)a−1

(1− p)a
r−1∑
i=0

(1− p)l−
ia
c

When the underlying random graph is sufficiently dense,
Theorem 8 shows that the above guarantee is asymptoti-
cally optimal.

Proof. Note that if edges are generated uniformly, we
can consider the graph as being revealed to us one vertex
at a time as the greedy algorithm runs. In particular, con-
sider the event Xi+1 that the greedy algorithm matches the
(i + 1)st vertex it inspects. While, Xi+1 is dependent on
X1, . . . , Xi, the worst condition for Xi+1 is when all the
previous i vertices were from the same vertices in L, which
are now not available for matching the (i+ 1)st vertex. The
maximum number of such invalidated vertices is at most
dia/ce. Therefore, the bad event is that we have fewer than
a of the at least l− dia/ce available vertices having an edge
to this vertex. The probability of this bad event is at most
Pr[Y ∼ Bin(l − ia

c
, p) : Y < a], the probability that a Bi-

nomial random variable with l− ia
c

trials of probability p of
success for each trial has less than a successes. We can bound
this probability by using a union bound and upper-bounding
Pr[Y ∼ Bin(l − ia

c
, p) : Y = t] for each 0 ≤ t ≤ a − 1. By

using the trivial estimate that
(
n
i

)
≤ ni for all n and i, we

obtain:

Pr[Y ∼ Bin(l − ia

c
, p) : Y = t] =

(
l − ia

c

t

)
(1− p)l−

ia
c
−tpt

≤
(
l − ia

c

)t
(1− p)l−

ia
c
−tpt

≤ (lp)t(1− p)l−
ia
c
−t

Notice that the largest exponent lp can take within the
bounds of our sum is a−1. Similarly, the smallest exponent
(1−p) can take within the bounds of our sum is l− ia

c
−a+1.

Now applying the union bound gives:
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Pr[Y ∼ Bin(l − ia

c
, p) : Y < a]

≤
a−1∑
t=0

Pr[Y ∼ Bin(l − ia

c
, p) : Y = t]

≤
a−1∑
t=0

(lp)t(1− p)l−
ia
c
−t

= a(lp)a−1(1− p)l−
ia
c
−a+1

Finally, summing over all the Xi using the linearity of ex-
pectation and this upper bound, we obtain

E[S] ≥ r −
r−1∑
i=0

E[¬Xi]

≥ r −
r−1∑
i=0

Pr[Y ∼ Bin(l − ia

c
, p) : Y < a]

≥ r − a(lp)a−1
r−1∑
i=0

(1− p)l−
ia
c
−a+1

Asymptotically, this result explains why the greedy algo-
rithm does much better in expectation than 1/(a+ 1) guar-
antee we can prove in the worst case. In particular, for a
reasonable setting of the right parameters, we can prove that
the error term of our greedy approximation will be sublinear.

Theorem 8. Let G = (L,R,E) be a graph drawn from the
Gl,r,p where p = γ log l

l
for some γ ≥ 1. Suppose that c, a

and ε > 0 are such that lc = (1 + ε)ra and that l and r go
to infinity while satisfying this relation. If S is the size of
the (c, a)-recommendation subgraph produced by the greedy
algorithm, then

E[S] ≥ r − o(r)

Proof. We will prove this claim by applying Theorem 7.

Note that it suffices to prove that (lp)a−1∑r−1
i=0 (1−p)l−

ia
c =

o(r) since the other terms are just constants. We first bound
the elements of this summation. Using the facts that p =
γ log l
l

, lc/a = (1 + ε)r and that i < r throughout the sum-
mation, we get the following bound on each term:

(1− p)l−
ia
c ≤

(
1− γ log l

l

)l− ia
c

≤ exp

(
−γ log l

l

(
l − ia

c

))
= exp

(
(− log l)

(
γ − ia

lc

))
= l−γ+

ia
lc = l

−γ+ i
(1+ε)r

≤ l−1+ 1
1+ε = l−

ε
1+ε

Finally, we can evaluate the whole sum:

(lp)a−1
r−1∑
i=0

(1− p)l−
ia
c ≤

(
loga−1 l

) r−1∑
i=0

l−
ε

1+ε

≤
(
loga−1 l

)
rl−

ε
1+ε

=
(
loga−1 l

) c

(1 + ε)a
l1−

ε
1+ε = o(l)

However, since r is a constant times l, any function that is
o(l) is also o(r) and this proves the claim.

4.3 The Partition Algorithm
To motivate the partition algorithm, we first define optimal
solutions for the recommendation subgraph problem.

Perfect Recommendation Subgraphs: We define a per-
fect (c, a)-recommendation subgraph on G to be a subgraph
H such that degH(u) ≤ c for all u ∈ L and degH(v) = a for
min(r, bcl/ac) of the vertices in R.

The reason we define perfect (c, a)-recommendation sub-
graphs is that when one exists, it’s possible to recover it
in polynomial time using a min-cost b-matching algorithm
(matchings with a specified degree b on each vertex) for any
setting of a and c. However, implementations of b-matching
algorithms often incur significant overheads even over regu-
lar bipartite matchings. This motivates a solution that uses
regular bipartite matching algorithms to find an approxi-
mately optimal solution given that a perfect one exists.

We do this by proving a sufficient condition for perfect (c, a)-
recommendation subgraphs to exist with high probability in
a bipartite graph G under the Erdös-Renyi model [10]
where edges are sampled uniformly and independently with
probability p. This argument then guides our formulation
of a heuristic that overlays matchings carefully to obtain
(c, a)-recommendation subgraphs.

Theorem 9. [16] Let G be a bipartite graph drawn from
Gn,n,p. If p ≥ logn−log logn

n
, then as n→∞, the probability

that G has a perfect matching approaches 1.

We will prove that a perfect (c, a)-recommendation subgraph
exists in random graphs with high probability by building
it up from a matchings each of which must exist with high
probability if p is sufficiently high. To find these matchings,
we identify subsets of size l in R that we can perfectly match
to L. These subsets overlap, and we choose them so that
each vertex in R is in a subsets.

Theorem 10. Let G be a random bipartite graph drawn
from Gl,r,p with p ≥ a log l−log log l

l
then the probability that

G has a perfect (c, a)-recommendation subgraph tends to 1
as l, r →∞.

This theorem guarantees the existence of an optimal rec-
ommendation subgraph in sufficiently dense subgraphs, and
provides a constructive proof of this fact that is also the
basis of our partition algorithm.

Proof. We start by either padding or restricting R to
a set of lc

a
before we start our analysis. If r ≥ lc

a
, then

we restrict R to an arbitrary subset R′ of size lc
a

. Since in-
duced subgraphs of Erdös-Renyi graphs are also Erdös-Renyi
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graphs, we can instead apply our analysis to the induced sub-
graph. Since the optimal solution has size bounded above
by lc

a
a perfect (c, a)-recommendation subgraph in G[L,R′]

will imply a perfect recommendation subgraph in G[L,R].

On the other hand, if r ≤ lc
a

, then we can pad R with
lc
a
− r dummy vertices and adding an edge from each such

vertex to each vertex in L with probability p. We call the
resulting right side of the graph R′. Note that G[L,R′] is
still generated by the Erdös-Renyi process. Further, since
the original graph G[L,R] is a subgraph of this new graph,
if we prove the existence of a perfect (c, a)-recommendation
subgraph in this new graph, it will imply the existence of a
perfect recommendation subgraph in G[L,R].

Having picked an R′ satisfying |R′| = lc
a

, we pick an enu-
meration of the vertices in R′ = {v0, . . . , vlc/a−1} and add
each of these vertices into a subsets as follows. Define Ri =
{v(i−1)l/a, . . . , v(i−1)l/a+l−1} for each 1 ≤ i ≤ c where the
arithmetic in the indices is done modulo lc/a. Note both L
and all of the Ri’s have size l.

Using these new sets we define the graphs Gi on the bipar-
titions (L,Ri). Since the sets Ri are intersecting, we cannot
define the graphs Gi to be induced subgraphs. However,
note that each vertex v ∈ R′ falls into exactly a of these
subsets.

Therefore, we can uniformly randomly assign each edge in G
to one of a graphs among {G1, . . . , Gc} it can fall into, and
make each of those graphs a random graph. In fact, while the
different Gi are coupled, taken in isolation we can consider
any single Gi to be drawn from the distribution Gl,l,p/a since
G was drawn from Gl,r,p. Since p/a ≥ (log l− log log l)/l by
assumption, we conclude by Theorem 9, the probability that
a particular Gi has no perfect matching is o(1).

If we fix c, we can conclude by a union bound that except
for a o(1) probability, each one of the Gi’s has a perfect
matching. By superimposing all of these perfect matchings,
we can see that every vertex in R′ has degree a. Since each
vertex in L is in exactly c matchings, each vertex in L has
degree c. It follows that except for a o(1) probability there
exists a (c, a)-recommendation subgraph in G.

Approximation Algorithm Using Perfect Matchings:
The above result now enables us to design a near linear
time algorithm with a (1 − ε) approximation guarantee to
the (c, a)-recommendation subgraph problem by leveraging
combinatorial properties of matchings. In particular, we use
the fact a matching that does not have augmenting paths
of length > 2α is a 1 − 1/α approximation to the maxi-
mum matching problem. We call this method the Partition
Algorithm, and we outline it below.

Theorem 11. Let G be a bipartite random graph drawn
from Gl,r,p where p ≥ a log l−log log l

l
. Then Algorithm 3 finds

a (1− ε)-approximation in O( |E|
ε

) time with probability 1−
o(1).

Proof. Using the previous theorem, we know that each
of the graphs Gi has a perfect matching with high proba-
bility. These perfect matchings can be approximated to a
1 − ε/c factor by finding matchings that do not have aug-
menting paths of length ≥ 2c/ε [21]. This can be done for
each Gi in O(|E|c/ε) time. Furthermore, the union of un-
matched vertices makes up an at most c(ε/c) fraction of R′,
which proves the claim.

Data: A bipartite graph G = (L,R,E)
Result: A (c,a)-recommendation subgraph H
R′ ← a random sample of |L|c/a vertices from R;
Choose G[L,R1], . . . , G[L,Rc] as in Theorem 10;
for i in [1..c] do

Mi ← A matching of G[L,Ri] with no augmenting
path of length 2c/ε;

end
H ←M1

⋃
. . .
⋃
Mc;

return H;

Algorithm 3: The partition algorithm

Notice that if we were to run the augmenting paths algo-
rithm to completeness for each matching Mi, then this al-
gorithm would take O(|E||L|) time. We could reduce this

further to O(|E|
√
L) by using Hopcroft-Karp. [13]

Assuming a sparse graph where |E| = Θ(|L| log |L|), the

time complexity of this algorithm is Θ(|L|3/2 log |L|). The
space complexity is only Θ(|E|) = Θ(|L| log |L|), but a large
constant is hidden by the big-Oh notation that makes this
algorithm impractical in real test cases.

5. EXPERIMENTAL RESULTS

5.1 Simulated Data
We simulated performance of our algorithms on random
graphs generated by the graph models we outlined. In the
following figures, each data point is obtained by averaging
the measurements over 100 random graphs. We first present
the time and space usage of these algorithms when solving a
(10, 3)-recommendation subgraph problem in different sized
graphs. In all our charts, error bars are present, but too
small to be noticeable. Note that varying the value of a
and c would only change space and time usage by a con-
stant, so these two graphs are indicative of time and space
usage over all ranges of parameters. The code used con-
duct these experiments can be found at https://github.

com/srinathsridhar/graph-matching-source

Recall that the partition algorithm split the graph into mul-
tiple graphs and found matchings (using an implementation
of Hopcroft-Karp [13]) in these smaller graphs which were
then combined into a recommendation subgraph. For this
reason, a run of the partition algorithm takes much longer to
solve a problem instance than either the sampling or greedy
algorithms. It also takes significantly more memory as can
be seen in Figures 5 and 6. Compare this to greedy and
sampling which both require a single pass over the graph,
and no advanced data structures. In fact, if the edges of G
is pre-sorted by the edge’s endpoint in L, then the sampling
algorithm can be implemented as an online algorithm with
constant space and in constant time per link selection. Sim-
ilarly, if the edges of G is pre-sorted by the edge’s endpoint
in R, then the greedy algorithm can be implemented so that
the entire graph does not have to be kept in memory. In
this event, greedy uses only O(|L|) memory.

Next, we analyze the relative qualities of the solutions each
method produces. Figures 7 and 8 plot the average perfor-
mance ratio of the three methods compared to the trivial
upper bounds as the value of c, the number of recommen-
dations allowed is varied, while keeping a = 1. They col-

84

https://github.com/srinathsridhar/graph-matching-source
https://github.com/srinathsridhar/graph-matching-source


Figure 5: Time needed to solve a (10,3)-recommendation
problem in random graphs where |R|/|L| = 4 (Notice the
log-log scale.)

Figure 6: Space needed to solve a (10,3)-recommendation
problem in random graphs where |R|/|L| = 4 (Notice the
log-log scale.)

lectively show that the lower bound we calculated for the
expected performance of the sampling algorithm accurately
captures its behavior when a = 1. Indeed, the inequality
we used is an accurate approximation of the expectation, up
to lower order terms, as is demonstrated in these simulated
runs. The random sampling algorithm does well, both when
c is low and high, but falters when ck = 1. The greedy algo-
rithm outperforms the sampling algorithm in all cases, but
its advantage vanishes as c gets larger. Note that the dip in
the graphs when cl = ar, at c = 4 in Figure 7 and c = 2
in Figure 8 is expected and was previously demonstrated in
Figure 2. The partition algorithm is immune to this drop
that affects both the greedy and the sampling algorithms,
but comes with the cost of higher time and space utilization.

In contrast to the case when a = 1, the sampling algorithm
performs worse when a > 1 but performs increasingly bet-
ter with c as demonstrated by Figures 9 and 10. The greedy
algorithm continues to produce solutions that are nearly op-
timal, regardless of the settings of c and a, even beating the
partition algorithm with increasing values of a. Our simu-
lations suggest that in most cases, one can simply use our
sampling method for solving the (c, a)-recommendation sub-
graph problem. In cases where the sampling is not suitable
as flagged by our analysis, we still find that the greedy per-
forms adequately and is also simple to implement. These two
algorithms thus confirm to our requirements we initially laid
out for deployment in large-scale real systems in practice.
To summarize, our synthetic experiments show the following
strengths of each algorithm:

Sampling Algorithm: Sampling uses little to no memory
and can be implemented as an online algorithm. If keeping

Figure 7: Solution quality for the (c, 1)-recommendation sub-
graph problem in graphs with |L| = 25k, |R| = 100k, d = 20

Figure 8: Solution quality for the (c, 1)-recommendation sub-
graph problem in graphs with |L| = 50k, |R| = 100k, d = 20

Figure 9: Solution quality for the (c, 2)-recommendation sub-
graph problem in graphs with |L| = 50k, |R| = 100k, d = 20

Figure 10: Solution quality for the (c, 4)-recommendation
subgraph problem in graphs with |L| = 50k, |R| = 100k,
d = 20
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the underlying graph in memory is an issue, then chances
are this algorithm will do well while only needing a fraction
of the resources the other two algorithms would need.

Partition Algorithm: This algorithm does well, but only
when a is small. In particular, when a = 1 or 2, parti-
tion seems to be the best algorithm, but the quality of the
solutions degrade quickly after that point. However this
performance comes at expense of significant runtime and
space. Since greedy performs almost as well without requir-
ing large amounts of space or time, partition is best suited
for instances where a is low the quality of the solution is
more important than anything else.

Greedy Algorithm: This algorithm is the all-round best
performing algorithm we tested. It only requires a single
pass over the data thus very quickly, and uses relatively little
amounts of space enabling it run completely in memory for
graphs with as many as tens of millions of edges. It is not as
fast as sampling or accurate as partition when a is small, but
it has very good performance over all parameter ranges.

5.2 Real Data
We now present the results of running our algorithms on
several real datasets. In the graphs that we use, each node
corresponds to a single product in the catalog of a merchant
and the edges connect similar products. For each product up
to 50 most similar products were selected by a proprietary
algorithm of BloomReach that uses text-based features such
as keywords, color, brand, gender (where applicable) as well
as user browsing patterns to determine the similarity be-
tween pairs of products. Such algorithms are commonly
used in e-commerce websites such as Amazon, Overstock,
eBay etc to display the most related products to the user
when they are browsing a specific product.

Two of the client merchants of BloomReach presented here
had moderate-sized relation graphs with about 105 vertices
and 106 input edges (candidate recommendations); the re-
maining merchants (3, 4 and 5) have on the order of 106

vertices and 107 input edges between them. We estimated
an upper bound on the optimum solution by taking the min-
imum of |L|c/a and the number of vertices in R of degree
at least a. Figures 11, 12 and 13 plot the average of the
optimality percentage of the sampling, greedy and partition
algorithms across all the merchants respectively. Note that
we could only run the partition algorithm for the first two
merchants due to memory constraints.

From these results, we can see that that greedy performs
exceptionally well when c gets even moderately large. For
the realistic value of c = 6, the greedy algorithm produced
a solution that was 85% optimal for all the merchants we
tested. For several of the merchants, its results were almost
optimal starting from a = 2.

The partition method is also promising, especially when the
a value that is targeted is low. Indeed, when a = 1 or
a = 2, its performance is comparable or better than greedy,
though the difference is not as pronounced as it is in the
simulations. However, for larger values of a the partition
algorithm performs worse.
The sampling algorithm performs mostly well on real data,
especially when c is large. It is typically worse than greedy,
but unlike the partition algorithm, its performance improves
dramatically as c becomes larger, and its performance does

Figure 11: Solution quality for the (c, 1)-recommendation
subgraph problem in retailer data

Figure 12: Solution quality for the (c, 2)-recommendation
subgraph problem in retailer data

Figure 13: Solution quality for the (c, 3)-recommendation
subgraph problem in retailer data

not worsen as quickly when a gets larger. Therefore, for large
c sampling becomes a viable alternative to greedy mainly in
cases where the linear memory cost of the greedy algorithm
is too prohibitive.

6. SUMMARY AND FUTURE WORK
We have presented a new class of structural recommendation
problems cast as computationally hard subgraph selection
problems, and analyzed three algorithmic strategies to solve
these problems. The sampling method is most efficient, the
greedy approach trades off computational cost with qual-
ity, and the partition method is effective for smaller prob-
lem sizes. We have proved effective theoretical bounds on
the quality of these methods, and also substantiated them
with experimental validation both from simulated data and
real data from retail web sites. Our findings have been very
useful in the deployment of effective structural recommenda-
tions in web relevance engines that drive many of the leading
websites of popular retailers.

We believe that our work lends itself to promising future
work in two directions. The first is that through a better
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understanding of the underlying graph’s topology, more pre-
cise or complex models can be used. This would require an
empirical validation of the proposed graph model and the
adaptation of our methods to different random graph mod-
els. We have made some initial progress on this front, which
can be found in the full version of the paper.

The second is that most of our algorithms aren’t particu-
larly suited for the weighted setting. While our sampling
result carries over to the weighted regime as seen in The-
orem 5, our other algorithms don’t, and even this result is
weak compared to the unweighted result we presented in full.
The problem presented by ignoring weights is that some re-
ally high value recommendations might be ignored by the
randomness of the algorithm by chance. In practice, it’s
possible to mitigate this issue by hardcoding in the really
desirable edges, and using seeding either the greedy or sam-
pling algorithm with these edges. While this can work well
in practice, it would be nonetheless be valuable to prove
strong approximation guarantees in the weighted regime as
well.
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