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ABSTRACT
Understanding a network’s temporal evolution appears to
require multiple observations of the graph over time. These
often expensive repeated crawls are only able to answer ques-
tions about what happened from observation to observation,
and not what happened before or between network snap-
shots. Contrary to this picture, we propose a method for
Twitter’s social network that takes a single static snapshot
of network edges and user account creation times to accu-
rately infer when these edges were formed. This method
can be exact in theory, and we demonstrate empirically for
a large subset of Twitter relationships that it is accurate to
within a few hours in practice.

We study users who have a very large number of edges or
who are recommended by Twitter. We examine the graph
formed by these nearly 1,800 Twitter celebrities and their
862 million edges in detail, showing that a single static
snapshot can give novel insights about Twitter’s evolution.
We conclude from this analysis that real-world events and
changes to Twitter’s interface for recommending users strongly
influence network growth.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Measurement, Theory

Keywords
online social networks, network evolution, graph analysis,
large-scale data collection, user behavior

1. INTRODUCTION
Twitter is a popular social networking website that en-

ables users to send and receive short messages of at most
140 characters, which are also called tweets. Tweets are not
highly directed messages like email, but are instead broad-
cast to all of a user’s followers. Following is the sole social
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connection in Twitter; a user’s primary view in Twitter is
a reverse chronological stream of tweets from accounts that
user is following. Academic studies of Twitter typically rep-
resent the user population as a directed graph (or directed
network) because the following relationship can be, and of-
ten is, asymmetric.

Information about Twitter can be gathered from the open
Twitter Application Programming Interface (API) [1] which
provides access to a broad range of information including
both tweet content and the current social graph. Despite
providing timing information on most other accessible data,
Twitter does not provide the time when a user u starts fol-
lowing another user v, which we call the follow time of u (v
will be clear from the context). However, the Twitter API
does return a user’s followers in the reverse order in which
they started following that user. We specifically exploit this
extra structure to estimate when edges were created.

Unlike smaller social networks for which recrawling or con-
tinuous observation of the social graph is feasible, even a
single crawl of a relatively small fraction of Twitter can be
a time-consuming enterprise. A major contribution of this
work is a simple method to estimate follow times that only
requires one static social network snapshot and the time at
which certain user accounts were created. For any edge in
the network, the method assigns a time that is a lower bound
for the time the edge was created. Despite only using one
crawl, we show that for users who rapidly gain followers
the process of assigning times, which we call timestamping,
can be extremely accurate both in theory and in practice.
We emphasize that for any follow-relationship in the graph,
our method outputs lower bounds for the actual creation
time of that edge. The inferred timestamps can always have
arbitrarily large error; however, as we show theoretically
and validate empirically, the error of inferred timestamps
for popular users is quite small.

Fortunately, Twitter has many interesting users who rapidly
gain followers. Most users only have a few followers but
some accounts on Twitter have garnered an enormous num-
ber of followers. These popular accounts, which can gain
thousands of new followers per day, include real-life celebri-
ties such as Lady Gaga and Justin Bieber, politicians such
as President Barack Obama and former vice president Al
Gore, and news media such as CNN Breaking News and
The New York Times. Twitter also promotes several hun-



dred accounts through its suggested users list. New users are
encouraged to follow these suggested users as an introduc-
tion to Twitter, and the lucky users placed on the suggested
users list gain elevated numbers of followers per day.

How does the rate of accumulation of followers change
over time for these prominent users in Twitter? What are
the key factors that influence these changes? What is the
pattern of users following celebrities in relation to their ac-
count creation times and can this pattern for existing users
tell us anything about the importance of celebrities to the
Twitter graph? For all these questions, we need accurate
temporal information about edge formation that is not avail-
able from Twitter’s API. In Section 3 we explain the simple
timestamping method that estimates edge creation times in
Twitter, proving its good theoretical properties and demon-
strating explicitly how the error should decrease as a func-
tion of follow rate. We validate this method in practice on
the members of the suggested users list and Twitter celebri-
ties, finding it to be very accurate and robust to link dele-
tions over time in Section 4.

We use the inferred times to answer many of the above
questions through a detailed study of the temporal proper-
ties of this Twitter subgraph. Our analysis reveals the im-
portance of the Twitter interface in driving followers to the
subgraph and case studies indicate the qualitative magni-
tude of these effects during different phases of the interface.
Examining the distribution of inferred timestamps reveals
that more than half of the edges in this subgraph, which
constitutes a non-negligible fraction of the total number of
edges in Twitter’s social network, formed within one month
of the following user joining Twitter. Finally, we demon-
strate through several examples that real-world events can
correlate strongly with the attractiveness of a celebrity to
followers. These results, all temporal in nature, are cap-
tured by a single network snapshot in combination with the
timestamping method.

2. BACKGROUND
Online social networks have attracted much attention as

topics for academic study [12, 16]. Many recent papers
have demonstrated that online social networks have some of
the typical characteristics of real-world networks [18] includ-
ing short path-lengths, clustering, and heavy-tailed distribu-
tions in the number of connections. These distributions are
often claimed to follow a power-law, although this requires
careful study [4].

Twitter, as one of the major online social media web-
sites, has not escaped scrutiny. Communities in Twitter’s
social network who tweet about similar topics and interests
were studied by [9]. Huberman et. al. [8] studied the in-
teraction patterns underlying the social network, suggest-
ing that only a portion of the edges matter for commu-
nication over Twitter. Parts of the graph collected under
three separate methodologies were analyzed and compared
in [11]. More recently, a network analysis based on data
collected through breadth-first search was performed by [13]
who found a non-power-law follower distribution and low
following reciprocity. None of these studies captured the
whole of Twitter’s social network though, and a discussion
of whether network measures are robust under imperfect
data is contained in [3].

The interest in online social networks goes well beyond
static network analysis. Questions regarding the dynamical

evolution of a social network are often very interesting, but
also difficult to answer. The dynamical social networks of
Flickr and Yahoo! 360 were studied in [12] which had access
to precise event times, like those we wish to recover for Twit-
ter. Learning the time intervals in which events occur only
from repeated crawling can result in bias for studying cer-
tain influence models over social networks [5]. In [15], several
networks were shown to densify over time, with the number
of edges growing superlinearly with the number of vertices,
and average distances shrunk with network size. These novel
insights, which contradicted standard views, were not pos-
sible without temporal data.

The empirical analysis of mechanisms for network growth
(cf. [6]) also requires such data and has occurred at two
scales. Macroscopic observations such as that done by [10,
20] found that preferential attachment, a particular mech-
anism, does appear to hold in certain empirical networks.
Microscopic investigations of social networks, at the scale
of individual edge placement, has recently been suggested
by [14] who compute the likelihood of a host of network
formation mechanisms, although not for Twitter. A spe-
cific investigation of Twitter performed by [21] demonstrated
the importance of triangle closure in formulating ties. At a
smaller scale, triangle closure among many other tie for-
mation mechanisms was investigated in [7]. However, the
large-scale study of mechanistic explanations for Twitter’s
network evolution is limited by the lack of temporal edge
placement data from Twitter. Triangle closure is a special
case that can be studied with information from the Twitter
API directly. We now show how to gather temporal edge
placement data for Twitter and bypass this limitation.

3. INFERRING EDGE CREATION TIMES
In this section, we define our timestamping method to

infer edge creation times. To understand the procedure, we
need to describe the relevant temporal information available
from Twitter. There is an API method that returns the
current followers of a particular user in the reverse order in
which they followed that user. So even though the time at
which the network edges were created is not provided, the
(local) order of their creation is known. Account creation
times are also available through the API.

We consider each user individually along with their or-
dered list of followers and the account creation time for each
follower. These user creation times along with the edge or-
dering for a chosen user will be the input to our procedure.
Timestamping a collection of users’ followers is done through
repeated application of the method to each user in turn. Be-
cause we apply this method to Twitter’s celebrities, for the
sake of convenience, we refer to the user chosen for time-
stamping as a celebrity.

We estimate the edge creation time for any follower of a
celebrity by positing that it is equal to the greatest lower
bound that can be deduced from the edge orderings and fol-
lower creation times for that celebrity. For each follower u of
the celebrity, we retrieve the account creation time of u and
each user v that followed the celebrity before u did, accord-
ing to that celebrity’s ordered follower list. The maximum
of these account creation times is our estimate for the follow
time of u. To explicitly demonstrate that this is the greatest
lower bound, we begin by defining a few relevant variables.

Let U be the set of all users following a particular celebrity,
Cu be the account creation time of u ∈ U , and Fu be the



unknown time at which u starts following the celebrity. Nat-
urally, Cu ≤ Fu for all u ∈ U . From the ordered follower
list, Fu ≤ Fv if and only if u appears before v in the follower
list. For an arbitrary user u ∈ U we define B(u) ⊆ U to
be all users v ∈ U such that Fv ≤ Fu. The complement
of this set, A(u), are the users who follow the celebrity af-
ter u. Every v ∈ B(u) (which includes u) provides a lower
bound on Fu because Cv ≤ Fv ≤ Fu. Any user v ∈ A(u),
for which Fv > Fu, can not provide such a bound because
they could have been created before or after the follow time
of u. The maximum over all of the lower bounds provided
by each v ∈ B(u) is our estimate for the follow time of u.

This greatest lower bound is denoted by F̂u, and is defined
to be

F̂u = max
v∈B(u)

Cv. (1)

We call any user v who is the argument of this maxi-
mum for user u ∈ U a record-breaker for user u. If v is a
record-breaker for u �= v then v is a record-breaker for itself.
Finding all record-breakers can then be simply performed
by a single sweep over the celebrity’s followers recording ev-
ery user u that has creation time greater than all preceding
users. Note that a user is, or is not, a record-breaker for
each celebrity that they follow independently.

Our algorithm embodied in Eq. 1 is to identify the record-
breakers of the celebrity and assign each follow time to be
at the creation time of the most recent record-breaker. One
could also consider a scenario in which the estimated times
are unrestricted and the quality of the estimate is given by
a quantity such as the sum of squared errors. Under such
alternatives, other methods, such as interpolating between
user creation times, could provide better estimates.

3.1 Theoretical analysis
In this subsection, we demonstrate that under circum-

stances appropriate to Twitter’s celebrities, the actual fol-
low times are concentrated about the estimated follow times
using the record-breaker users’ creation times. We consider
a model of following for a given celebrity: Fix creation times
Cu for all users u that will follow the celebrity. For each user
u, draw an independent, identically distributed non-negative
random variable Lu from an arbitrary latency distribution
that represents how long u waits until they decide to fol-
low this celebrity. The probability density function of the
latency distribution is given by �(t), where �(t) allows arbi-
trarily small latencies. So for each user u the actual follow
time is given by Fu = Cu + Lu.

For simplicity, the creation times are assumed spaced uni-
formly with time interval λ between each user and the first
user is created at time 0. The sequence of creation times
is then 0, λ, 2λ, etc. Let P (Fu − F̂u > δ) be the probabil-
ity that the error in the estimated follow time for user u is
greater than δ. (Remember that F̂u ≤ Fu so the error is
always non-negative.) Our main theoretical result, proved
in the appendix, shows the following error bound:

Proposition 1. Let ε > 0. If(∫ ∞

δ/2

�(t)dt

)δ/(2λ)

≤ ε,

then P (Fu − F̂u > δ) < ε for any user u.

Note that as λ goes to zero, the proposition is satisfied
for any δ, implying that the method becomes arbitrarily
accurate in this asymptotic limit. This proves that the fol-
low times are accurately estimated by their greatest lower
bounds for sufficiently small λ (i.e. high rates of follower
creation.)

It is not essential that the latency distribution be identi-
cal between users, that the spacing be given by λ, or that
the distribution allow arbitrarily small latencies. Funda-
mentally, if the rate of new user arrival for a celebrity is
high as defined by the proposition, then the error in the in-
ferred follow times will be small. On the other hand, if the
rate is moderate, then the errors could be quite large and
we emphasize that the timestamping method should not be
applied haphazardly. In the next section, we present a thor-
ough validation of the method on empirical Twitter data
and demonstrate negligible error on a particular subset of
Twitter’s edges explicitly.

4. EMPIRICAL VALIDATION
Now that we have presented the timestamping method,

we evaluate its performance on real data. The method re-
quires two inputs, a map between user identifiers and ac-
count creation times and a collection of ordered follower lists
for all users that we want to timestamp. In fact, we only
require a map between record-breaker user identifiers and
their account creation time. Because the number of record-
breakers in our data would require an unreasonable number
of queries to the API (on the order of millions), we estimate
the creation time of record-breakers using a reference set
of users. We crawl every 250th user ID for this reference
set and use these times to compute the best lower bound
on every record-breaker users’ creation time, given only the
creation times of users in the reference set. The error intro-
duced through this procedure is insignificant because during
the period of analysis, hundreds of thousands of new user ac-
counts are being created each day and the amount of time
for 250 new users to sign up is on the order of minutes.

Gathering ordered follower lists requires selecting users.
While the method provides lower bounds on follow times for
any user, a high follow rate is required for these lower bounds
to be accurate and therefore timestamping is generally in-
applicable to most Twitter users. However, there is a col-
lection of interesting users on Twitter for whom the method
is naturally applied because they generally gain followers at
a high rate. One such candidate set are those “celebrity”
users who already have a large number of followers. We de-
fine a celebrity to be any of the 1,000 most followed users
on Twitter, according to the website Twitaholic.com. An-
other candidate set are those users on the suggested user list.
We include the accounts on the suggested user list and put
off discussing the various implementations of the suggested
users list until Section 5. Hereafter, we also refer to these
users as celebrities because they are likely to gain followers
at a higher rate compared to accounts with a comparable
number of followers that are not on the list. Collected from
these two sources on September 18, 2010, we have slightly
less than 1,800 celebrity users with varying, yet relatively
high, rates of following.1 We call the collection of relation-

1Because the list of celebrities selected this way would vary
over time, the complete list of celebrities studied here is
available upon request.



ships in which any user follows any of the celebrities the
celebrity follower subgraph.

The assumptions required in the theoretical analysis, while
not particularly strong, are not necessarily met by this em-
pirical data. For example, the process of following a celebrity
may not be adequately described by the combination of ac-
count creation time and latency distribution. Moreover, it
is unlikely that users select their following times indepen-
dently; Romero and Kleinberg [21] have shown that triangle
closure influences network formation in Twitter.

We identify two criteria to determine whether the inferred
timestamps are useful in practice. First, the inferred follow
times should ideally have errors on the order of hours; we
do not want to have errors greater than one day. In order to
be consistent with the theory, the timestamp errors should
decrease as the new follower rate increases. Second, the
method must be robust against follower deletions. Follower
relationships can disappear because Twitter deletes a spam
account that followed the celebrity, or because a user chooses
to unfollow the celebrity or deletes their account.2

Our validation proceeds by testing the two criteria of accu-
racy and robustness against repeated crawls of the celebrity
follower subgraph in Sec. 4.1. Finally, in Sec. 4.2, we de-
termine the celebrities for which the inferred timestamps
are highly likely to be accurate arbitrarily far into Twitter’s
past.

4.1 Evaluating timestamp errors
To measure the maximum errors of the inferred time-

stamps we perform a crawl of all 1,800 celebrities every
thirty minutes for a 220 hour period from September 18,
2010 until September 28, 2010. As said previously, we use
the public Twitter API [1] to collect follower information
for each user which is returned in pages of 5,000 followers
per page. By comparing two consecutive crawls taken at
times T1 and T2, the users who started following a celebrity
in the interval [T1, T2] can be determined. Since we crawled
with a high frequency, it was sufficient to only retrieve the
first page of a celebrity’s followers which contains their most
recent 5,000 followers.

Thus we have a sequential list of users who started follow-
ing each celebrity, as well as the time interval in which each
following occurred, for this period. A total of 23,258,723 fol-
low events occurred in this period and we compare each es-
timated follow time to the time interval given by the crawls.

Since we know the interval in which the edge was created,
but we do not know exactly when the user started following
a celebrity, we can only deduce upper bounds on the time-
stamp error. The upper error bounds for a follow time that
happens in [T1, T2] is given by

EU(F̂u) = T2 − F̂u. (2)

The upper bound is always positive, and diminishes as record-
breaking events occur later in each interval. In Figure 1 we
plot for each celebrity the maximum and mean errors (i.e.
these upper bounds) of the follow events versus the number
of followers that celebrity gains during the data collection
period.

2If a user unfollows a celebrity and follows the same celebrity
later, our method would only apply to the second edge cre-
ation as the first follow event would no longer be contained
in the follower list.
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Figure 1: Mean and maximum error (upper bounds)
for all celebrities.

The mean and the maximum errors decrease as the num-
ber (rate) of new followers increases, in qualitative agree-
ment with the theoretical analysis of Sec. 3. The data is
further broken down into points with less than ten record-
breaker users (denoted RBU in the caption) and points with
more than ten record-breakers. Note that receiving more
than one record-breaker a day appears necessary to avoid
large maximum errors. For these celebrities, all average
timestamp errors are less than three hours, and 97% are less
than 15 minutes. The figure clearly shows that the method
infers event timestamps with maximum errors that are not
particularly large (less than one day) for most celebrities.

The accuracy achieved by the timestamping could be far
greater than the thirty-minute resolution of the repeated
crawls. In order to test further, we did more rapid recrawls,
but because Twitter places a limit on how many API re-
quests can be made per hour, it was not feasible to rapidly
recrawl all of the celebrity accounts. Instead we crawled the
25 users with the highest follow rate for every five minutes
for 128 hours starting on October 10, 2010. For these very
high rate celebrities, the maximum error was a few min-
utes, showing that remarkable accuracy is possible for time-
stamping the followers of Justin Bieber and Lady Gaga.

Moving on to our second criteria of robustness, we con-
sider applying our method to network snapshots gathered at
two different times. Followers from the first snapshot may
no longer exist in the second snapshot due to effects such as
unfollowing or account deletion. Users disappearing from a
celebrity’s follower list could cause the inferred follow times
to change. In particular, when a record-breaker user u in one
network snapshot no longer follows the celebrity in a later
snapshot, follow times determined by u’s creation time get
reassigned to a smaller creation time which means larger er-
ror. Over a long period, the aggregate effect of unfollowings
could significantly diminish the method’s accuracy.

To test robustness, we take each follower list collected dur-
ing the coarse-scale crawl and randomly delete each follower
with probability 0.5. After the deletions, 1,692 celebrities
still have at least ten record-breaker users. For these users,
the average increase in the maximum error is slightly more
than 5,300 seconds. For all but 26 of these users, the maxi-
mum error increased by no more than six hours. The method



is thus very robust to a large amount of statistically inde-
pendent edge deletions.

Because we remove such a large fraction of events, we are
highly confident that the method will continue to accurately
timestamp edges created during this period despite the oc-
casional deletion occurring over time. However, it is likely
that the rate at which celebrities acquire followers has been
changing over time and that the present crawls are not nec-
essarily representative of past performance. In the next sec-
tion, we discuss how we can apply the timestamping method
on historical edge creations for which we do not know the
follow rates.

4.2 Historical accuracy
Our analysis has shown that the timestamp method is

accurate and robust during time periods where there are
high follow rates. However, we wish to apply the time-
stamping method to every follower of a celebrity, not just
those for whom we can guarantee high rates through com-
parison to repeated crawls. This capability of the time-
stamping method is one of the most significant advantages
over repeated crawls, beyond ease of implementation. Yet
how can we judge the method’s accuracy in the past?

We answer this question by computing an upper bound on
the error that is partially observable from a celebrity’s fol-
lowers. Consider a non-record-breaker user u who is immedi-
ately after record-breaker v and immediately before record-
breaker z. Then the error of the follow time assigned to user
u is

Fu − F̂u = Fu −Cv ≤ Fz −Cv = Lz + Cz − Cv. (3)

This upper bound consists of the unobservable latency of
record-breaker z and the observable difference in the creation
times of the record-breakers.

Without any assumptions on the distribution of the laten-
cies for record-breakers, we cannot provide any guarantees
about inferring historical follow times. At best, confidence
could be retroactively asserted by showing that the edge cre-
ation times are reasonable by other criteria, as indeed occurs
in Section 5. We can do better by assuming that the record-
breakers in the validation data are characteristic of record-
breakers in the past. Of the 23,258,723 follow events in the
validation data, about 10% correspond to record-breakers.

We show the maximum upper bound record-breaker error
and the average upper bound record-breaker error over all
celebrities in Figure 2. Again, we see that like in Figure 1,
record-breakers must come with sufficient frequency, at least
one per day, to avoid large error.

We now only discuss the 1,748 celebrities that meet this
condition (the x and cross symbols). They have maximum
record-breaker errors of less than 8.1 hours and 91.6% have
maximum record-breaker errors of no more than 2 hours.
The average record-breaker error is less than 2.25 hours,
and 99% have an average record-breaker error of no more
than thirty minutes.

In order to apply Eq. 3 to historical data, we assume that
a record-breaker created less than 24 hours before the next
record-breaker never has a latency bigger than 20 hours and
should be considered accurate. This condition for accuracy
forces record-breakers to come sufficiently quickly, which we
observed to be an important factor in Figures 1 and 2. With
this assumption, we can explicitly evaluate our error bound
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Figure 2: Mean and maximum error (upper bounds)
for the record-breaker users over all 1800 celebrities.

on other follow events using Eq. 3 and Lz = 20 hours for
these accurate record-breakers.

To achieve an error bound of less than a day, the dif-
ference in record-breaker creation times must be less than
4 hours, assuming that the later record-breaker is accurate
and Lz = 20. As said before, an error of less than a day is
considered an accurate timestamp for a created edge. Note
that the accuracy applies to a particular estimated follow
time and not to a celebrity as a whole. The entire procedure
applied to each celebrity’s edges is then as follows: 1. All
record-breaker users that are created less than 24 hours be-
fore the next record-breaker are declared accurate. 2. Any
non-record-breaker user that follows the celebrity between
two record-breakers is accurate if the later record-breaker is
accurate and the later record-breaker created their account
less than 4 hours after the earlier record-breaker. 3. Any
user not covered by either condition is declared inaccurate.

This procedure will denote certain follow times as accu-
rate and others as inaccurate. Roughly speaking, these edges
should form temporal regions when the celebrity was and
was not gaining followers at a reasonably high rate respec-
tively. Examining these regions could be interesting, but
for the purpose of this paper, we focus on those celebrities
that contain predominantly accurate timestamps. We call
a celebrity’s collection of timestamps accurate if it contains
95 percent accurate timestamps.

On October 12, 2010, we crawled the complete follower
lists for each of the 1,800 celebrities in the validation data.
Originally, we planned on timestamping every one of their
followers using the accuracy procedure just described. Un-
fortunately, due to caching issues on Twitter, some of the
follower lists have spurious data, and this necessitated we
drop the earliest ten thousand users from the ordered fol-
lower list for each celebrity. All analysis hereafter will be
of the remaining edges placed between users and celebrities,
where these oldest edges have been removed.

Applying our accuracy procedure, we find that 1508 of the
celebrities are accurate by this standard which shows that
the timestamp method is eminently appropriate for these
Twitter accounts.



5. TEMPORAL NETWORK ANALYSIS
In this section, we study the celebrity subgraph formed

by the 1508 accurate celebrities found in Section 4.2. What
insights can we now gain that would not be possible without
knowing when social links were formed? We first perform a
broad analysis of the celebrity subgraph in Section 5.1 and
then we examine typical accounts in Section 5.2. We focus
largely on temporal analyses of this subgraph as this is the
novel information provided by our method.

5.1 Broad analysis of celebrity subgraph
There are 74, 184, 348, or about 75 million, unique users

who follow at least one of the 1508 accurate celebrities. For
reference, we estimate the total number of unique users on
Twitter to be around 190 million. So a broad spectrum
of user accounts are captured in the subgraph. Some of
these unique users are themselves celebrity accounts, so the
subgraph is not entirely bipartite. Celebrities do follow each
other.

The accurate celebrity subgraph has a total of 835, 117, 954,
or about 835 million, directed edges in it which is actually a
non-negligible fraction of edges in Twitter’s social graph. A
recent study of Twitter as a whole, gathered by breadth-first
search, collected 1.47 billion edges in total [13]. An estimate
of the total number of edges by the present authors suggests
there are around 7 billion edges in the present social graph.

The left window of Figure 3 displays the fraction of celebri-
ties with greater than k followers as a function of k. Around
20% of the accurate celebrities have more than a million fol-
lowers. The right window of Figure 3 displays the fraction
of users following k celebrities as a function of k on a log-
log scale. One feature that stands out is the existence of
three peaks in the distribution at following 20, 241, and 461
celebrities.

We have been unable to precisely determine the cause of
the 241 and 461 peaks, but following 20 celebrities has a
simple explanation. It is due to the original formulation of
the suggested users list. The suggested users list, in its orig-
inal design, gave new users the opportunity to automatically
follow 20 users randomly selected from a pre-selected collec-
tion of users. The default option was to follow all 20 users,
but one could click this off to follow a particular subset. The
motivation behind the suggested users list was to provide in-
teresting (hand-picked by Twitter) accounts for a new user
to follow. According to this article [26], the suggested users
list on July 16, 2009 had 241 users on it which is proba-
bly the cause of the peak at 241 celebrities. We have been
unable to determine if at some time the suggested user list
had 461 accounts on it. These peaks constitute prominent
evidence that Twitter’s interface has dramatically affected
the celebrity subgraph.

Further indications can be seen in Figure 4 where the blue
curve shows the number of edges created in the accurate
celebrity subgraph per hour as a function of time. We have
labeled three distinct changes in this total celebrity follow
rate.

These changes correspond to three distinct adjustments
to Twitter’s user interface. The first label (1) is the intro-
duction of the suggested users list which occurred around
February 2009 [24, 22]. Using the account creation times
of the users who follow 20 celebrities suggests that the ac-
tual date was Feb. 13, 2009, when there was a large upward
surge in following 20 celebrities. Label (2) shows when the

Figure 3: Left side: The complementary cumulative
distribution function for the number of followers of a
celebrity. Note that this is a log-linear scale. Right
side: The distribution of the number of celebrities
followed by a user plotted on a log-log scale. Notice
the three peaks at k = 20, 241 and 461.
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Figure 4: The total celebrity follow rate (follow
events per hour) and Twitter account creation rate
(accounts created per day) over time. The three la-
bels correspond to the introduction of the suggested
users list, the update to the suggested users list, and
introduction of “users you may be interested in”.
The black smoothed curve shows a four day average
of the celebrity follow rate.

old suggested user list was changed to its current format on
Jan. 21, 2010 [25] at which point the number of followers
drops dramatically. The updated format displays a number
of categories such as science and entertainment and a new
user is encouraged to follow suggested users corresponding
to their interests.3 Much of the drop in volume that oc-
curs on Jan. 21, 2010 is due to the suggested users list no
longer defaulting to follow 20 celebrities. Correspondingly,
there is a sharp decline in the number of users following 20
celebrities after Jan. 21, 2010.

The last change (3) is due to the introduction of the“users
you may be interested in” (or “Suggestions for You”) feature
which was rolled out on July 30, 2010 [23]. This feature
suggests accounts to existing Twitter users that they might

3The suggested users list could also be reached from the
Twitter homepage in both of its implementations.



want to follow. We see another upsurge in celebrity follow
rate around the same time.

One possible explanation for these rapid changes is that
the introduction of a feature, or change in user recommenda-
tion system, by Twitter adjusts the rate at which accounts
are created. We test this hypothesis by computing the rate
at which accounts were created for Twitter, shown in the
green curve of Figure 4. While there is perhaps a slightly
contemporaneous increase in total celebrity follow rate and
account creation when the old suggested user list is intro-
duced, the increase in user creation is not sustained. Simi-
larly, the change in follow rate due to the switch from old to
categorical suggested user list and introduction of “users you
may be interested in” is not explained by changes in account
creation. Since the creation rate of Twitter accounts is un-
able to account for the changes in celebrity follower rate due
to altered Twitter features, the more plausible explanation
is instead that these features altered how users discover and
follow celebrity accounts.

In order to analyze these effects further, we examine sev-
eral typical accurate celebrities on the suggested users list
as case studies in the next section.

5.2 Impact of the Suggested Users List
Given that the overall celebrity follow rate halved when

Twitter switched to the categorical suggested users list, it
is clear that being on the suggested users list increases the
acquisition of new followers substantially. Anil Dash, a tech
blogger and entrepreneur, has written about his experiences
being on the old version of the suggested users list [2] and
is an illustrative example.

At the time of our data collection, Mr. Dash had 332699
followers in total. In figure 5, we show the fraction of Mr.
Dash’s follow events per day using the inferred timestamps.
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Figure 5: The fraction of follow events for each
celebrity per day as a function of time. The three
labeled grey lines are the times of the interface
changes described in Sec. 5.1.

Very shortly after being put on the old suggested user list
on Oct. 2, 2009, Mr. Dash’s rate of gaining followers in-
creased greatly. During his time on the old suggested user
list, he gained around 2,500 new followers per day compared
to his previous average of about 50 per day. When Twitter
transitions to the categorized suggested user list, his follow-

ing rate drops significantly to around 100 followers per day.
Interestingly, this is still higher than before his presence on
the old suggested user list. We consider two possible expla-
nations for this continued popularity. Many models of net-
work formation assume that edges are “sticky” in the sense
that gaining followers increases the rate at which you will
gain followers in the future. It is reasonable that the large
number of followers gained from being on the old suggested
users list had this effect for Mr. Dash. Alternatively, his
account could have been present immediately in the catego-
rized suggested users list and this mechanism could account
for the additional followers. Mr. Dash is (as of October 20,
2010) in the technology category of the suggested users list,
but as the list changes over time, we cannot say if he was
on the list in January. A smaller, but still evident, increase
in follower rate to around 200 followers per day on average
occurs during the introduction of the “users you may be in-
terested in” feature. This increase is not nearly the boost
given by the old suggested users list, but it is certainly non-
negligible.

Also shown on the figure are the corresponding curves for
the New York Times and Kim Kardashian. The New York
Times account was created before the old suggested users list
and immediately benefits from its introduction at label (1).
Kim Kardashian apparently was placed onto the list shortly
after her account was created as her curve tracks the New
York Times fairly closely during the time of the old sug-
gested users list. In October, when Mr. Dash is placed onto
the suggested user list, both @nytimes and @kimkardashian
drop in their follow rate. It could be that the suggested
users list expanded (perhaps to 461 from 261 accounts) or
they were removed from the suggested users list. Judging by
the sharp decline in @nytimes fraction at (2), it was likely
on the suggested users list with Mr. Dash. Then finally the
introduction of “users you may be interested in” benefited
@nytimes and @kimkardashian, although again not as much
as the old suggested users list. These case studies illustrate
that a wide range of different Twitter celebrities experienced
similar follow behavior due to the interface.

Besides knowing when edges are created, we are also inter-
ested in how long users wait to follow celebrities after they
join Twitter.

5.3 Measuring following latency
In our theoretical analysis, users’ following behavior is de-

termined by a latency distribution. We examine the actual
latency of users, the differences between their account cre-
ation time and following time. Because our data only con-
tains users who have followed the celebrities when the net-
work snapshot is taken, early users may exist who will follow
the celebrities in the future and have long latencies. Ignoring
these users, and their long latencies, would bias any attempt
to empirically determine the latency distribution, especially
because we cannot identify which users will ever decide to
follow a celebrity.

So instead we measure the conditional probability that a
user waits t seconds to follow the celebrity given that they
follow the celebrity within a month of account creation. In
Figure 6, this unnormalized probability is estimated by the
number of follow events derived from users created more
than a month ago on a log-linear scale in hourly bins. The
large concentration at zero latency is caused by the set of
record-breaker users. Of those users who follow within a



month, 86 percent follow within 24 hours and 90 percent
follow within six days. If a user is going to follow a celebrity
within a month of joining Twitter, they are most likely
nearly immediately after joining.

Accurate Celebrity Follow Event Latencies
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Figure 6: The number of follow events binned by
hour as a function of latency for the follow events of
users created before September 1, 2010.

The periodicity in the distribution occurs over 24 hour
intervals and this diurnal cycle is likely due to the users
logging in within several hours of when they created their
account.

We check this interpretation in Figure 7 which is a heatmap
on a log-scale showing the number of follow events created
during the hour on the y-axis for users created during the
hour on the x-axis. We only include latencies greater than
a day to eliminate the large contribution due to the record-
breakers. This figure is consistent with our interpretation
of the latency distribution as it is runs along the diagonal
with variations of a few hours in either direction. Moreover,
the peak along the diagonal indicates that 4-10 pm EST is a
popular time to both follow celebrities and create accounts,
reflecting that the population of Twitter users are largely
focused in the United States.

The fraction of each celebrity’s followers who followed the
celebrity within a month of joining Twitter varies widely
over the celebrities with an average of 65% and a standard
deviation of 18%. This large fraction of each celebrity’s fol-
lowers translates into nearly 580 out of the 835 million edges
with latency less than a month. If we change the scale from
a month to a day, on average 48% of a celebrity’s follow-
ers followed them within a day. Again translated into edges,
about 451 million edges have latency less than a day. In fact,
about 140 million of the edges are due to record-breakers and
hence are given a latency of zero. While old users do follow
celebrities with occasionally large latency, low latency edges
are dominant.

5.4 Celebrity popularity and real-world events
We have seen that the rate at which accurate celebrities

gain followers is plausibly changed by adjustments to Twit-
ter’s interface. In this section, we examine whether the rate
at which a celebrity receives followers could also plausibly
be changed by real-world events.

For our first demonstration of a plausible real-world event
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Figure 7: A heatmap of the creation time versus
follow time over all celebrities with latencies greater
than one day on a log-scale. The hours represent
the GMT timezone.

that changed Twitter, during the Iran election in late June
2009, Twitter became a vehicle of communication among
Iranian internet users planning protests and rallies. Twitter
was popularized by the mainstream media at this time, and
we witness a sharp increase in the number of new accounts in
July 2009. Conveniently for our purposes, celebrities often
show up in the national news for particular events such as
political rallies, concerts, or sporting events. Are such single
day events important to the temporal evolution of Twitter’s
celebrity follower subgraph?

It is not effective to analyze absolute follow rates to answer
this question because the absolute rate depends on the total
rate of user account creation which varies substantially as
shown in Figure 4 with occasionally sharp changes. To com-
pensate for such overall variation, we consider whether the
relative rate, which we call relative popularity, of a celebrity
changes due to real-world events.

The relative popularity fi(t) is an estimate of the proba-
bility that a user who follows a celebrity at time t decides to
follow celebrity i. This relative popularity is normalized so
that

∑
i fi(t) = 1, where the sum is over all celebrities and

the relative popularity is zero for a nonexistent celebrity at
time t. We compute it using the following sliding window:

fi(t) =
|Connections to i within t−Δ and t+Δ|

|Edges created within t−Δ and t+Δ|
, (4)

where the variation of fi(t) is assumed to be at a longer
time-scale than window width Δ. We checked several values
Δ to ensure consistent results and decided to use a window
width equal to a week with t samples spaced per day. A
useful comparison is the relative popularity if followers were
placed randomly, which is simply 1/n(t) where n(t) is the
number of celebrities that exist at time t.

We computed these curves utilizing the top 50 celebrities
and in Figure 8, we display the resulting relative popular-
ity values for five of the most popular celebrities. These
values are clearly varying over time, and are far from the
predictions of random attachment represented by the black



line.4 The behavior of the relative popularity when a new
celebrity joins Twitter differs widely. Oprah Winfrey and
Ellen DeGeneres (not shown), for example, have a quick
spike upwards in relative popularity, but Justin Bieber be-
gins with a small relative popularity that gradually increases
over time. The relative popularity shows large variations, in-
cluding several prominent peaks and drops that are not due
to Twitter’s interface. One such drop is near June 25, 2010
(arrow 5) where the rapper Soulja Boy (not shown), gained
roughly half a million followers over a few days, garnering
a relative popularity value of nearly twenty-five percent. A
search of blog posts and news articles reveals that Soulja Boy
deleted his Twitter account called @SouljaBoyTellEm and
switched to an account called @SouljaBoy. One explanation
is that these users followed Soulja Boy from his previous
popular account. Alternatively, the hashtag #IfSouljaBoy-
WasARapper was a trending topic, which means that tweets
containing the phrase #IfSouljaBoyWasARapper were ex-
tremely popular on Twitter around June 25. While the hu-
mor was decidedly unfavorable to Soulja Boy, these tweets
may have had a positive effect on his relative popularity.

Figure 8: The relative popularity as a function of
time for five celebrities. The random attachment
prediction is shown in bold. Labeled arrows corre-
spond to events discussed in the text.

For many other cases, we can also identify spikes in rel-
ative popularity as corresponding to real-world events that
plausibly explain increased Twitter popularity. For example,
Lady Gaga performed at the Emmy’s on Feb. 1st, 2010 (ar-
row 3) and released her music video “Telephone” on March
13, 2010 (arrow 4). Even more interestingly, the peaks
that occur simultaneously for several celebrities appear to
be due to events involving them together. On Friday April
17, 2009 (arrow 1) Ashton Kutcher, who just succeeded in
reaching one million Twitter followers before CNN Break-
ing News, appeared on Oprah’s TV show, during which she
joined Twitter [19]. They both received large boosts in rela-
tive popularity from this event and we suspect that Ashton
and Oprah are collectively responsible for the largest gain
in Twitter accounts ever that occurred on this day in April
(see Figure 4). Lady Gaga also performed at the MTV Video

4We also compared to a preferential attachment model and
it did not capture the observed relative popularity either.
We omit these figures because the predicted values vary by
celebrity.

Music Awards on Sept. 12, 2009 (arrow 2) along with Tay-
lor Swift and Katy Perry (not shown). [17] All three of them
show an increase in relative popularity at this time. Un-
fortunately, Kanye West, who was involved in an infamous
incident with Taylor Swift that evening, was not on Twitter
at the time.

6. CONCLUSIONS
We have devised a simple and effective method for in-

ferring follow times in the Twitter social network that has
several distinct advantages over other ways of recovering this
information. We are able to accurately and robustly infer
link creation times using only a single crawl of the social
network and user creation times. Furthermore, we are able
to recover follow times arbitrarily far into Twitter’s history.
For the most popular users in Twitter’s social network, the
method was accurate to within several minutes.

Using the timestamp information, we recreated the evolu-
tion of the Twitter celebrity subgraph and gained temporal
insights to user following behavior including the distribution
of latencies, the importance of the Twitter interface, and
the possible influence of real-world events. Overall, our ap-
proach gave us a much deeper insight into the structure and
evolution of a significant and large subgraph of the Twitter
social network.

Our work opens several possible avenues for future in-
vestigations. The interaction of user interface with Twitter
network structure deserves detailed investigation beyond the
results provided here. For example, we neglected to consider
the categorization of the users in the current suggested users
list. Another important factor could be where a suggested
user is listed for a given category. More speculatively, is
it possible to confirm the influence of external real-world
events on Twitter’s network structure? If this influence is
strong, any network evolution mechanism that is completely
internal to the network would likely fail to describe the Twit-
ter network fully.
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APPENDIX

A. PROOF OF PROPOSITION
Proof: Pick an arbitrary user u to compute the error prob-

ability. We start from

P (Fu − F̂u > δ) =

∫ ∞

0

P (Fu − F̂u > δ|Lu = t)�(t)dt.

Since F̂u ≥ Cu, the error is at most equal to t for fixed
Lu = t, we can change the bottom limit of integration to δ
to get

P (Fu − F̂u > δ) =

∫ ∞

δ

P (Fu − F̂u > δ|Lu = t)�(t)dt.

Consider a fixed value t and defineN1(u) as the set of users
v such that Fu − δ/2 < Cv < Fu and N2(u) to be the set of



users v such that Fu − δ ≤ Cv ≤ Fu − δ/2. The probability

P (Fu − F̂u > δ|Lu = t) is equal to the probability that all
these users have Fv > Fu. If that happens, all of these users
are in A(u) and therefore, F̂u = maxv∈B(u) Cv < Fu−δ. The
condition Fv > Fu for fixed Lu = t is met if Lv > Cu−Cv+t.
Let Quv(t) = Cu −Cv + t and P (L > x) =

∫ ∞

x
�(t)dt. Then

we can express the conditional error probability as

P (Fu − F̂u > δ|Lu = t) =
∏

v∈N1(u)
⋃

N2(u)

P (L > Quv(t)).

We upper-bound this expression as follows:

P (Fu − F̂u > δ|Lu = t) ≤
∏

v∈N2(u)

P (L > Quv(t)).

Note that Quv(t) ≥ δ/2 for v ∈ N2(u). Then

P (Fu − F̂u > δ|Lu = t) ≤ P (L > δ/2)|N2(u)| (5)

= P (L > δ/2)�δ/(2λ)�.

This bound no longer depends on t. So

P (Fu − F̂u > δ) ≤

∫ ∞

δ

P (L > δ/2)�δ/(2λ)��(t)dt (6)

< P (L > δ/2)�δ/(2λ)�+1

< P (L > δ/2)δ/(2λ),

which completes our proof.
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