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Abstract
We consider the problem of interdicting a directed graph by deleting nodes with
the goal of minimizing the local edge connectivity of the remaining graph from a
given source to a sink. We introduce and study a general downgrading variant of the
interdiction problem where the capacity of an arc is a function of the subset of its
endpoints that are downgraded, and the goal is to minimize the downgraded capacity
of a minimum source-sink cut subject to a node downgrading budget. This models
the case when both ends of an arc must be downgraded to remove it, for example.
For this generalization, we provide a bicriteria (4, 2)-approximation that downgrades
nodes with total weight at most 4 times the budget and provides a solution where
the downgraded connectivity from the source to the sink is at most 2 times that in
an optimal solution. We accomplish this with an LP relaxation and rounding using
a ball-growing algorithm based on the LP values. Furthermore, we show that other
bicriteria approximations exist where one can worsen the approximation factor for
one of the costs in order to improve the other. We further generalize the downgrading
problem to one where each vertex can be downgraded to one of k levels, and the arc
capacities are functions of the pairs of levels to which its ends are downgraded. We
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generalize our LP rounding to get a (4k, 4k)-approximation for this case. Trade-offs
between the two approximation ratios similar to the two-level case also exist for the
generalized problem. By transferring node values to edge values, we also derive new
bicriteria approximation results for the vertex interdiction versions of the multiway
cut problem in digraphs and multicut problems in undirected graphs.

Keywords Vertex interdiction · Vertex downgrading · Network interdiction ·
Approximation algorithm

Mathematics Subject Classification 90C27

1 Introduction

Interdiction problems arise in evaluating the robustness of infrastructure and networks.
For an optimization problem on a graph, the interdiction problem can be formulated
as a game consisting of two players: an attacker and a defender. Every edge/vertex of
the graph has an associated interdiction cost and the attacker interdicts the network by
modifying the edges/vertices subject to a budget constraint. The defender solves the
problem on the modified graph. The goal of the attacker is to hamper the defender as
much as possible. Ford and Fulkerson initiated the study of interdiction problems with
the maximum flow/minimum cut theorem [7, 17, 24]. Other examples of interdiction
problems include matchings [27], minimum spanning trees [20, 30], shortest paths
[13, 18], st-flows [23, 26, 28] and global minimum cuts [6, 29].

Most of the interdiction literature today involves the interdiction of edges while
the study of interdicting vertices has received less attention (e.g. [27, 28]). The vari-
ous applications for these interdiction problems, including drug interdiction, hospital
infection control, and protecting electrical grids or other military installations against
terrorist attacks, all naturally motivate the study of the vertex interdiction variant. In
this paper, we focus on vertex interdiction problems related to the minimum st-cut
(which is equal to the maximum st-flow and hence also termed network flow inter-
diction or network interdiction in the literature).

For st-cut vertex interdiction problems, the setup is as follows. Consider a directed
graphG = (V (G), A(G))with n vertices,m arcs, an arc cost function c : A(G) → N,
and an interdiction cost function r : V (G) \ {s, t} → N defined on the set of vertices
V (G) \ {s, t}. A set of arcs F ⊆ A(G) is an st-cut if G\F no longer contains a
directed path from s to t . Define the cost of F as c(F) = Σe∈Fc(e). For any subset
of vertices X ⊆ V (G) \ {s, t}, we denote its interdiction cost by r(X) = ∑

v∈X r(v).
Let λst (G\X) denote the cost of a minimum st cut in the graph G\X .
Problem 1 Weighted Network Vertex Interdiction Problem (WNVIP) and its spe-
cial cases.Given two specific vertices s (source) and t (sink) in V (G) and interdiction
budget b ∈ N, the Weighted Network Vertex Interdiction Problem (WNVIP) asks to
find an interdicting vertex set X∗ ⊆ V (G) \ {s, t} such that

∑
v∈X∗ r(v) ≤ b and

λst (G\X∗) is minimum. The special case of WNVIP where all the interdiction costs
are one will be termed NVIP, while the further special case when even the arc costs
are one will be termed NVIP with unit costs.
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Vertex downgrading to minimize connectivity 217

In this paper, we define and study a generalization of the network flow interdiction
problem in digraphs that we call vertex downgrading. Since interdicting vertices can
be viewed as attacking a network at its vertices, it is natural to consider a variant where
attacking a node does not destroy it completely but partially weakens its structural
integrity. In terms of minimum st-cuts, one interpretation could be that whenever
a vertex is interdicted, instead of removing it from the network we partially reduce
the cost of its incident arcs. In this context, we say that a vertex is downgraded.
Specifically, consider a directed graph G = (V (G), A(G)) and a downgrading cost
r : V (G) \ {s, t} → N. For every arc e = uv ∈ A(G), there exist four associated
nonegative costs ce, ceu, cev, ceuv , respectively representing the cost of arc e if 1)
neither {u, v} are downgraded, 2) only u is downgraded, 3) only v is downgraded,
and 4) both {u, v} are downgraded. Note that these cost functions are independent of
each other so downgrading vertex v might affect each of its incident arcs differently.
However, we do impose the following conditions: ce ≥ ceu ≥ ceuv and ce ≥ cev ≥
ceuv . These inequalities are natural to impose since the more endpoints of an arc
are downgraded, the lower the resulting arc should cost. Given a downgrading set
Y ⊆ V (G) \ {s, t}, define cY : A(G) → R+ to be the arc cost function representing
the cost of cutting e after downgrading Y .

u, v /∈ Y u ∈ Y , v /∈ Y u /∈ Y , v ∈ Y u, v ∈ Y

cY (e) = ce ceu cev ceuv

Given a set of arcs F ⊆ A(G), we define cY (F) = Σe∈FcY (e).

Problem 2 NetworkVertexDowngradingProblem(NVDP).LetG = (V (G), A(G))

be a directed graph with a source s and a sink t . For every arc e = uv, we are given
non-negative costs ce, ceu, cev, ceuv as defined above. Given a (downgrading) budget
b, find a set Y ⊆ V (G) \ {s, t} and an st-cut F ⊆ A(G) such that Σv∈Y r(v) ≤ b and
minimizes cY (F).

Figure 1 depicts an instance of NVDP. Four numbers, representing ce, ceu, ceuv, cev
respectively, are given in sequence above certain arcs. For simplicity, assume that the
remaining arcs have large costs regardless of which endpoints were downgraded and
thus will not be part of the final cut. If we downgrade {v3, v4}, the costs of the arcs
v2v1, v2v3, v4v3, v4v5 are 6, 4, 1, 1 respectively, producing a final cut of cost 12. Note
that if the budget was 2, then the optimal set to downgrade is {v2, v4}, resulting in a
cut of cost 11.

Fig. 1 Example of NVDP
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While it is not immediately obvious as it is for WNVIP, we can still show that
detecting a zero solution for NVDP is polynomial-time solvable.

Theorem 1 Given an instance of NVDP on graph G with budget b, there exists a
polynomial time algorithm to determine if there exists Y ⊆ V (G) and an st-cut
F ⊆ A(G) such that Σv∈Y r(v) ≤ b and cY (F) = 0.

First we present some useful reductions between the above problems.

1. In the NFI (Network Flow Interdiction) problem defined in [7], the given graph is
undirected instead of directed and the adversary interdicts edges instead of vertices.
The goal is to minimize the cost of the minimum st-cut after interdiction. NFI can
be reduced to the undirected version of WNVIP (where the underlying graph is
undirected). Simply subdivide every undirected edge e = uv with a vertex ve.
The interdiction cost of ve remains the same as the interdiction cost of e while all
original vertices have an interdiction cost of ∞ (or a very large number). The cost
of the edges uve, vev are equal to the cost if the original edge e.

2. The undirected version of WNVIP can be reduced to the (directed) WNVIP by
replacing every edge with two parallel arcs going in opposite directions. Each new
arc has the same cost as the original edge.

3. WNVIP is a special case of NVDP with costs ceu = cev = ceuv = 0 for all e = uv.

The first two observations above imply that any hardness result for NFI in [7] also
applies to WNVIP. Based on the second observation, we prove our hardness results
for the (more specific) undirected version of WNVIP. As a consequence of the third
observation, all these hardness results also carry over to the more general NVDP.

Our work also studies the following further generalization of NVDP. Every vertex
has k possible levels that it can be downgraded to by paying different downgrad-
ing costs. Every arc has a cutting cost depending on what level its endpoints were
downgraded to. More precisely, for each level 0 ≤ i, j ≤ k, let ri (v) be the
interdiction cost to downgrade v to level i and let ci, j (e) be the cost of cutting
arc e = uv if u, v were downgraded to levels i, j respectively. We assume that
0 = r0(v) ≤ r1(v) ≤ ... ≤ rk(v) since higher levels of downgrading should cost
more and ci, j (e) ≥ ci ′, j ′(e) if i ≤ i ′, j ≤ j ′ since the more one downgrades, the
easier it is to cut the incident arcs. Then, given a map L : V (G) → {0, ..., k}, rep-
resenting which level to downgrade each vertex to, one can talk about the cost of
performing this downgrading: r L := Σv∈V (G)rL(v)(v), and the cost of a cut F after
downgrading according to L: cL(F) := Σuv∈FcL(u),L(v)(uv). Now, we can formally
define the most general problem we address.

Problem 3 Network Vertex Leveling Downgrading Problem (NVLDP). Let G =
(V (G), A(G)) be a directed graph with a source s and a sink t . For every vertex v and
0 ≤ i ≤ k, we have non-negative downgrading costs ri (v). For every arc e = uv and
levels 0 ≤ i, j ≤ k, we are given non-negative cut costs ci, j (e). Given a (downgrading)
budget b, find a map L : V (G) → {0, ..., k} and an st-cut F ⊆ A(G) such that r L ≤ b
and minimizes cL(F).

Note that when k = 1 we have NVDP.
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Vertex downgrading to minimize connectivity 219

Definition 1 An (α, β) bicriteria approximation for the interdiction (or downgrad-
ing) problem returns a solution that violates the interdiction budget b by a factor of at
most β and provides a final cut (in the interdicted graph) with cost at most α times the
optimal cost of a minimum cut after interdiction with a budget b.

1.1 Related works

Chestnut and Zenklusen [7] study the network flow interdiction problem (NFI), which
is the undirected and edge interdiction version of WNVIP. NFI is also known to
be essentially equivalent to the budgeted minimum st cut problem [22]. NFI is also a
recasting of the k-route st-cut problem [8, 16], where aminimumcost set of edgesmust
be deleted to reduce the node or edge connectivity between s and t to be k. The results of
Chestnut and Zenklusen, and Chuzhoy et al. [8] show that an (α, 1)-approximation for
WNVIP implies a 2(α)2-approximation for the notorious Densest k-Subgraph (DkS)
problem. The results of Chuzhoy et al. [8] (Theorem 1.9 and Appendix section B) also
imply such a hardness for NVIP even with unit edge costs. For the directed version,
WNVIP is equivalent to directed NFI (by subdividing arcs or splitting vertices). As
noted in [28], there is a symmetry between the interdicting cost and the capacity
on each arc and thus it is also hard to obtain a (1, β)-approximation for WNVP.
Furthermore, Chuzhoy et al. [8] also show that there is no (C, 1 + γC )-bi-criteria
approximation for WNVIP assuming Feige’s Random κ-AND Hypothesis (for every
C and sufficiently small constant γC ). For example, under this hypothesis, they show
hardness of ( 1110 − ε, 25

24 − ε) approximation for WNVIP.
Chestnut and Zenklusen give a 2(n − 1) approximation algorithm for NFI for any

graph with n vertices. In the special case where the graph is planar, Philips [23] gave
an FPTAS and Zenklusen [28] extended it to handle the vertex interdiction case.

Burch et al. [3] give a (1 + ε, 1), (1, 1 + 1
ε
) pseudo-approximation algorithm for

NFI. Given any ε > 0, this algorithm returns either a (1 + ε)-approximation, or a
solution violating the budget by a factor of 1+ 1

ε
but has a cut no more expensive than

the optimal cost. However, we do not know which case occurs a priori. In this line
of work, Chestnut and Zenklusen [6] have extended the technique of Burch et al. to
derive pseudo-approximation algorithms for a larger class of NFI problems that have
good LP descriptions (such as duals that are box-TDI). Chuzhoy et al. [8] provide an
alternate proof of this result by subdividing edges with nodes of appropriate costs.

We summarize other related work on multiway and multicuts in the corresponding
sections later.

1.2 Our contributions

1. We define and initiate the study of multi-level node downgrading problems by
defining the Network Vertex Leveling Downgrading Problem (NVLDP) and pro-
vide the first results for it. This problem extends the study in [28] of the vertex
interdiction problem so as to consider a richer set of interdiction functions.
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2. For the downgrading variant NVDP, we show that the problem of detecting whether
there exists a downgrading set that gives a zero cost cut can be solved in polynomial
time (Sect. 2).

3. We design a new LP rounding approximation algorithm that provides a ((1 +
ε)2, (1 + 1/ε)2/2)-approximation to NVDP for any 0 < ε ≤ 1. Note that this
provides a range of (α, β)-approximations where 1 < α ≤ 4. When α ≥ 4, the
same techniques provides a slightly weaker approximation guarantee of the form
(2(1 + ε), 1 + 1/ε) where ε ≥ 1. We use a carefully constructed auxiliary graph
so that the level-cut algorithm based on ball growing for showing integrality of
st-cuts in digraphs (see e.g. [9]) can be adapted to choose nodes to downgrade and
arcs to cut based on the LP solution (Sect. 3).

4. In Sect. 3.2, we present a simple reduction from NVDP to WNVIP. Combining
with a result from Burch et al. [3], it gives a pseudorandom approximation where
for any ε > 0, the solution is either (2(1+ ε), 1) or (2, (1+ 1/ε)) but a priori, one
cannot guarantee which approximation is attainable.

5. For the most general version NVLDPwith k levels of downgrading each vertex and
k2 possible downgraded costs of cutting an edge, we generalize the LP rounding
method for NVDP to give a (2(1+ε)k, 2(1+1/ε)k)-approximation for any ε > 0.
The direct extension of the NVDP rounding to this case only gives an O(k2)
approximation. However, we exploit the sparsity properties of a vertex optimal
solution to our LP formulation to improve this guarantee to match that for the case
of k = 1. We have also provided a zero-detection scheme to determine if it is
possible to downgrade within the budget to induce a zero-cost cut (Sect. 4, 5).

6. As noted before, many previous works showed hardness in obtaining a unicriterion
approximation forWNVIP, which motivates the focus on finding bicriteria approx-
imation results. We push the hardness result further to show that it is also “DkS
hard" to obtain a (1, β)-approximation for NVIP and NVIP with unit costs even in
undirected graphs. Note that this is in sharp contrast to the edge interdiction case.
NFI in undirected graphs with unitary interdiction cost and unitary cut cost can be
solved by first finding a minimum cut and then interdicting b edges in that cut [29]
(Sect. 6).

7. Burch et al. [3] gave a polynomial time algorithm that finds a (1 + 1/ε, 1) or
(1, 1+ε)-approximation for any ε > 0 forWNVIP in digraphs. This was reproved
more directly by Chuzhoy et al. [8] by converting both interdiction and arc costs
into costs on nodes. We show that this strategy can also be extended to give a
simple (4, 4(1+ε))-bicriteria approximation for themultiway cut generalization in
directed graphs and a (2(1+ ε) ln k, 2(1+ ε) ln k)-approximation for the multicut
vertex interdiction problem in undirected graphs, for any ε > 0, where k is the
number of terminal nodes in the multicut problem (Sect. 7).

2 Detecting zero in NVDP in polynomial time

In this section,we show that in a given instance ofNVDP, one can detect in polynomial-
time whether there exists nodes to downgrade such that the downgrading cost is less
than the budget and themin cut after downgrading is zero, and hence prove Theorem 1.
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Vertex downgrading to minimize connectivity 221

In order to demonstrate the main idea of the proof, we first work on a special case
of NVDP. Suppose for every arc e = uv, ce = ceu = cev = 1 and ceuv = 0. In other
words, every arc is unit cost and requires the downgrading of both ends in order to
reduce the cost down to zero. For every vertex v ∈ V (G), we assume the interdiction
cost r(v) = 1. We call this the Double-Downgrading Network Problem (DDNP).
We first prove the following.

Lemma 1 Given an instance of DDNP on graph G with budget b, there exist a polyno-
mial time algorithm to determine if there exists Y ⊆ V (G) and an st-cut F ⊆ A(G)

such that |Y | ≤ b and cY (F) = 0.

Proof Let X ⊆ V (G)be aminimumset of vertices to downgrade such that the resulting
graph contains a cut of zero cost. Let F be the set of arcs in the graph induced by X
(i.e., with both ends in X ). Note that F are the only arcs with cost zero and hence F
is an arc cut in G. Furthermore, since X is optimal, X is the set of vertices incident to
F (i.e. there are no isolated vertices in the graph induced by X ). Let Vs and Vt be the
set of vertices in the G\F that is respectively reachable by s and can reach t .

Consider the graph G2 where we add arc uw to G if there exists w ∈ V (G) such
that uv, vw ∈ A(G). We claim that X is a vertex cut in G2. Suppose there is an st
path in G2 \ X where the first arc crossing over from Vs to Vt is uv. Note that any
such u ∈ Vs \ X and v ∈ Vt \ X are distance 3 apart and hence, do not have an arc
between them in G2, a contradiction.

Given any vertex cut Y in G2, we claim that downgrading Y in G creates an st-cut
of zero cost, by deleting the arcs induced by Y from G. Suppose for a contradiction
there is an st-path inG after downgrading Y and deleting the zero-cost arcs induced by
Y . Then the path cannot have two consecutive nodes in Y . Let y ∈ Y be a single node
along the path with neighbors y−, y+ /∈ Y . Note that (y−, y+) ∈ G2, and shortcutting
over all such single node occurrences from Y in the path gives us an st-path in G2 \Y ,
a contradiction.

This proves that aminimumsize downgrading vertex setY inG whose downgrading
produces a zero-cost st-cut is also a minimum vertex-cut inG2. Then, one can check if
a zero-cut solution exists with budget b for DDNP by simply checking if the minimum
vertex-cut in G2 is at most b. 
�

Now, to prove Theorem 1, we have to slightly modify the graph G and the con-
struction of G2 in order to adapt to the various costs. Our goal is still to look for a
minimum vertex cut in an auxiliary graph using r(v) as vertex cost.

Proof of Theorem 1 Given an instance of NVDP on G with a budget b, vertex down-
grading costs r(v) for every vertex v and arc costs ce, ceu, cev, ceuv , consider the
following auxiliary graph H . First, we delete any arc e where ce = 0 since they are
free to cut anyways. For every arc e = uv where ceuv > 0, subdivide e with a vertex
te and let r(te) = ∞. In some sense, since ce, ceu, cev ≥ ceuv > 0, downgrading u, v

cannot reduce the cost of e to zero. Then, we should never be allowed to touch the ver-
tex te. Let T be the set of all newly-added subdivided vertices. To finish constructing
H , our next step is to properly simulate H2.

We classify arcs into five types based on which of its costs are zero. Note that we
no longer have any arcs where ce = 0. Let A0 := {e = uv : ceu = cev = ceuv = 0},
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A0

Al0

A0r

Al0r

A1

Added arcs

Fig. 2 Example of added arcs in H

the arcs where downgrading either ends reduce its cost to zero. Let Al0 := {e = uv :
ceu = ceuv = 0, cev > 0}, A0r := {e = uv : cev = ceuv = 0, ceu > 0}, Al0r := {e =
uv : ceuv = 0, ceu, cev > 0} respectively represent arcs that require the downgrading
of its left tail, its right head, or both in order to reduce its cost to 0. Let A1 be all
remaining arcs, those incident to the newly subdivided vertex te. Now, for every path
uvw of length two, we consider adding the arc uw based on the following rules (see
Fig. 2 for an example of newly added arcs):

If v /∈ T
Add uw? vw ∈
uv ∈ A0 Al0 A0r Al0r A1
A0 No No No No No
Al0 No No Yes Yes Yes
A0r No No No No No
Al0r No No Yes Yes Yes
A1 No No Yes Yes Yes
If v = te ∈ T , do not add uw

The idea is similar to the proof for DDNP: if uv, vw ∈ Al0r , downgrading v is
not enough to cut uv, vw for free. Thus we add arc uw to keep the connectivity. If
uv ∈ A0r , then downgrading v should reduce the cost of uv to 0. Thus, we do not
want to bypass v by adding an arc uw. If v = te ∈ T , since r(v) has high cost, we
never cut it so we do not need to strengthen the connectivity by adding arcs uw.

Let (X , F) be a solution to NVDP where Σv∈Xr(v) is minimum, F is an st-cut
and cX (F) = 0. Let Vs be all vertices that can be reached from s in G\F . We claim
that X is a vertex cut in H . Suppose not and there exists an st-path in H and let uv

be the first arc of the path leaving Vs . If v = te ∈ T , then arc e ∈ F , contradicting
cX (F) = 0. If uv ∈ A(G), then uv ∈ F . Since u, v /∈ X , cX (uv) > 0, a contradiction.
If uv is a newly added arc, then there exist v′ ∈ V (G) such that uv′v is a path in G.
By definition, Vs ∩ T = ∅ so u, v /∈ T . Then, there are only four cases where we add
arc uv to create H . In all cases, downgrading v′ does not reduce the cost of uv′, v′v
to 0. Since at least one of uv′, v′v ∈ F , it contradicts cX (F) = 0.
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Vertex downgrading to minimize connectivity 223

Given a minimum vertex cut Y in H , we claim that downgrading Y in G creates
an st-cut of zero cost. Note that Y ∩ T = ∅ since any vertex in T is too expensive to
cut. Suppose for a contradiction there is an st-path P that does not cross an arc with
cost 0 after downgrading Y . Let P ′ be the corresponding path in H . If P contains
two consecutive vertices u, v ∈ Y , then ceuv > 0 and it would have been subdivided.
This implies there are no consecutive vertices of Y in P ′. Let uvw be a segment of P ′
where v ∈ Y . Since downgrading v does not reduce its incident arcs to a cost of 0, it
follows that uv ∈ Al0 ∪ Al0r ∪ A1 and vw ∈ A0r ∪ Al0r ∪ A1. Then, it follows that
uw ∈ A(H). Then, every vertex v ∈ Y ∩ V (P ′) can be bypassed, a contradiction.

This implies that a minimum -weighted vertex cut in H is a downgrading set that
creates a zero-cost cut in G. Then, by checking the min-vertex cut cost of H , we can
determine whether a zero-solution exists for G with budget b. 
�

A similar zero-detection scheme exists for NVLDPwhere the constructed auxiliary
graph is slightly more complicated. The idea is to replace each vertex with k + 1
different copies to simulate downgrading to different levels. The full proof is provided
in Sect. 4.

3 Approximating network vertex downgrading problem (NVDP)

As an introduction and motivation to the LP model and techniques used to solve
NVLDP, we focus in this section on the special case NVDP, where there is only one
other level to downgrade each vertex to. Our main goal is to show the following
theorem.

Theorem 2 For NVDP, there exists a polynomial time algorithm that provides:

1. an ((1 + ε)2, (1 + 1/ε)2/2)-approximation for any 0 < ε < 1,
2. an 2(1 + ε), (1 + 1/ε)-approximation for any ε ≥ 1.

3.1 LP relaxation and rounding

LP Model for Minimum st-cut. To formulate the NVDP as a LP, we begin with the
following standard formulation of minimum st-cuts [14].

min
∑

e∈A(G)

c(e)xe

s.t. dv ≤ du + xuv ∀uv ∈ A(G) (1)

ds = 0, dt ≥ 1

xuv ≥ 0 ∀uv ∈ A(G) (2)

An integer solution of this problem can be seen as setting d to be 0 for nodes in the
s shore and 1 for nodes in the t shore of the cut. Constraints (1) then insist that the
x-value for arcs crossing the cut to be set to 1. The potential dv at node v can also
be interpreted as a distance label starting from s and using the nonnegative values
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xuv as distances on the arcs. Any optimal solution of the above LP can be rounded
to an optimal integer solution of no greater value by using the x-values on the arcs
as lengths, growing a ball around s, and cutting it at a random threshold between 0
and the distance to t (which is 1 in this case). The expected cost of the random cut
can be shown to be the LP value (see e.g., [9]), and the minimum such ball can be
found efficiently using Dijkstra’s algorithm. Our goal in this section is to generalize
this formulation and ball-growing method to NVDP.

One difficulty in NVDP comes from the fact that every arc has four associated costs
and we need to write an objective function that correctly captures the final cost of a
chosen cut. One way to overcome this issue is to have a distinct arc associated with
each cost. In other words, for every original arc uv ∈ A(G), we create four new arcs
[uv]0, [uv]1, [uv]2, [uv]3 with cost ce, ceu, ceuv, cev respectively. Then, every arc has
its unique cost and it is now easier to characterize the final cost of a cut. We consider
the following auxiliary graph. See Fig. 3.

Constructing the Auxiliary Graph H . Let V (H) = V 0(H) ∪ V 1(H) where
V 0(H) = {(vv) : v ∈ V (G)} and V 1(H) = {(uv)i : uv ∈ A(G), i = 1, 2, 3}. Define
A(H) = {[uv]0 = (uu)(uv)1, [uv]1 = (uv)1(uv)2, [uv]2 = (uv)2(uv)3, [uv]3 =
(uv)3(vv) : uv ∈ A(G)}. Essentially, the vertices (uu) ∈ V 0(H) correspond
to the original vertices u ∈ V (G) and for every arc uv ∈ A(G), we replace
it with a path (uu)(uv)1(uv)2(uv)3(vv) where the four arcs on the path are
[uv]0, [uv]1, [uv]2, [uv]3. For convenience and consistency in notation, we define
(uv)0 := (uu), (uv)4 := (vv). Note that the vertices of H will always be denoted as
two lowercase letters in parenthesis while arcs in H will be two lowercase letters in

u v w

e = uv f = vw

= (uv)0

(uv)2(uv)1 (uv)3 (vw)1 (vw)2 (vw)3

= (vw)4

(uu) (vv) = (uv)4

= (vw)0

(ww)

[uv]0 [uv]1 [uv]2 [uv]3 [vw]0 [vw]1 [vw]2 [vw]3

Vertices

Arcs

Vertices

Arcs

H

G

Costs Downgrading

Cut

r(u) r(v) r(w)

ce ceu ceuv cev cf cfv cfvw cfw

DLP Downgrading

Potential

Cut

yu yv yw

d(uv)0 d(uv)1 d(uv)2 d(uv)3 d(vv) d(vw)1 d(vw)2 d(vw)3 d(vw)4

x[uv]0 x[uv]1 x[uv]2 x[uv]3 x[vw]0 x[vw]1 x[vw]2 x[vw]3

V 0

V 1

Fig. 3 Construction of the auxiliary graph H
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square brackets with subscript i = 0, 1, 2, 3. The cost function c : A(H) → R≥0 is as
follows: c([uv]0) = ce, c([uv]1) = ceu, c([uv]2) = ceuv, c([uv]3) = cev . Since we
can only downgrade vertices in V 0, to simplify the notation, we retain r(v) as the cost
to downgrade vertex (vv) ∈ V 0. Note that |V (H)| = 3|A(G)|+|V (G)| = O(n+m).

Downgrading LP. Given the auxiliary graph H , we can now construct an LP similar
to the one for st-cuts. For vertices (vv) ∈ V 0(H) corresponding to original vertices of
G, we define a downgrading variable yv representing whether vertex v is downgraded
or not in G. For every arc [uv]i ∈ A(H), we have a cut variable x[uv]i to indicate if
the arc belongs in the final cut of the graph. Lastly for all vertices (uv)i ∈ V (H), we
have a potential variable d(uv)i representing its distance from the source (ss).

The idea is to construct an LP that forces s, t to be at least distance 1 apart from each
other as before. This distance can only be contributed from the arc variables x[uv]i . The
downgrading variables yv imposes limits on how large these distances x[uv]i of some
of its incident arcs can be. The motivation is that the larger yu and yv are, the more we
should allow arc [uv]2 to appear in the final cut over the other arcs [uv]0, [uv]1, [uv]3
in order to incur the cheaper cost of ceuv . We consider the following downgrading LP
henceforth called DLP.

Figure 3 includes the list of variables associated with H . In the LP, our objective is
tominimize the cost of the final cut. Constraint (3) corresponds to the budget constraint
for the downgrading variables. Constraint (4) is analogous to Constraint (1) in the LP
for min-cuts.

Constraint (5) relates cut and downgrade variables. If we do not consider any con-
straint related to downgrading variables for a moment, the LP will naturally always
want to choose the cheapest arc [uv]2 over [uv]0, [uv]1, [uv]3 when cutting some-
where between (uu) and (vv). However, the cut should not be allowed to go through
[uv]2 if one of u, v is not downgraded. In other words x[uv]2 should be at most the min-
imum of yu, yv . This reasoning gives the constraint x[uv]2 , x[uv]3 , x[vw]1 and, x[vw]2 all
need to be≤ yv for in-arcs uv and out-arcs vw. Now consider an arc f = vw ∈ E(G).
In an integral solution, if v is downgraded, the arc vw incurs a cost of either c f v or c f vw

but not both, since v must lie on one side of the cut. This translates to a LP solution
where only one of the arcs [vw]1, [vw]2 is in the final cut. Thus, a better constraint to
impose is x[vw]1 + x[vw]2 ≤ yv . We can also similarly insist that x[uv]2 + x[uv]3 ≤ yv
for in-arcs uv. To push this even further, consider a path uvw in G. In an integral
solution, at most one of the arcs uv, vw appears in the final cut. This implies that
if v is downgraded, then only one of the costs cev, ceuv, c f v, c f vw is incurred. This
corresponds to the tighter constraint (5). Note that for every vertex v ∈ V (G), for
every pair of incoming and outgoing arcs of v, we need to add one such constraint.
Then, for every vertex in G, we potentially have to add up to n2 many constraints. In
total, the number of constraints would still only be O(n3). The last few constraints in
DLP make sure s and t are 1 distance apart and cannot themselves be downgraded.
The final LP relaxation is given below.

min
∑

[uv]i∈A(H)

c([uv]i )x[uv]i (DLP)

s.t.
∑

(vv)∈V 0(H)

r(v)yv ≤ b (3)
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d(uv)i+1 ≤ d(uv)i + x[uv]i ∀arc [uv]i , 0 ≤ i ≤ 3 (4)

x[uv]2 + x[uv]3 + x[vw]1 + x[vw]2 ≤ yv ∀ path (uv)3(vv)(vw)1

d(ss) = 0, d(t t) = 1, ys = 0, yt = 0 (5)

The following lemmas shows the validity of our defined DLP for NVDP.

Lemma 2 An optimal solution to NVDP provides a feasible integral solution to DLP
with the same cost.

Proof Given a digraph G with cost functions ce, ceu, cev, ceuv , a source s and a sink
t , let Y ⊆ V (G), F ⊆ A(G) be an optimal solution to NVDP where r(Y ) ≤ b, F is
an st-cut and cY (F) is minimum. Then, a feasible solution (x, y, d) to DLP on the
graph H can be constructed as follows:

– For the cut variables x , let

– x[uv]0 = 1 if uv ∈ F and u, v /∈ Y , 0 otherwise,
– x[uv]1 = 1 if uv ∈ F and u ∈ Y , v /∈ Y , 0 otherwise,
– x[uv]2 = 1 if uv ∈ F, u, v ∈ Y , 0 otherwise,
– x[uv]3 = 1 if uv ∈ F, u /∈ Y , v ∈ Y , 0 otherwise.

– For the downgrading variables y, let yu = 1 if u ∈ Y , 0 otherwise.
– For the potential variables d, let d[uv]i = 0 if [uv]i ∈ S and 1 otherwise,

where we define S, T as follows. Let F∗ be the set of arcs in H whose x variable is 1.
We claim that F∗ is an st-cut in H . Note that every st-path Q in H corresponds to an
st-path P in G. Then, there is an arc uv in P that is also in F . Then, it follows from
construction that the x value for one of [uv]0, [uv]1, [uv]2, [uv]3 is 1 and thus there
exists i = 0, 1, 2, 3 such that [uv]i ∈ F∗. Note that [uv]i is also in Q. Therefore F∗
is an st-cut in H . Then, let S be the set of vertices in H\F∗ that is connected to the
source s and let T = V (H)\S.

Note that by construction, (x, y, d) is integral and is a feasible solution to DLP.
The final objective value Σ[uv]i∈A(H)c([uv]i )x[uv]i = Σ[uv]i∈F∗c([uv]i ) and by con-
struction, it matches the cost cY (F∗). 
�
Lemma 3 An integral solution (x∗, y∗, d∗) toDLPwith objective value c∗ corresponds
to a feasible solution (Y ∗, E∗) to NVDP such that cY

∗
(E∗) ≤ c∗.

Proof Given a directed graph G and its auxiliary graph H , let (x∗, y∗, d∗) be an
optimal integral solution to DLP with an objective value of c∗. Let F∗ ⊆ A(H)

be the set of arcs whose x∗ value is 1. Let Y ∗ ⊆ V 0(H) whose y value is 1. Let
E∗ ⊆ A(G) = {uv ∈ A(G) : [uv]i ∈ F∗ for some i = 0, 1, 2, 3} be the set of
original arcs of those in F∗.

Note that by construction, Y ∗ does not violate the budget constraint. Every st-path
in G corresponds directly to an st-path in H . Since F∗ is an st-cut in H , it follows
that E∗ is an st-cut in G. Then it remains to show that c∗ ≥ cY

∗
(E∗).

Note that
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c∗ = Σ[uv]i∈A(H)c([uv]i )x∗[uv]i = Σe=uv∈A(G)cex
∗[uv]0 + ceux

∗[uv]1 + ceuvx
∗[uv]2

+cevx
∗[uv]3 .

Meanwhile, note that cY
∗
(E∗) = Σe=uv∈A(G)cY

∗
(e). Thus, it suffices to prove the

following claim. 
�
Claim For every arc e = uv ∈ A(G), Σ3

i=0c([uv]i )x∗[uv]i ≥ cY
∗
(e) if e = uv /∈ E∗.

First, note that if e = uv /∈ E∗, then this edge is not involved in cY
∗
(E∗) and by

definition of E∗ we have x∗[uv]i = 0 for i = 0, 1, 2, 3. Then, we assume in the sequel
that uv ∈ E∗. This implies that there exist i = 0, 1, 2, 3 such that [uv]i ∈ F∗ and
x∗[uv]i = 1. We will now break into cases depending on whether u, v ∈ Y ∗.

Suppose u, v /∈ Y ∗. Then, y∗
u = y∗

v = 0 and by constraint (5) in DLP, it fol-
lows that the x∗ value for [uv]1, [uv]2, [uv]3 are all 0. Then, [uv]0 ∈ F∗ and
Σ3

i=0c([uv]i )x∗[uv]i = ce = cY
∗
(e).

Now, assume u ∈ Y ∗, v /∈ Y ∗. By constraint (5), x∗[uv]2 + x∗[uv]3 ≤ y∗
v = 0 and thus

only the x∗ value for [uv]0, [uv]1 can be 1. Sincewehave an integral solution, it follows
that x∗[uv]0 + x∗[uv]1 ≥ 1, since e ∈ E∗. Note that ce ≥ ceu . Then Σ3

i=0c[uv]i x∗[uv]i =
cex∗[uv]0 + ceux∗[uv]1 ≥ ceu(x∗[uv]0 + x∗[uv]1) ≥ ceu = cY

∗
(e). Note that a similar

argument can be made for the case when u /∈ Y ∗, v ∈ Y ∗.
Lastly, assume both u, v ∈ Y ∗. Then cY

∗
(e) = ceuv . Note that ce, ceu, cev ≥ ceuv .

Then, Σ3
i=0c([uv]i )x∗[uv]i ≥ Σ3

i=0ceuvx∗[uv]i ≥ ceuv . The last inequality is due to the
fact that there exists i = 0, 1, 2, 3 such that [uv]i ∈ F∗. This completes the proof of
claim and thus also our lemma. 
�

The above two lemmas show that DLP provides a valid integer programming for-
mulation for NVDP.
Bicriteria Approximation for NVDP.We now prove Theorem 2 by working with an
optimal solution of DLP defined on the auxiliary graph H . The idea is to use a ball-
growing algorithm that greedily finds cuts until one with the promised guarantee is
produced. The reason this algorithm is successful is proved by analyzing a randomized
algorithm that picks a number 0 ≤ α ≤ 1 uniformly at random and chooses a cut at
distance α from the source s. Then we choose vertices to downgrade and arcs to cut
based on arcs in this cut at distance α. By computing the expected downgrading cost
and the expected cost of the cut arcs, the analysis will show the existence of a level
cut that satisfies our approximation guarantee.

To achieve the desired result, we cannot work with the graph H directly. This is
because the ball-growing algorithm works only if the probability of cutting some arc
can be bounded within some range. This bound exists for the final cut arcs (as in the
proof for st-cuts) but not for the final downgraded vertices. Consider a vertex v; it
is downgraded if any arc of the form [uv]2, [uv]3, [vw]1, [vw]2 is cut in H . Thus it
has the potential of being cut anywhere between the range of the vertices (uv)2 and
(vw)3 (i.e. [d(uv)2 , d(vw)3)). We would like to use Constraint (5) to bound this range
but we cannot do this directly since we do not know the length of the arc [vw]0 which
also lies in this range. To circumvent this difficulty and properly employ Constraint
(5), we construct a reduced graph H ′ obtained by reordering the edges and slightly
modifying some of their lengths.
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Let (x∗, y∗, d∗) be an optimal solution to DLP where the optimal cost is c∗. It
follows from the validity of our model (Lemma 2) that c∗ is at most the cost of an
optimal integral solution.
Constructing Graph H ′. We build the graph H ′ slightly differently depending
on the value of ε. If 0 < ε ≤ 1, for every arc uv ∈ A(G), let x ′[uv]0 =
1
2 min((1 + ε)x∗[uv]0 , x

∗[uv]0 + x∗[uv]2), x
′[uv]1 = x∗[uv]1 , x

′[uv]3 = x∗[uv]3 and x ′[uv]2 =
x∗[uv]0 + x∗[uv]2 − 2x ′[uv]0 . We introduce a new arc [uv]00 and order the five arcs as
follows: [uv]1, [uv]0, [uv]2, [uv]00, [uv]3. For i = 1, 2, 3, arc [uv]i has length x ′[uv]i .
The length for both [uv]0 and [uv]00 is x ′[uv]0/2.Note that the distance under x

′ between
any two vertices in V0 remains the same as before (i.e. under x∗ in H ). This reordering
allow us to bound more accurately the range in which a vertex gets downgraded.

If ε > 1, we construct H as if ε = 1. In other words, each arc uv is
replaced with a path of arcs [uv]1, [uv]0, [uv]2, [uv]00, [uv]3 whose lengths are
x∗[uv]1 , x

′[uv]0 , x
∗
uv0

+ x∗[uv]2 − 2x ′[uv]0 , x
′[uv]00 , x

∗[uv]3 respectively, where x ′[uv]0 =
x ′[uv]3 = 1

2 min(2x∗[uv]0 , x
∗[uv]0 + x∗[uv]2).

The following is an observation about the new arc length x ′ that we use later.
Claim Assume for some arc uv ∈ A(G), x ′[uv]2 > 0. If 0 < ε ≤ 1, then x ′[uv]0 +
x ′[uv]2 = x ′[uv]2+x ′[uv]00 ≤ 1+1/ε

2 x∗[uv]2 . If ε ≥ 1, then x ′[uv]0+x ′
uv]2 = x ′[uv]2+x ′[uv]00 ≤

x∗[uv]2 .

Proof First, let us assume 0 < ε ≤ 1. If x ′[uv]2 > 0, then x∗[uv]0 + x∗[uv]2 > 2x ′[uv]0 .
It follows that 2x ′[uv]0 = (1 + ε)x∗[uv]0 and

1
ε
x∗[uv]2 > x∗[uv]0 . Then, x

′[uv]0 + x ′[uv]2 =
1
2 (1 + ε)x∗[uv]0 + x∗[uv]0 + x∗[uv]2 − (1 + ε)x∗[uv]0 = x∗[uv]2 + 1−ε

2 x∗[uv]0 <
1+1/ε

2 x∗[uv]2 .
Since x ′[uv]0 = x ′[uv]00 , the claim follows immediately.

If ε ≥ 1, by similar arguments as the previous case, it is easy to check that the claim
also follows immediately. 
�

Algorithm 1 Ball-Growing Algorithm for NVDP
Require: a graph G and its auxiliary graph H ′ with non-negative arc-weights x ′, source (ss), sink (t t), a

constant ε > 0, arc cut costs c([uv]i ) and vertex downgrading costs r(v)

Ensure: a vertex set V ′ and an arc cut E ′ ofG such thatΣv∈V ′r(v) ≤ (1+1/ε)2b/2, cV
′
(E ′) ≤ (1+ε)2c∗

if 0 < ε < 1 and Σv∈V ′r(v) ≤ (1 + 1/ε)b, cV
′
(E ′) ≤ 2(1 + ε)c∗ if ε ≥ 1,

1: initialization V = {(ss)}, D((uv)i ) = 1 for all (uv)i ∈ V (H ′)
2: repeat
3: let X ′ ⊆ A(H ′) be the cut induced by V
4: find [uv]i = ab ∈ X ′ minimizing D(a) + x ′[uv]i
5: update by adding (uv)i+1 to V , update D(b) = D(a) + x ′[uv]i
6: let E ′ = {uv ∈ A(G) : {[uv]0, [uv]00, [uv]1, [uv]2, [uv]3} ∩ X ′ �= ∅} and V ′ = {v ∈ V (G) :

{[uv]2, [uv]3, [vw]1[vw]2} ∩ X ′ �= ∅ for some u, w ∈ V (G)}
7: until Σv∈V ′r(v) ≤ (1 + 1/ε)2b and cV

′
(E ′) ≤ (1 + ε)2c∗/2

8: output the set V ′, E ′

Algorithm 1 is simply a restatement of Dijkstra’s algorithm run on H ′. It follows
the general ball-growing technique and looks at cuts X ′ at various distances from the
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source. Note that the algorithm adds at least one vertex to a node set V at each iteration
so it runs for at most |V (H ′)| = O(m) steps when applied to the graph H ′ (Recall
that m denotes the number of arcs in the original graph G).

At each iteration, the algorithm computes a cut X ′ ⊆ A(H ′) and considers the set
E ′ of original arcs associated to those in X ′ and the vertex set V ′ representing the set
of vertices we should downgrade based on the arcs in X ′. For example, if [uv]2 ∈ X ′,
then we should downgrade both u and v. Since X ′ is a cut in H ′, it follows that E ′ is
a cut in G.

To argue the validity of the algorithm, we show that there exists a cut X ′ at some
distance α ≤ 1 from the source such that the associated sets V ′, E ′ provides the
approximation guarantee.

Lemma 4 There exists X ′, V ′, E ′ such that Σv∈V ′r(v) ≤ (1 + 1/ε)2b/2, cV
′
(E ′) ≤

(1 + ε)2c∗ if 0 < ε < 1 and Σv∈V ′r(v) ≤ (1 + 1/ε)2b/2, cV
′
(E ′) ≤ 2(1 + ε)c∗ if

ε ≥ 1.

The main idea of the proof is to pick a distance uniformly at random between [0, 1]
and study the cut at that distance.We claim that the extent towhich an arc is cut (chosen
in E ′ above) in the random cut is at most its x∗-value. When nodes are chosen in the
random cut (in V ′ above) to be downgraded, we argue that the range of cutting any
node is at most the maximum of the values in the left hand side of the constraints (5)
corresponding to this node, which in turn is at most its y∗-value. To obtain a cut where
we simultaneously do not exceed both bounds, we use Markov’s inequality to argue
that there is a non-zero probability of getting a cut within the two bounds, showing the
existence of such cut. Then it follows that Algorithm 1 can find this cut. The detailed
proof follows.

Proof of Lemma 4 Let D(a) be the shortest-path distance from the source (ss) to any
vertex a ∈ V (H ′) viewing the x ′ variables as lengths. Note that the triangle-inequality
holds under this distance metric where D(b) − D(a) is at most the distance between
a and b.

Defining the Random Variables. Let α be chosen uniformly at random from the
interval [0, 1]. Consider Xα := {[uv]i = ab ∈ A(H ′) : D(a) ≤ α < D(b)}, the cut
at distanceα in H ′. Let Eα = {uv ∈ A(G) : [uv]i ∈ Xα for some i ∈ {0, 00, 1, 2, 3}},
representing the original arcs corresponding to those in Xα . Let Vα = {v ∈ V (G) :
{[uv]2, [uv]3, [vw]1, [vw]2} ∩ Xα �= ∅ for some u, w ∈ V (G)}, representing the set
of vertices we should downgrade so that the final cost of the arcs Eα matches the cost
associated to Xα . More precisely, we want cVα (Eα) = CΣ[uv]i∈Xαc([uv]i ), where
C = (1 + ε)2 if 0 < ε < 1 and C = 2(1 + ε) if ε ≥ 1. Note that by construction
Eα is an st-cut in G. Let V = Σv∈Vαr(v), E = cVα (Eα). Our goal is to show that
these two random variables V, E have low expectations and obtain our approximation
guarantee using Markov’s inequality. In particular, we will prove that if 0 < ε < 1,
then E[V] ≤ (1 + 1/ε)b/2 and E[E] ≤ (1 + ε)c∗, and if ε ≥ 1, then E[V] ≤ b and
E[E] ≤ 2c∗, where c∗ is the optimal value of DLP.

To understand E , for every arc e = uv ∈ A(G), we introduce the indicator variables
Ee to be 1 if arc e ∈ Eα and 0 otherwise. Then E = Σe∈A(G)EecVα (e). To study the
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value of EecVα (e), we can break into several cases depending onwhich arc [uv]i ∈ Xα .
Note that if [uv]i /∈ Xα for i ∈ {0, 00, 1, 2, 3}, then e /∈ Eα and EecYα (e) = 0. Next,
if we assume [uv]i ∈ Xα , then one can check that cVα (e) ≤ c([uv]i ) as in the proof
of Claim 3.1. Note that here, we denote c([uv]00) = c([uv]0) = ce.

Slightly abusing the notation, define the indicator variable E[uv]i for arc [uv]i ∈
A(H) to be 1 if [uv]i ∈ Xα and 0 otherwise. Then,we can upper-bound the expectation
of E using conditional expectations of the events E[uv]i = 1 as follows.

E[E] = Σe∈A(G)E[EecVα (e)]
= Σe∈A(G)Σi∈{0,00,1,2,3}E[cVα (e)|E[uv]i = 1] · Pr [E[uv]i = 1]
≤ Σe∈A(G)Σi{0,00,1,2,3}c([uv]i )Pr [E[uv]i = 1]

Let us first handle the case when 0 < ε ≤ 1. To bound the probability of E[uv]i =
1, note that an arc [uv]i = ab ∈ Xα if and only if D(a) ≤ α < D(b). Then,
Pr [[uv]i ∈ Xα] ≤ D(b) − D(a) ≤ x ′[uv]i ≤ x∗[uv]i for i ∈ {1, 2, 3}. For i ∈ {0, 00},
Pr [[uv]i ∈ Xα] ≤ (1+ ε)x∗[uv]0/2. Combining with the previous inequalities, we see
that

E[E] ≤ Σuv∈A(G)Σi∈{0,00,1,2,3}c([uv]i )Pr [E[uv]i = 1]
≤ Σuv∈A(G)Σ

3
i=1c([uv]i )x∗[uv]i + Σuv∈A(G)Σi∈{0,00}c([uv]0)(1 + ε)x∗

uv]0/2
≤ Σuv∈A(G)Σ

3
i=0c([uv]i )(1 + ε)x∗[uv]i = (1 + ε)c∗.

When ε ≥ 1, the proof is identical to the previous case under the assumption that
ε = 1. It is easy to verify that E[E] ≤ 2c∗, as desired.

Next, we show a similar result for V . Note that E[V] = Σv∈V (G)r(v) · Pr [v ∈
Vα]. To determine the probability of downgrading a particular vertex v, we need to
bound the range of α that includes all arcs that might cause v to be chosen in Vα .
Recall that v ∈ Vα if and only if there exists a vertex u or w such that at least
one of [uv]2, [uv]3, [vw]1, [vw]2 ∈ Xα . Let F be the set of all arcs of the form
[uv]2, [uv]3, [uvw]1, or [vw]2 whose x ′ value is nont 0. Let a be the tail of an arc
in F such that D(a) is minimum. Let b be the head of an arc in F such that D(b) is
maximum. It follows that v ∈ Vα only if D(a) ≤ α < D(b). It remains to bound the
distance between a and b.

First, assume 0 < ε ≤ 1. Suppose a is the head of the arc [uv]i . Due to the
order of the arcs in H ′, it follows that i is either 2 or 3. We claim that in both cases,
D((vv))−D(a) ≤ 1+1/ε

2 (x∗[uv]2+x∗[uv]3). If i = 2, then x ′[uv]2 > 0 and D((vv))−D(a)

is bounded by the length of the path [uv]2[uv]00[uv]3. It follows from Claim 3.1,
x ′[uv]2 + x ′[uv]00 + x ′[uv]3 ≤ 1+1/ε

2 x∗[uv]2 + x∗[uv]3 and our claim follows. If i = 3,
then D(b) − D(a) is bounded by the length of arc [uv]3 and the claim also follows
immediately.

Suppose b is the head of the arc [vw]i . By similar reasoning, one can show that
D(b) − D((vv)) ≤ 1+1/ε

2 (x∗[uv]1 + x∗[uv]2). Then, D(b) − D(a) = D(b) − D((vv)) +
D((vv))− D(a) ≤ 1+1/ε

2 (x∗[uv]2 + x∗[uv]3 + x∗[vw]1 + x∗[vw]2) ≤ 1+1/ε
2 y∗

v where the last

inequality follows from Constraint (5). Thus, Pr [v ∈ Vα] ≤ 1+1/ε
2 y∗

v . Therefore
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E[V] = Σv∈V (G)r(v) · Pr [v ∈ Vα]
≤ Σv∈V (G)r(v)

1 + 1/ε

2
y∗
v ≤ 1 + 1/ε

2
b.

If ε ≥ 1, by similar arguments as before, one can easily check that E[V] = b.
Lastly, byMarkov’s inequality, Pr [V ≤ (1+1/ε)E[V]] ≥ 1− ε

1+ε
= 1

1+ε
, Pr [E ≤

(1+ ε + δ)E[E]] ≥ 1− 1
1+ε+δ

for any δ > 0. Then it follows there exists 0 ≤ α ≤ 1)
such that Σv∈Vαr(v) ≤ (1+ 1/ε)E[V] and cVα (Eα) ≤ (1+ ε)E[E]+ δE[E]. One can
choose δ such that δE[E] < 1. Since the cost of cutting an edge is always integral, it
follows that cVα (Eα) ≤ (1 + ε)E[E], proving Lemma 4. 
�
Proof of Theorem 2 It is well known that the Ball Growing algorithm (which is Djik-
stra’s algorithm run on H ′) selects a linear number of nested cuts that represent the set
of all cuts at all distances between zero and 1 from the source. It follows fromLemma 4
that one of these cutsmeets the desired guarantees. Theorem2 is then proved by simply
running Algorithm 1 on the auxiliary graph H ′. 
�

3.2 A simple pseudorandom approximation for NVDP

In this subsection, we provide a pseudorandom approximation to NVDP by reducing
the problem to WNVIP. This reduction was proposed by one of our reviewers and by
combining with results by Burch et al. [3], we obtain a pseudorandom approximation
for NVDP.

Theorem 3 For any ε > 0, there exists a pseudorandom (2(1+ε), 1) or (2, (1+1/ε)-
approximation for NVDP.

Being a pseudorandom approximation, a priori, it is not possible to determine
whether we get a (2(1 + ε), 1) or (2, (1 + 1/ε)-approximation. Note that both are
incomparable to the guarantee from Theorem 2. Note that without the pseudo-random
component, this theorem can only guarantee a (2(1+ ε), (1+1/ε))which is the same
as the one from Theorem 2 when ε ≥ 1. However, if ε < 1, where we desire an
(α, β)-approximation such that α is strictly less than 4, (2(1+ε), (1+1/ε)) is strictly
worse than the guarantee from Theorem 2. In detail, note that for any ε > 0, if we
pick ε′ such that 2(1 + ε) = (1 + ε′)2, then we have (1 + 1/ε′)2/2 ≤ (1 + 1/ε).
Figure 4 illustrates the trade-off between α and β in the guarantees from Theorem
2 and the non-pseudomrandom guarantee of Theorem 3. Note in particular that not
only Theorem 2 performs better when α ∈ (2, 4), Theorem 3 can never achieve an α

value below 2 but Theorem 2 can attain an α arbitrarily close to 1. Furthermore, the
reduction in the proof of Theorem 3 does not apply to approximate NVLDP while the
ball-growing based method can be generalized.

Proof of Theorem 3 Given an instance of NVDP on graph G, consider the following
auxiliary graph H : for every vertex v, make a copy v′ and connect with bidirectional
arcs with infinite cost to cut. For every arc uv ∈ A(G), add arcs uv, uv′, u′v and u′v′
with cut costs 2ce − ceu − cev + ceuv, cev − ceuv, ceu − ceuv , and ceuv respectively.
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Fig. 4 The
(α, β)-approximations from
Theorem 2 and 3
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Original vertices v have an interdiction cost of r(v) and all new clones v′ have an
infinite interdiction cost.

Consider the instance ofWNVIP on H with the above costs and budget b. It follows
from [3] that there exists a pseudorandom (1 + ε, 1), (1, 1 + 1/ε)-approximation for
this problem. Then it remains to show that any (α, β)-approximation for this instance
of WNVIP translates to a (2α, β) approximation for the original instance of NVDP.

First, we show that if interdicting a set Y ⊆ V (H) results in a minimum cut F ′ in
H with cost c∗, then interdicting the set Y in G also results in a minimum cut of cost
at most c∗. Note that since all new vertices in H have infinite interdiction cost, Y only
contains original vertices and thus interdictingY inG incurs the same interdiction cost.
Since any arc between a vertex v and its clone v′ have infinite cut cost, the endpoints of
any arc in F ′ corresponds to two different original vertices inG. Furthermore, if one of
uv, u′v or uv′ is in F , then u′v′ is also in F . Then, let F := {uv ∈ A(G) : u′v′ ∈ F ′}.
It follows that F is a cut in G. Suppose uv ∈ F . We show that the cost uv contributes
to F is at most the cost the arcs uv, uv′, u′v and u′v′ contributes together to F ′. If u′
and v′ are both in Y , then u′v′ ∈ F ′ while uv, u′v, uv′ are not in F ′. Since u′v′ has
cost ceuv , our claim is true. If u ∈ Y but v /∈ Y , then only arcs u′v′ and u′v are in F ′.
They incur a total cost of cev corresponding to the final cost uv contributes to F in G.
Similarly, if u /∈ Y , v ∈ Y , then only arcs uv′, u′v′ are in F ′, incurring a cost of cev .
Lastly, if neither u nor v are in F ′, then all four associated arcs are in F ′, incurring a
cost of 2ce. Meanwhile, since cutting uv in G only costs ce, our claim is true and thus
cY (F) ≤ c∗.

Let optG , optH be the optimal value for the instance of NVDP on G and WNVIP
on H . It remains to show that optH ≤ 2optG . Let Y ⊆ V (G) and F be a cut in G such
that r(Y ) ≤ b and cY (F) = optG . Let F ′ be the set of arcs in H\Y associated to those
in F . More precisely, F ′ = F1 ∩ E(H\Y ) where F1 = {uv, uv′, u′v, u′v′ : uv ∈ F}.
By construction, F ′ is a cut in H\Y . One can easily check that if uv ∈ F , then the
associated arcs in F ′ have cost at most twice of what uv contributed to cY (F). In fact,
the cost only doubles when neither u nor v are interdicted. Then, Y , F is a feasible
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solution for the instance of WNVIP on H with interdiction cost at most b and a final
cost of at most 2optG . Therefore, 2optG ≥ optH and the theorem follows. 
�

4 Zero-detection for NVLDP

In this section, we we show that it is possible to detect a solution of an instance of
NVLDP where downgrading a subset of vertices to certain levels creates a cut of zero
cost. The strategy is similar to that for NVLP where we transform the instance into a
vertex cut problem.

Lemma 5 Given an instance of NVLDP with k levels on graph G with budget b, there
exists a polynomial-time algorithm to determine if there exists a function L : V (G) →
{0, ..., k} and an st-cut F ⊆ A(G) such that r L(V ) ≤ b and cL(F) = 0.

Proof Consider the following auxiliary graph H : for every v ∈ V (G), create k + 1
copies v1, ..., vk+1 and add all possible arcs amongst the clones viv j . For a given arc
uv, let icap, jcap represent the lowest level one can downgrade u, v respectively to
reduce the cost of e to zero without downgrading the other endpoint. If no such level
exist, i.e. if downgrading u (v) to level k and not touching the other endpoint does not
reduce the cost to 0, set icap ( jcap) to k + 1. We first add all possible arcs uiv j in H .
Now, we perform two rounds of arc deletions. First, delete all arcs uiv j where i > icap
and j > jcap. This essentially ensures that the final vertex cut does not choose any
vertices larger than icap, jcap since it is pointless to downgrade past those levels from
uv’s perspective. Next, for any 1 ≤ i, j ≤ k where ci, j (e) = 0, remove all arcs ui ′v j ′
where i ′ > i and j ′ > j . The resulting arcs define A(H). 
�
Claim If uiv j ∈ A(H), then ui ′v j ′ ∈ A(H) where i ′ ≤ i, j ′ ≤ j .

To prove this claim, suppose for the sake of contradiction that there exists i ′ ≤
i, j ′ ≤ j , uiv j ∈ A(H) but ui ′v j ′ /∈ A(H). Note that i ≤ icap, j ≤ jcap otherwise arc
uiv j is removed in the first round of deletion process. Then, it follows that arc ui ′v j ′
was removed in the second round of deletion, implying there exists i ′′ ≤ i ′, j ′′ ≤ j ′
such that ci ′′, j ′′(e) = 0. However, this implies arc uiv j should also be removed in the
second round, a contradiction.

Now consider assigning costs of ri (v) − ri−1(v) to the vertex vi ∈ V (H) for
i = 1, ..., k. Vertices of the form vk+1 are assigned an arbitrarily high cost of ∞. We
now claim that a minimum vertex cut corresponds to the minimum downgrading cost
in order to achieve a zero-cost arc-cut.

Let b∗ be the minimum downgrading budget for G to obtain a zero-cost cut. We
first show that b∗ is an upper bound to the minimum vertex cut of H . Let L∗ be an
optimal downgrading function that is a witness to the budget b∗ and a zero-cost cut.
Consider the vertex set Y := {vi : i ≤ L∗(v)}, essentially deleting all copies of v up
to level L∗(v). Note that the cost of deleting these vertices is exactly b∗. It remains to
show that Y is a cut-set.

Suppose for the sake of contradiction that there exists an st-path P after deleting Y
in H . LetW be the underlying walk induced by P in G. Since downgrading according
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to L∗ induces a zero-cost cut, there exists an arc uv ∈ W such that cL
∗
(uv) = 0. Then,

there are no arcs in H of the form uiv j where i > L∗(u), j > L∗(v). However, since
we have deleted all copies of ui , v j where i ≤ L∗(u), j ≤ L∗(v) when deleting Y , it
follows that path P does not exist, a contradiction.

Now, we show that a vertex cut solution of H can be translated to a downgrading
solution for G with the same cost. Note that we may assume all vertices have non-zero
costs, otherwise we can delete in H (or downgrade to the next level in G) for free.
Let Y ∗ be a minimum vertex cut. First, we claim that if vi ∈ Y ∗, then vi ′ ∈ Y ∗ for
all i ′ ≤ i . Suppose for the sake of contradiction that vi ∈ Y ∗, vi ′ /∈ Y ∗ and i ′ < i .
Since vi is important to delete, there exists an st-path P that goes through vi but not
any other vertices in Y ∗\vi . However, by Claim 4, P can reroute through vi ′ instead,
forming a new path that avoids Y ∗, a contradiction.

Define L(v) to be the largest i such that vi ∈ Y ∗. Note that the cost of downgrading
according to L is the same as the cost of Y ∗. It remains to show that L induces a zero-
cost cut. Suppose not, where there exists a path P inG whose arcs have non-zero costs
with respect to L . Let uv ∈ P; we claim that uL(u)+1vL(v)+1 is an arc in H . Suppose
not. If it was deleted in the first round of the removal process, then icap < L(u) + 1,
implying downgrading to L(u) ensures the arc uv to have cost 0, a contradiction. If it
was deleted in the second phase, then there exist i < L(u)+1, j < L(v)+1 such that
ci, j (uv) = 0. However, by the nature of the edge costs, it follows that cL(u),L(v) = 0,
a contradiction. Then, using the arcs of the form uL(u)+1vL(v)+1, we obtain an st-path
that avoids Y ∗, a contradiction. 
�

5 NVDPwith k Levels (NVLDP)

In this section, we prove the following theorem.

Theorem 4 There exists a polynomial-time algorithm that provides a (2(1+ε)k, 2(1+
1/ε)k)-approximation to NVLDP.

The strategy is similar to that for NVDP. We first create a new graph and IP model
that solves NVLDP. Then we study the solution to the LP relaxation of the problem.
We similarly create an auxiliary graph H and transform it slightly so that the ball-
growing method can be applied on H . Then by analyzing a random algorithm and
using Markov’s Inequality, we can show the existence of a good approximation. Then
we can find such a solution by examining all the cuts in the ball growing method. The
major difference is that we need to be more careful when working with H . In NVDP,
we first turn each arc into a path of length four to create H in order to better represent
the four different costs associated with each arc. Then, we split the path further into
two parts, aided and unaided, and kept only one of the parts before running the ball-
growing algorithm. If we were to repeat this strategy here, we would turn each arc
into a path of length (k + 1)2 (since we have (k + 1)2 many costs per arc) after which
we need to split it properly in order to run the ball-growing algorithm. However, this
splitting step is less obvious than before. The naive way is to keep only the longest
arc in the path but that blows up the approximation to a O(k2) factor. Thus, further
analysis is needed in order to show (see Lemma 6) that in any optimal vertex solution
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to the LP, most arcs have length 0 and the path only has O(k) non-zero length arcs
and thus keeping the longest arc is not too detrimental.

LPModel for NVLDP. Similar to NVDP, we first transform the graph G by replacing
every arc uv with a path of length (k + 1)2. The path contains arcs [uv]i, j where 0 ≤
i, j ≤ k with an associated cost of ci, j (uv). The order of these arcs in the path does not
matter but for ease of notation and consistency, we order them in lexicographic order
[uv]0,0[uv]0,1...[uv]0,k[uv]1,0...[uv]1,k[uv]2,0...[uv]k,k . The vertices on the path are
labelled (uv)0, ..., (uv)(k+1)2 and thus arc [uv]i, j = (uv)i(k+1)+ j (uv)i(k+1)+ j+1. We
similarly introduce a cut variable x for every arc in H to represent whether the arc is
in the final cut. We also introduce k downgrading variables yi for each original vertex
v to represent whether it is downgraded to level i . Node potential variables d are also
needed for every vertex in H . Then, we can obtain the following LP (LDLP):

min
∑

[uv]i, j∈A(H)

ci, j (uv)x[uv]i, j

s.t.
k∑

i=1

∑

(vv)∈V (H)

ri (v)yiv ≤ b (6)

d(uv)i(k+1)+ j+1 ≤ d(uv)i(k+1)+ j + x[uv]i, j ∀[uv]i, j ∈ A(H) (7)

yiv ≥
k∑

j=0

x[uv] j,i +
k∑

j ′=0

x[vw]i, j ′ ∀1 ≤ i ≤ k, ∀ paths uvw ∈ G

d(ss) = 0, d(t t) = 1, y0s = 0, y0t = 0 (8)

The intuition behind these constraints are similar to those for DLP. Constraint
(6) bounds the total amount of budget for downgrading. Constraint (7) is simply
the shortest-path inequality for every arc in H . Constraint (8) relates the downgrading
variable yiv to its associated arcs. The idea is if y

i
v = 1, thenwe are paying to downgrade

v to level i and thus the cost of its incident arcs uv, vw should be c j,i (uv), ci, j ′(vw)

respectively (subject to how u, w are downgraded). Thus, yiv is a natural upper bound
for all arcs involving v at level i . With similar arguments, we can strengthen this to
upper bound the sum of all such variables of a single (uu)(vv)(ww)-path, giving us
constraints (8). Note that the LP does not constrain a vertex v to be downgraded to
only one level. However, it remains a valid relaxation. Also, our rounding algorithm
will never downgrade a vertex to more than one level by using the natural ordering
of the levels in terms of their effect on the incident arcs. Note that H has a lot more
vertices and arcs than before, in particular, of the order of (k+1)2|A(G)|which is still
polynomial. The number of x, y, d variables are on the order of (k + 1)2n2, kn, (k +
1)2n2 respectively, where n = |V (G)|. Constraints (6), (7) are thus still polynomially
many and for every vertex v, we have at most kn2 many constraints of the form 8.
Thus LDLP is solvable in polynomial time.

Analyzing an Optimal Solution of LDLP. Let (x∗, y∗, d∗) be an optimal solution to
LDLP. We first prove the following lemma:

123



236 H. Aissi et al.

Lemma 6 There exists an optimal solution such that for any uv ∈ A(G), there are at
most 2k + 1 non-zero values of x[uv]i, j .

Proof Fix an arc uv ∈ A(G) and let us look at all x-variables associated with this arc.
Imagine the x∗ values are presented in a k+1 square matrix M where Mi, j = x∗[uv]i, j .
Define rowi := Σk

j=0Mi, j , col j := Σk
i=0Mi, j to be the row and column sum of M

respectively. Now consider the following LP:

(MLP) min
∑

0≤i, j≤k

ci, j (uv)Mi, j

s.t.
k∑

j=0

Mi, j = rowi ∀0 ≤ i ≤ k

k∑

i=0

Mi, j = col j ∀0 ≤ j ≤ k

Mi, j ≥ 0 ∀0 ≤ i, j ≤ k

Note that our x∗ is a feasible solution here. The converse is also true where if
x ′ is a feasible solution here, it can also be transformed into a feasible solution for
LDLP naturally. Constraint (8) remains satisfied due to the row sum and column sum
constraints in MLP. The only adjustment we have to make is to the potential variables
d(uv)i(k+1)+ j , but this can be easily modified according to the new x ′ values. Since the
total sum of all the x variables did not change, it does not affect the overall distance
from (uu) to (vv) thus no other constraints are violated. Furthermore, it is easy to
check that if x ′ had a better objective value than x∗ in MLP, it would also provide a
better objective value in LDLP.

Now, let us study the rank of the constraint matrix forMLP. There are k+1 row sum
constraints and k+1 column sum constraints but they are linearly dependent since the
sum of all rows equals to the sum of all columns. Since they are the only non-negative
constraints, the rank of the nontrivial constraints in MLP is at most 2k + 1. Hence any
basic feasible (or vertex) optimal solution to MLP has at most 2k+1 non-zero values,
thus proving our claim. 
�

The above technique where we isolate to study only the entries of the matrix M
can actually be applied to any submatrix of M as well. Suppose N is a submatrix
of M with Nr rows and Nc columns, then one can create a similar LP by restricting
our attention to only looking at the variables in N and minimizing its cost subject to
maintaining the row sum and column sum of N . Then, we can obtain a similar result:

Corollary 1 Any vertex optimal solution of LDLPcontains atmost Nr+Nc−1 non-zero
variables amongst those related to any submatrix N of M.

Wewill use this fact to prove the following claim and say a bit more about a solution
with 2k + 1 non-zero values.
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Claim In an optimal solution x∗, if x∗ contains 2k + 1 non-zero variables associated
with uv, then there exist 0 ≤ i, j ≤ k such that the x∗ value for [uv]i,0, [uv]0, j are
both non-zero and they are two distinct arcs.

Proof If we apply the corollary to the submatrix without the first row, there are at
most 2k non-zero variables. It follows there exists at least one non-zero variable in the
first row say M0, j . Symmetrically, there exists at least one non-zero value in the first
column, say Mi,0. Now, as long as i, j are not both 0, we are done. Suppose that M0,0
is the only non-zero value in the first row and the first column, then apply the corollary
to the submatrix without the first row and column, it contains at most 2(k − 1) + 1
non-zero values, contradicting the fact that there are 2k + 1 non-zero values to begin
with. 
�

Now, we will use the above claims to construct our auxiliary graph H ′ to success-
fully run the ball-growing algorithm. The key is to not shrink the overall distance
between s and t too much.

Constructing H ′. For every uv arc in G, look at the corresponding path in H . If there
are at most 2k non-zero x∗ variables, keep only the arc with the largest x∗ value and
contract the rest. Otherwise, if there are exactly 2k+1 non-zero x∗ values, there exists
two distinct arcs [uv]i ′,0, [uv]0, j ′ with non-zero x∗ values.Wewant to group these two
arcs as one object and compare its sum x∗[uv]i ′,0 + x∗[uv]0, j ′ to the individual x∗ values

of the other arcs on this path. Once again, keep only the highest value and contract the
rest, and with a slight abuse of notation, continue to denote the contracted lengths by
x∗. This operation reduces every long (uu)(vv) path to no smaller than 1/(2k) of its
original length. This implies the distance from s to t is at least 1/(2k).

Note that for any arc uv ∈ A(G), the corresponding path in H ′ is either a single
arc or a path of length 2 in the form of [uv]i ′,0[uv]0, j ′ . This simplifies the analysis of
bounding the range of arcs incident to v responsible for downgrading it to a certain
level. Unlike the construction of H ′ in NVDP, we will show that it is no longer needed
to do any further modification to the weights x∗.

Now we proceed with the ball-growing algorithm to find cuts at different distances.
The algorithm finds cuts X ′, looks at all arcs in X ′ that involves v, checks which

level these arcs need v to be downgraded to and picks the highest one. This provides a
function L ′ and a final cut F ′. The algorithm simply greedily checks all cuts from the
ball growing algorithm and its associated function L ′ and F ′ until it finds one with the
promised guarantee. Since there are polynomially many vertices in H ′, the algorithm
only needs to check polynomiallymany cuts. Thus as long as one of these cuts provides
the proper guarantee, the algorithm can find it. In order to show that such a cut exists,
we use a similar technique as NVDP by choosing a cut at random and looking at the
expected interdiction cost and cut cost. Note that the algorithm never chooses an arc
[uv]i, j that points backward, where D(tail([uv]i, j )) ≥ D(head([uv]i, j )), so they
can be ignored in the analysis of the associated costs.

Lastly, to prove Theorem 4, it remains to show the following:

Lemma 7 Algorithm 2 provides a solution with the desired approximation guarantee.
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Algorithm 2 Ball-Growing Algorithm for NVLDP
Require: a graph G and its auxiliary graph H ′ with non-negative arc-weights x∗[uv]i, j , source (ss), sink

(t t), arc cut costs ci, j (uv) and vertex downgrading costs ri (v)

Ensure: a vertex downgrading function L ′ and an arc cut E ′ of G such that r L
′
(V (G)) ≤ 4kb, cL

′
(E ′) ≤

4kc∗
1: Initialization V = {(ss)}, D((uu)), D((uv)′) = 1 for all (uu), (uv)′ ∈ V (H ′)
2: repeat
3: Let X ′ ⊆ A(H ′) be the cut induced by V
4: Find [uv]i, j = tail([uv]i, j )head([uv]i, j ) ∈ X ′ minimizing D(tail([uv]i, j )) + x∗[uv]i, j
5: Update by adding head((uv)i, j ) to V , update D(head((uv)i, j )) = D(tail((uv)i, j )) + x∗[uv]i, j
6: Let E ′ = {uv ∈ A(G) : [uv]i, j ∈ X ′} for some 0 ≤ i, j ≤ k and L ′(v) = max{i :

[uv] j,i or [vw]i, j ′ ∈ X ′ for some u, w ∈ V (G), 0 ≤ j, j ′ ≤ k}
7: until r L

′
(V (G)) ≤ 4kb and cL

′
(E ′) ≤ 4kc∗

8: Output the set V ′, E ′

Proof Similar to the proof of validity of the algorithm used for NVDP, we show the
existence of a proper cut using a randomized algorithm. Consider randomly choosing
a number α between 0 and D((t t)). Let Xα be the cut in H ′ at distance α from (ss). In
other words, Xα = {[uv]i, j ∈ A(H ′) : D(tail((uv)i, j )) ≤ α < D(head((uv)i, j ))}.
Let Lα, Fα be the associated level-downgrading function and cut for Xα . We now
analyze the expected downgrading and cut cost of Lα, Fα respectively. Recall that
Lα(v) defines the index to which v is downgraded by choosing the level cut at distance
α.

Given a vertex v ∈ V (G) and 0 ≤ i ≤ k, if the algorithm downgrades v to level
i then an arc associated with v at level i must be in Xα . Thus, let us examine these
arcs which have the form [uv] j,i or [vw]i, j ′ . Given an arc [uv] j,i ∈ A(H ′), note that
due to the construction of H ′, it is either the only arc between (uu), (vv) or it has
the form [uv]0,i . In either case, it is incident to (vv) in H ′. A similar statement is
true for arcs of the form [vw]i, j ′ and thus all arcs associated to v at level i in H ′ are
incident to (vv). These arcs form a star Siv centered at (vv). Since the algorithm never
chooses (in the cut) any arc zz′ where D(z′) < D(z), we may remove any such arcs
from the star Siv . Note that the relevant arcs remain as a star.1 Let u′, w′ ∈ V (Siv)
be vertices closest and farthest respectively from s. Note that an arc in Siv is chosen
only if D(u′) ≤ α < D(w′) thus the probability an arc in Siv is chosen is at most
(D(w′)− D(u′))/D((t t)).The numerator is upperbounded by the sum of the x∗ value
of the arc between u′, (vv) and (vv),w′. Note that this sum, in turn is upperbounded
by yiv due to Constraint (8). This implies the probability of downgrading v to level i
is upperbounded by (yiv)

∗/D((t t)) ≤ (yiv)
∗(2k). Then,

1 This is the major difference compared to NVDP where we no longer need to add dummy arcs nor rescale
the weights x∗. The relevant arcs in H ′ for NVDP forms a subdivision of a star. After deleting all the
backward arcs, it no longer remains as a star but could have disconnected arcs. Then, the range of these
arcs is no longer bounded around (vv) and thus needed other modifications.
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∑

v∈V (G)

E[rLα(v)(v)] ≤
∑

v∈V (G)

k∑

i=0

P[v is downgraded to level i]ri (v)

≤
∑

v∈V (G)

k∑

i=0

ri (v)(yiv)
∗(2k) ≤ 2kb

where the last inequality is due to Constraint (6).
A similar result can be obtained for the expected cost of Fα . Consider an arc

[uv]i, j ∈ Xα . Note that Lα might end up downgrading u, v beyond level i, j respec-
tively. This implies the cost of cutting uv in the end is at most the cost ci, j (uv). Thus,
cLα (Fα) ≤ Σ[uv]i, j∈Xαci, j (uv). Then, by linearity of expectation, it suffices to calcu-
late the probability of an arc [uv]i, j ∈ A(H ′) to end up in Xα . Using similar arguments
as before, this happens only if D((uv)i(k+1)+ j ) ≤ α < D((uv)i(k+1)+ j+1). Thus the
probability is at most x∗[uv]i, j /D((t t)) ≤ 2kx∗[uv]i, j . Then,

E[cLα (Fα)] ≤
∑

[uv]i, j∈A(H ′)
ci, j (uv)P[[uv]i, j ∈ Xα]

≤
∑

[uv]i, j∈A(H ′)
ci, j (uv)2kx∗[uv]i, j ≤ 2kopt∗

where opt∗ is the objective value of LDLP. Then, byMarkov’s inequality and using
a similar trick as NVDP by fixing 0 < ε, the probability that Σv∈V (G)rLα(v)(v) ≤
(1 + 1/ε)(2k)b and cLα (Fα) ≤ (1 + ε)(2k)opt∗ are both independently at least 1/2.
Thus, there exists α such that Lα, Fα provides the promised guarantee. 
�

Note that when k = 1, the guarantee here is weaker than the one for NVDP. NVDP
explicitly uses the fact that there are only two levels to its advantage and achieves a
better trade-off between the downgrading cost and the cut cost. It would be of great
interest if such exploitation also exists for the general NVLDP problem.

6 Hardness results

Hardness results [7, 8, 26, 28] for interdiction problems typically involve a reduction
from the Densest k-subgraph problem which we define next.

Definition 2 Densest kSubgraph (DkS):Given anundirectedgraphG and an integer
k, find a vertex subset Y ⊂ V (G) such that |Y | = k and it maximizes the number of
edges induced by Y (i.e., with both ends in Y ).

DkS is a not only NP-hard but is also believed to be hard to approximate. Under
certain plausible complexity assumptions (such as it is hard to refute random 3-SAT
instances [10] or that there does not exist randomized subexponential time algorithms
that solve NP [19]), there does not exist a PTAS for DkS. Moreover, the current best
approximation algorithm known for the problem [2] has approximation ratio O(n

1
4+ε)

in an n-node graph for any ε > 0.
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A summary of the hardness results is in the table below.

Problem Hardness of

(α, 1)-approximation (1, β)-approximation

WNVIP DkS-Hard (Shown in [7, 8]) DkS-Hard (Theorem 6)
NVIP DkS-Hard (Theorem 1.9 in [8]) DkS-Hard (Theorem 7)
NVIP unit cost DkS Hard (Appendix B in [8]) DkS-Hard (Theorem 8)

Chestnut and Zenklusen [7] and Chuzhoy et. al [8] showed the following hardness
of unicriterion approximation of the cut value for the network interdiction problem.
Even though they proved this result for NFI, by our earlier observation, this applies to
WNVIP directly.

Theorem 5 ([7], Corollary 11) If there is an (α(n), 1)-approximation for WNVIP, then
there is a 2(α(n2))2-approximation for DkS.

We complement this to show a similar hardness of unicriterion approximation of the
interdiction budget. Asmentioned in the introduction, since there is a simple reduction
from undirected WNVIP to the directed version, we focus on the undirected version.

Theorem 6 If there exists a (1, β(n))-approximation for the undirected version of
WNVIP, then there is a 2(β(n2))2-approximation for DkS.

Proof Our strategy will be very similar to the one in prior work [7, 26, 28]. Given an
instance of DkS, without loss of generality, we may assume that G is connected and
k < |V (G)|. Consider auxiliary graph H : V (H) = Vs ∪Vt ∪{s, t}where Vs = V (G)

corresponding to the original vertices and Vt = {te : e ∈ E(G)} corresponding to the
edges of G. Then, we add the following edges: {sv : v ∈ Vs}, {tet : te ∈ Vt }, {vte :
e = uv ∈ E(G)}. This graph H is equivalent to subdividing every edge of G then
connecting s to all original vertices and connecting t to all subdivided edges. Note
that |V (H)| = |V (G)| + |E(G)| + 2 ≤ n2, |E(H)| = |V (G)| + 3|E(G)| ≤ 3n2 for
large n. 
�

Now, consider the following interdiction and edge cost functions:

Vertex s ∈ Vs ∈ Vt t

r(v) ∞ 1 ∞ ∞
Edges between s, Vs Vs , Vt Vt , t
c(e) ∞ ∞ 1

Let b = k and consider solving WNVIP on H . For any Y ⊆ V (G), denote EY as
the edges with both endpoints in Y .

Claim Let (Y ⊆ V (H), F ⊆ E(H)) be a solution to WNVIP. Then |EY | = |E(G)|−
|F |.
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Note that Y ⊆ Vs = V (G) and F are only edges between Vt and t due to the costs.
First, we will show that F is not incident to any te where e ∈ EY . Let e = uv ∈ EY .
Note that in the graph H , the neighbours of te are u, v, t . This implies after interdicting
Y , te is only adjacent to t , and hence need not be included in any minimal st cut. Next,
we show that for every e /∈ EY , tet ∈ F . Suppose e /∈ EY . Then, it follows e is incident
to some vertex u /∈ Y . Note that sutet is a path in H\Y . Since the cost of su, ute is too
expensive, it follows that tet ∈ F . Since the number edges between Vt and t is exactly
|E(G)|, the claim follows.

Let c∗ be the cost of the cut in an optimal solution toWNVIP and l∗ is the number of
edges in a densest k-subgraph ofG. It follows from the above claim that l∗ = |E(G)|−
c∗. Suppose the approximation scheme produced an interdiction set V ′ ⊆ Vs with a
final cut E ′ and a cost of c′ where |V ′| = Σv∈V ′r(v) ≤ β(|V (H)|)b = β(n2)k and
c′ ≤ c∗. Then, it follows from the claim that |EV ′ | = |E(G)|−c′ ≥ |E(G)|−c∗ = l∗.
Now we can apply the following lemma from [7].

Lemma 8 Given a graph H with n nodes and m edges, there exists a deterministic
polynomial algorithm that produces a subgraph on k vertices with at least k(k−1)

n(n−1)m
edges for any k ≤ n.

By applying Lemma 8 on the subgraph induced by V ′, there exists a k-vertex
subgraphwith at least k(k−1)

β(n2)k(β(n2)k−1)
l∗ ≥ l∗

2(β(n2))2
edges. Then, our theorem follows.


�
Our goal in this section is to build on the proof of Theorem 6 to show hardness

of NVIP with unit costs. We will do this in two steps: first we consider unitary inter-
diction costs with general edge cut costs. Then we also transform the edges so they
have unit costs. This method allows us to show hardness for one of the unicriterion
approximations.

Theorem 7 If there exists a (1, β(n))-approximation for NVIP, then there is a
4(β(n2))2-approximation for DkS.

Note that this is sufficient to show a (1, β)-approximation is hard to obtain for
NVIP.

Proof Weonce again consider the same auxiliary graph H as in the proof of Theorem6.
However, we consider the case of unit interdiction costs.

Vertex s ∈ Vs ∈ Vt t

r(v) ∞ 1 1 ∞
Edges between s, Vs Vs , Vt Vt , t
c(e) ∞ ∞ 1

Our budget b = k. Note that we still forbid the interdiction of s and t . This is a
natural condition to impose on NVIP. The main difference here compared to the proof
of Theorem 6 is that we are now allowed to interdict vertices in Vt .
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Suppose Y ⊆ V (H), F ⊆ E(H) is a (1, β)-approximation solution for NVIP on
H . Then, consider an alternate interdiction set where we still interdict every vertex in
Y ∩ Vs but instead of interdicting any te ∈ Y ∩ Vt corresponding to an edge e = uv,
we interdict su and sv , the vertices in VS corresponding to u and v. Formally, let
Ȳ = (Y ∩ Vs) ∪ {su, sv : te ∈ Y ∩ Vt , e = uv}. Note that |Ȳ | ≤ 2|Y |. Thus, Ȳ , F is a
(1, 2β)-approximation for NVIP on H . Applying Claim 6, we can obtain a 2β(n2)k
vertex subgraph with at least l∗ edges where l∗ is the optimal number of edges in DkS.
Then, the result follows from Lemma 8. 
�

Wecan furthermodify the graph H to show thatwe cannot obtain a goodunicriterion
approximation for NVIP even when we have unitary costs.

Theorem 8 If there exists a (1, β(n))-approximation for NVIP with unit cut cost, then
there exists a (4(β(2n2))2)-approximation for DkS.

Proof We will use the same setup as Theorem 7. Recall, given graph G, we construct
auxiliary graph H with the following cost functions:

Vertex s ∈ Vs ∈ Vt t

r(v) ∞ 1 1 ∞
Edges between s, Vs Vs , Vt Vt , t
c(e) ∞ ∞ 1

There are two edge costs we need to modify, those between s, Vs and those between
Vs, Vt . To take care of those incident to s, consider adding a large clique S = Kn2

between s and Vs . Then, add every possible edge between s, S and similarly between
S and Vs . Note that even after interdicting b < n nodes in S, any cut through S
involves n2 > |E(G)| many edges and thus any minimum solution will not interdict
any vertices in S nor cut any edges in S.

For edges betweenVs, Vt ,we simply set their cost to 1 and claim that an st-minimum
cut would not use any of those edges either. Let F be a minimum cut after interdicting
some vertices Y . Suppose there exists v ∈ Vs, te ∈ Vt such that vte ∈ F . Then,
removing edge vte and adding tet to F is still an st-cut. Therefore, we can assume
that any min-cut after interdicting any set Y only consists of edges incident to t . Then,
applying the same techniques in Theorem 7, our result follows. 
�

7 Simple approximations for interdiction problems

7.1 A simple bicriteria algorithm forWNVIP

We first provide a polynomial time algorithm that finds a (1 + 1/ε, 1) or (1, 1 + ε)-
approximation for any ε > 0 for WNVIP in digraphs using a more direct proof than
the earlier methods [3, 6]. This proof was also given by Chuzhoy et al. [8] in their study
of k-route cuts, but we reproduce it since we build on it later. A priori, the algorithm
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will not be able to tell which guarantee it provides. Note that if ε = 1, this easily
provides a (2, 2) approximation.

Theorem 9 For any ε > 0, there exists a polynomial time algorithm that provides
either a (1+ 1/ε, 1) or a (1, 1+ ε)-approximation guarantee for WNVIP in directed
graphs.

Proof Given ε > 0, let L be our guess for the value of λst (G\X∗) for the optimal
interdiction set X∗ that obeys r(X∗) ≤ b. Since we can detect whether L = 0 (using
weighted node connectivity computation) and output an interdiction set achieving this,
we assume that L is nonzero for the rest of the proof. Also, note that L is bounded
above by the weight of a minimum directed st-cut ofG. Consider an auxiliary digraph
G ′ and a weight function w : A(G ′) → R+ where we subdivide every arc e with a
vertex ve. We assign weight εceb/L to every new vertex ve. Every original vertex v

gets weight r(v). If our guess L is correct, thenG ′ contains an st-separating vertex cut
of weight (1+ε)b (by using the nodes in an optimal interdicting set and the subdivided
nodes of the corresponding min st-cut). Now, consider a minimum weighted vertex
cut X ′ of G ′ that separates all directed paths from s to t . Let X = X ′ ∩ V (G) and
Y = X ′\X be those that correspond to subdivided arcs. Note that (1+ε)b ≥ w(X ′) =
r(X) + Σe∈Y εceb/L . In particular, r(X) ≤ (1 + ε)b and Σve∈Y ce ≤ (1 + 1/ε)L .
Furthermore, if r(X) > b, then it follows that Σe∈Y ce < L . This implies if L is the
correct guess, then (X ,Y ) is either a (1 + 1/ε, 1) or a (1, 1 + ε)-approximation.2 
�

7.2 Interdictingmultiway cuts

Problem 4 Weighted Multiway Cut Vertex Interdiction Problem
(WMWIP) Let G be a directed graph, S = {s1, ..., sk} ⊆ V (G) and every arc e

has a non-negative weight ce and every vertex v has a non-negative interdiction cost
r(v). Given a budget b, find vertices X of interdiction cost at most b to interdict that
minimizes the cost of separating the vertices in S. In otherwords, find X ⊆ V (G), F ⊆
E(G) such that there is no path from any vertex si ∈ S to any other s j ∈ S in G after
deleting X and F . Furthermore, r(X) ≤ b and Σe∈Fce is minimized. We will assume
that the demand vertices S cannot be interdicted or equivalently that r(s) = ∞ for
s ∈ S.

RelatedWork.Themultiway cut problem is another natural extension of theminimum
st-cut problem, and involves finding a minimum set of edges to delete in order to
separate k given terminals from each other. For the problem in undirected graphs, using
a geometric relaxation, Calinescu, Karloff and Rabani [4] achieved an approximation
factor 3/2. Sharma and Vondrak [25] gave the current best approximation factor of
1.2965. In the vertex version of the Multiway Cut Problem, instead of deleting edges,
we delete vertices to separate the k terminals, but the graph is still undirected. By

2 We can simply try all possible L values using binary search to find the smallest value for which the
condition holds. To make this search polynomial time, we can simply search over multiplicative powers
of (1 + ε′) for some small ε′ > 0 starting from 1 and up to the maximum possible cost of a cut using
log1+ε′ mcmax trials where m is the number of arcs and cmax is the largest arc cost.
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subdividing edges and introducing new nodes with costs, it is easy to see that the
vertex version generalizes the edge version. Garg et al. [12] gave a 2-approximation
for this vertex Multiway Cut in undirected graphs by showing half-integrality of the
optimal solution of a natural LP relaxation. Finally, the directed version of the problem
involves deleting arcs so that there are no directed paths between any pair of terminals.
It is easy to see that the vertex version of this directed problem can be reduced back
to the arc version by the usual splitting of nodes into two copies: one for supporting
incoming and the other for outgoing arcswith the node cost assigned to the arc from the
in- to the out-copy. Naor and Zosin [21] gave the first 2-approximation algorithm for
the directed multiway cut problem using a sophisticated LP formulation and rounding.
Chekuri and Madan [5] later gave a simple ball growing based LP rounding algorithm
for the problem that also gives a 2(1 − 1

k ) approximation where k is the number of
terminals. We can adapt either algorithm to give our results for the vertex interdiction
variant of multiway cuts in directed graphs.

Using similar techniques as forWNVIP, we prove the following result for the vertex
interdiction version of the directed multiway cut problem.

Theorem 10 For any ε > 0, there exists a polynomial time algorithm that gives a
(4, 4(1 + ε))-approximation to Weighted Multiway Cut Vertex Interdiction Problem
(WMWIP) in directed graphs.

Proof Let opt be the cost of an optimal solution to WMWIP. First delete all arcs of
cost 0 since they are free to cut. Then, apply the 2-approximation algorithm for the
node-weighted version of the directed multiway cut problem on G disregarding any
edge costs. If opt = 0, then the algorithm should produce a set of vertices to interdict
whose cost is at most 2b and separates all terminals from each other.

Now, we assume that opt > 0 and we now make a guess of a close range bounding
opt . First, by scaling the costs with an appropriate factor, we may assume that all arc
costs are at least 1. Fix a constant ε > 0 and let q = �log(∑uv∈A cuv)/ log(1 + ε)�.
Define the sequence Ui = (1 + ε)i for i = 0, . . . , q. By the choice of q, we have
(1 + ε)q >

∑
uv∈A cuv . Clearly, U0 ≤ opt < Uq . We improve these bounds by

guessing an index i0 such that Ui0−1 ≤ opt ≤ Ui0 . It follows that the following
algorithm tries all Ui0 = Ui for i = 1, . . . , q and returns the best result.

Consider an auxiliary graph G ′ and a weight function w : A(G ′) → R+ where
we subdivide every arc e with a vertex ve. We assign weight ceb

Ui0
to every new vertex

ve. Every original vertex v gets weight r(v). All original arcs are assumed to have
infinite weight. Then G ′ contains a node multiway cut of weight 2b (by using the
nodes in an optimal interdicting set and the subdivided nodes of the corresponding
minimum multiway cut). Recall that the vertex version of this directed problem can
be reduced back to the arc version by the usual splitting of nodes into two copies: one
for supporting incoming and the other for outgoing arcs with the node cost assigned
to the arc from the in- to the out-copy. Now, we use any existing 2-approximation
for directed multiway cut [5, 21] to find a 2-approximation to the minimum weighted
vertex multiway cut to get the set X ′ of G ′. Let X = X ′ ∩ V (G) and Y = X ′\X be
those that corresponds to subdivided arcs. Note that 4b ≥ w(X ′) = r(X) + Σe∈Y ceb

Ui0
.

In particular, r(X) ≤ 4b and Σe∈Y ce ≤ 4Ui0 ≤ 4(1 + ε)opt . 
�
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7.3 Interdictingmulticuts using vertices

Problem 5 Weighted MultiCut Vertex Interdiction Problem (WMVIP) Let G be
an undirected graph where every edge e has a non-negative weight ce and every node
v has a non-negative interdiction cost r(v), and we are given demand pairs of vertices
{s1, t1}, . . . , {sk, tk}. Given a budget b, find nodes X of interdiction cost at most b to
interdict that minimizes the cost of separating the demand pairs in the resulting graph.
In other words, find X ⊆ V (G), F ⊆ E(G) such that for every demand pair {si , ti },
vertices si and ti are in different connected components of G after deleting the nodes
in X and the edges in F . Furthermore, r(X) ≤ b, and Σe∈Fce is minimized.

We will assume that the demand-pair vertices cannot be interdicted or equivalently
that r(v) = ∞ for v ∈ {si , ti } for any demand pair i , and call such vertices terminals.

RelatedWork. In the multicut problem in undirected graphs, we are given k source-
sink pairs and amulticut puts every source sink pair in different connected components.
The minimum multicut problem has a well-known 2 ln k-approximation algorithm
[11] using an LP-rounding method. An alternate proof of this result using the ideas of
Calinescu et al. [4] uses a randomized Dijkstra-like ball growing and cutting method
(see e.g., [15]) that we adapt in designing our approximation algorithm for the vertex
interdiction variant of this problem. For completeness, we remark that multicuts in
directed graphs are not that well approximable with the best known approximation

ratio being O(n
11
23 ) [1] in n-node digraphs.

This subsection focuses on applying a similar technique as above on WMVIP to
prove the following theorem.

Theorem 11 For any ε > 0, there exists a randomized polynomial time algorithm that
gives a (2(1+ε) ln k, 2(1+ε) ln k)-approximation to Weighted MultiCut Vertex Inter-
diction Problem (WMVIP) in undirected graphs, where k is the number of terminal
pairs.

Our strategy is to formulate and solve a linear programming relaxation of the prob-
lem by adapting the multicut formulation by incorporating node interdiction variables.
We then employ a ball-growing based rounding technique used for deriving a loga-
rithmic approximation algorithm by first transferring the LP values on the nodes to all
their adjacent edges. We then observe that this transformation does not degrade the
quality of the final approximation more than the claimed amount.

Consider the following linear programming relaxation for WMVIP:

max
∑

e∈E(G)

cexe

s.t.
∑

e∈E(P)

xe +
∑

v∈V (P)

yv ≥ 1 ∀si ti path P ∀ i

∑

v∈V (G)

r(v)yv ≤ b
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xe, yv ≥ 0 ∀e ∈ E(G), v ∈ V (G)\S
yv = 0 ∀ terminals v

Note that an optimal solution of the multicut interdiction problem (WMVIP) is a
feasible solution to the above LP. Let x∗, y∗ be an optimal solution to this LP and let
opt∗ be the optimal value. Note that if we define the distance between any two points
u, v as minuv−path P Σe∈E(P)xe + Σw∈V (P)\{u,v}yw, then every si , ti pair is at least 1
unit apart from each other. We will now construct an auxiliary graph G ′ that transfers
all weights on vertices to edges and preserves this distance.

To construct the auxiliary graph G ′, for every edge e = uv, subdivide it twice with
vertices uv, vu and give weights yu/2, xe, yv/2 to uuv, uvvu, vuv respectively. This
transformation can be viewed as replacing every vertex v with a star with center v and
leaves vu for every u ∈ N (v). Note that the length of any path is clearly preserved.
Thus every si , s j pair is still distance 1 apart. Let d(u, v) denote the distance between
two vertices u, v. Let edges of the form uuv, vuv be called vertical edges since they
relate to the original vertex weights yu, yv . Denote all other edges of the form uvvu
as true edges.

Consider the following Dijkstra-like Ball Growing Algorithm for multicut [15]
inspired by [4]: Choose a random permutation of the demand pairs and reindex the
pairs according to this random order. Next, randomly choose a number r between
(0, 1). In increasing order i of the terminal pairs in this random ordering, draw a ball
of radius r centered at si . Then, cut all edges at the boundary of the ball around si that
are not cut or not entirely contained inside the ball around s j for some j < i . In other
words, an edge e = uv is chosen as part of the cut if and only if there exists 1 ≤ i ≤ k
such that d(u, s j ), d(v, s j ) > r for all j < i in the random permutation order of the
terminal pairs andmoreover, either d(u, si ) ≤ r < d(v, si ) or d(v, si ) ≤ r < d(u, si ).
Then given r and the random order of the demand pairs, let F be the set of edges in
G that corresponds to true edges chosen in the cut and let X be the set of vertices of
G that corresponds to vertical edges in the cut.

Note that the resulting X , F does provide an integral solution to the WMVIP prob-
lem. Now, we calculate the expected cost of F and X .

Lemma 9 The probability that a true edge uvvu is chosen in the cut is at most xe ln k.

Proof Let e = uvvu be a true edge. For a demand pair (s, t), denote the distance of the
edge e to the terminal s as min{d(uv, s), d(vu, s)}. Then, we rank the demand pairs
(s′
i , t

′
i ) based on the distance of e to the terminals si . Suppose that s′

i is the i-th closest
terminal to e.

Without loss of generality, assume d(uv, s′
i ) ≤ d(vu, s′

i ). Then, e is on the boundary
of the ball around s′

i with radius r if and only if d(uv, s′
i ) < r < d(vu, s′

i ) which
happens with probability d(vu, s′

i ) − d(uv, s′
i ) ≤ xe. Consider j < i so e is closer to

s′
j than s′

i . Suppose e is on the boundary of the ball around s′
i and thus r > d(s′

i , uv).
Then r is larger than the distance to s′

j . This implies e is either inside or on the boundary
of the ball around s′

j with radius r . Then e cannot be chosen as part of the cut by s′
i .

Thus e is chosen in the cut by s′
i only if s′

i is chosen in the random ordering after s′
j
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for all j < i . Then, the probability that e is chosen in the cut by s′
i is at most xe × 1

i .
Then, the total probability of e being chosen in the cut is at most Σk

i=1
xe
i ≤ xe ln k. 
�

A similar result can be derived about interdicting a vertex.

Lemma 10 The probability that v is interdicted is at most yv ln k.

Proof Define δv = minu∈N (v){d(vu, s)} as the distance between v and a terminal s.
Once again, we can rank the terminals based on their distance to v and thus assume
that s′

i is the i-th closest terminal to v. Note that the maximum distance between any
two vertices incident to v is yv due to the path via v.

For similar reasons as before, the probability of a vertical edge of v to lie on the
boundary of a ball centered around s′

i is yv . However, it is chosen in the cut due to s′
i

only if s′
i appears in the ordering after s

′
j for all j < i . Then, by similar reasoning, the

probability that v is interdicted is at most yv ln k . 
�

Now we can prove our main theorem.

Proof (Theorem 11) Note that E[Σe∈Fce] = Σe∈E(G)ce Pr [e ∈ F] is at most
Σe∈E(G)cexe ln k = opt∗ ln k. Similarly, E[Σv∈Xr(v)] = Σv∈V (G)r(v)Pr(v ∈ X)

is at most Σv∈V (G)r(v)y ln kv = b ln k. Then by Markov’s inequality, the probabil-
ity that the corresponding F, X satisfy Σe∈Fce ≤ 2(1 + ε)opt∗ ln k,Σv∈Xr(v) ≤
2(1 + ε)b ln k is 1 − 2

2(1+ε)
= ε

1+ε
. Thus, we can find a desirable cut in polynomial

time. 
�

8 Conclusion

Wehave introduced a new class of network downgrading problems inspired by extend-
ing interdiction problems from arcs to vertices in graphs. While we mainly studied
cut problems in networks, the downgrading model can also be adapted to study other
network problems such as connectivity structures like spanning and Steiner trees,
matchings and other subgraphs for which the interdiction problem models a plausible
application. Our results extend the work on interdiction of cuts by using new relax-
ations that are able to exploit previously used rounding techniques after appropriate
adaptations. We hope a similar approach can be useful in future work on these other
subgraph downgrading problems.
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