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Abstract. The traveling purchaser problem is a generalization of the
traveling salesman problem with applications in a wide range of areas
including network design and scheduling. The input consists of a set
of markets and a set of products. Each market offers a price for each
product and there is a cost associated with traveling from one market to
another. The problem is to purchase all products by visiting a subset of
the markets in a tour such that the total travel and purchase costs are
minimized. This problem includes many well-known NP-hard problems
such as uncapacitated facility location, set cover and group Steiner tree
problems as its special cases.

We give an approximation algorithm with a poly-logarithmic worst-case
ratio for the traveling purchaser problem with metric travel costs. For
a special case of the problem that models the ring-star network design
problem, we give a constant-factor approximation algorithm. Our algo-
rithms are based on rounding LP relaxation solutions.

1 Introduction

Problem. The traveling purchaser problem (TPP), originally proposed by Ramesh
[Ram 81], is a generalization of the traveling salesman problem (TSP). The prob-
lem can be stated as follows. We are given a set M = {1,...,m} of markets and
aset N = {1,...,n} of products. Also, we are given ¢;;, cost of travel from
market city ¢ to city j, and nonnegative d;;, the cost of product ¢ at market j.
A purchaser starts from his home city, say city 1, and travels to a subset of the
m cities and purchases each of the n products in one of the cities he visits, and
returns back to his home city. The problem is to find a tour for the purchaser
such that the sum of the travel and purchase costs is minimized. It is assumed
that each product is available in at least one market city. If a product 4 is not
available at market j, then d;; is set to a high value.
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Applications. The traveling purchaser problem has applications in many ar-
eas including parts procurement in manufacturing facilities, warehousing, trans-
portation, telecommunication network design and scheduling. An interesting
scheduling application involves sequencing n jobs on a machine that has m states
[Ong 82]. There is a set-up cost of ¢;; to change the state of the machine from
i to j. A cost d;; is specified to process job i at state j. The objective is to
minimize the sum of machine set-up and job processing costs.

The traveling purchaser problem contains the TSP, the prize collecting TSP,
uncapacitated facility location problem, group Steiner tree problem and the set
cover problem as its immediate special cases. The TSP is the case when each
market city has a product available only at that city. In the uncapacitated facility
location problem, let the fixed cost for opening facility j be f; and the cost of
servicing client ¢ by facility j be d;;. Then the problem is equivalent to a TPP
with a market for each facility and a product for each client, where the travel
cost between markets ¢ and j is ¢;; = (f;+ f;)/2 and the purchase cost of product
¢ at market j is d;;. In the set cover problem, we are given a set S and subsets
S1,...,S8, C S. The problem is to find a minimum size collection of subsets
whose union gives S. This corresponds to a TPP where S is the set of products
and there is a market j for each subset S;. The cost of purchasing product ¢ at
market j (of S;) is zero if i € S; and is a large number otherwise. There is a
unit cost of travel between each market. Then, there is a set cover of size k if
and only if there is a TPP solution of cost k.

Hardness. Note that since there is no polynomial time approximation al-
gorithm for the general TSP, TPP with no assumptions on the costs cannot be
approximated in polynomial time unless P = NP [GJ 79]. The TPP instance
into which we reduce the set cover problem has metric travel costs. Therefore,
from the above approximation-preserving reduction and current hardness re-
sults for set cover [F 96,RS 97,AS 97] it follows that there is no polynomial time
approximation algorithm for the traveling purchaser problem even with metric
travel costs whose performance ratio is better than (1—o(1)) Inn unless P = N P.

Related Work. Due to the hardness of the problem, many researchers
have focused on developing heuristics. Most of these algorithms are local search
heuristics (Golden, Levy and Dahl [GLD 81], Ong [Ong 82], Pearn and Chien
[PC 98]). Voss [V 96] generated solutions by tabu search. The exact solution
methods are limited to the branch-and-bound algorithm of Singh and van Oud-
heusden [SvO 97], which solves relaxations in the form of the uncapacitated
facility location problem.

Our Results. We give the first approximation results for the traveling
purchaser problem. We give an approximation algorithm with a poly-logarithmic
worst-case ratio for the TPP problem with metric travel costs (Corollary 1).
In fact, this algorithm approximates a more general bicriteria version of the
problem (Theorem 1). For a special case of the TPP problem that models the
ring-star network design problem with proportional costs, we give a constant-
factor approximation algorithm (Theorem 4 and Corollary 2).
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2 Bicriteria Traveling Purchaser Problem

We consider a bicriteria version of the traveling purchaser problem, where min-
imizing the purchase costs and the travel costs are two separate objectives. The
bicriteria problem is a generalization of the TPP, whose solutions provide the
decision-maker insight into the tradeoffs between the two objectives.

We use the framework due to Marathe et al. [MRS+ 95] for approximating
a bicriteria problem. We choose one of the criteria as the objective and bound
the value of the other by a budget constraint. Suppose we want to minimize
objectives A and B. We consider the problem

P: minBst. A<a

Definition 1. An («, 8)-approzimation algorithm for the problem P outputs a
solution with A-cost at most « times the budget a and B-cost at most (3 times
the optimum value of P, where a;, 3 > 1.

Our approximation algorithm rounds an LP relaxation solution. It uses the
“filtering” technique of Lin and Vitter [LV 92] to obtain a solution feasible to
the LP relaxation of a closely related Group Steiner Tree (GST) problem. Then,
the LP rounding algorithm of Garg, Konjevod and Ravi [GKR 97] is utilized to
obtain a feasible solution.

2.1 Formulation:

We represent the bicriteria TPP as the problem of minimizing the travel costs
subject to a budget D on the purchasing costs. The following IP formulation
is a relaxation of the TPP problem, where the market cities that the purchaser
visits are connected by a 2-edge-connected subgraph instead of a tour. In the
formulation, the variable x;; indicates whether product 7 is purchased at market
J, and variable z;;, indicates whether markets j and k are connected by an edge
of the 2-connected subgraph.

min Z Cik Zjk

JkEM

st
2, ) dijwy; <D @
i=1j=1
m
Yo wig =1 ieN @
j=1
Yayts Yo ozpzl €N, SCM,1¢5(3)
igs jes k¢S
z;; € {0,1} ieEN,jeM (4)
Z € {0,1} 5, keM (5)

Constraint (1) is the budget constraint on purchase cost. Constraints (2)
enforce that each product is purchased. Constraint set (3) is intended to capture
the requirement of crossing certain cuts in the graph by edges in the subgraph
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that connect the visited markets. Consider a set of markets S not including the
traveler’s start node 1, and a particular product i: Either ¢ is purchased at a
market not in S or the 2-edge-connected subgraph containing 1 must contain at
least one market in S from where i is purchased, thus crossing at least two of
the edges in the cut around S. This disjunction is expressed by constraints (3).

The LP relaxation relaxes the integrality of z;; and zj;, variables. Although
the LP has an exponential number of constraints, it can be solved in polynomial
time using a separation oracle [GLS 88] based on a minimum cut procedure.
To separate a given solution (z,x) over constraints (3) for a particular product
i, we set up a capacitated undirected graph as follows: For every edge (i,7) of
the complete graph on the market nodes, we assign an edge-capacity z;;/2. We
add a new node p; and assign the capacity of the undirected edge between p;
and market node j to be x;;. A polynomial-time procedure to determine the
minimum cut separating 1 and p; [AMO 93] can now be used to test violation
of all constraints of type (3) for product i. Repeating this for every product i
provides a polynomial-time separation oracle for constraints (3).

2.2 Filtering

Let &, 2 be an optimal solution to the LP relaxation defined above. By filtering,
we limit the set of markets a product can be purchased at. For each product, we
filter out markets that offer a price substantially over the average purchase cost
of the product in the LP solution.

Let D; denote the purchase cost of product i in the solution z, Z, i.e. D; =
Z;nzl d;j%;j. For a given € > 0, define a group of markets for product i: G; =
{j € M:dy <(1+¢€)D;}. Every group G; gets at least a certain amount of
fractional assignment of product ¢ to its markets in the LP solution as shown by
the next lemma.

Lemma 1. For every product i € N and € > 0, ZjeGi Tij > 1<

Proof. Suppose for a contradiction that ZjeGi &3 < ¢ Then, ZjeGi Zij >

%‘—e' Note that D; = ZjeM diji'ij > Z]'¢Gi diji'ij > (]. + G)Di Zj¢Gi i?ij by the

definition of G;. Since 3,4, #ij > 1%6, we get the contradiction D; > D;.

2.3 Transformation to Group Steiner Tree Problem

For each product we identified a group of markets to purchase the product. We
now need to select at least one market from each group and connect them by
a tour. For this, we take advantage of the Group Steiner Tree (GST) problem
which can be stated as follows. Given an edge-weighted graph with some subsets
of vertices specified as groups, the problem is to find a minimum weight subtree
which contains at least one vertex from each group. We assume without loss
of generality that node 1 is required to be included in the tree. We define the
following GST instance. Let G be a complete graph on vertex set equal to the



\Y%

market set M. The weight of edge (4, j) is set to ¢;; (note that we assume ¢;; is
metric). Let the G; defined as above for each product ¢ be the groups.

Consider the LP relaxation of this GST problem, which we denote by LP-
GST. The variables z;;, denote whether the edge between j and k is included in
the tree.

min Z Cjk Zjk

k€M
st
> zirp>21l SCcM,1¢ S andG; CS for somei (6)
JES, k¢S
0< 2, <1 LkeM (7)

The nontrivial constraints (6) enforce that there is a path from node 1 to
some node in group G, for every 7, in the solution.

Lemma 2. Let Zj, = (5:°)2j5. Then, Z is feasible to LP-GST.

Proof. Consider S C M containing G; but not city 1. By constraint (2), 3 ;¢¢ &i;
+% ZjESJc&S éjk > 1. AlSO, Z]¢S i'ij < ngEGi i:ij < %Jrﬁ by Lemma 1. Then,

%ZJGS,kQS 2jlc >1- %ﬂ = 1L+€ So, we have ZjESJcQS Zjk > 1.

Garg, Konjevod and Ravi [GKR 97] gave a randomized approximation al-
gorithm that rounds a solution to LP-GST. A de-randomized version can be
found in [CCGG 98]. Using any of these algorithms to round the solution Zz
provides a tree that includes at least one vertex from each group and has cost
O(log® mloglogm) times > ke Cik Zjk-

We obtain a solution to the TPP as follows. Let 1" be the tree output by the
GST rounding algorithm. Let v; be a market in G; included in 7. We purchase
product 7 at market v;. We duplicate each edge in T" and find an Eulerian tour.
We obtain a Hamiltonian tour on the markets in 7" by short-cutting the Eulerian
tour. That is, while traversing the Eulerian tour, when a node that has already
been visited is next, we skip to the next unvisited node, say u, and include an
edge that connects the current node to u.

The following lemmas are now immediate.

Lemma 3. The TPP rounding algorithm outputs a solution with total purchase
cost at most (1+€) 3 i) 30" dijiij, which is at most (1 +¢€) times the budget
D, for any chosen € > 0.

Lemma 4. The TPP rounding algorithm outputs a solution with total travel
cost at most O((1+ %)(log3 mloglogm)) 3 ; s Cik Zjk, which is at most O((1+
%)(log3 mloglogm)) times the optimal TPP cost, for any chosen € > 0.

From Lemmas 3 and 4 we get the following theorem.

Theorem 1. The TPP rounding algorithm outputs a ((1+¢€),(1+ %)O(log3 m
loglog m))-approzimate solution for the bicriteria TPP problem with metric travel
costs in polynomial time, for any e > 0.
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The same analysis gives a poly-logarithmic approximation for the TPP as
well, where we relax the budget constraint on total purchase cost and add the
cost to the objective function.

Corollary 1. For any € > 0, the TPP rounding algorithm finds a solution for
the TPP with metric travel costs, whose cost is max{(1 + €), (1 + 1) O(log® m
loglogm)} times the optimal TPP cost in polynomial time.

We note that the TPP with metric costs can be directly transformed to
a group Steiner tour problem! on a metric with m + nm nodes, i.e., one of
finding a tour that visits at least one node from each group. To construct this
metric, we begin with the original metric ¢ on the market nodes. To each market
node, we attach m new nodes via “leaf” edges, one for each product - such
an edge from market node j to its product node ¢ is assigned cost d;;/2. All
other edges incident on the new nodes are given costs implied by the triangle
inequality. All the nodes corresponding to a product i specify a group - Thus,
there are n groups, each with m nodes. It is now straightforward to verify that
any group Steiner tour can be transformed to a solution to the original traveling
purchaser instance with the same cost. Applying the rounding algorithms for
group Steiner trees and short-cutting the tree obtained to a tour gives a direct
O(log® (m + nm) loglog(m + nm)) approximation to the metric TPP.

3 Network Design with Proportional Cost Metrics

In this section we consider a special case of the traveling purchaser problem,
which models a telecommunication network design problem. A communication
network consists of several local access network (LANs) that collect traffic of
user nodes at the switching centers, and a backbone network that routes high-
volume traffic among switching centers. We model this problem by requiring
a ring architecture for the backbone network and a star architecture for the
LANs. The ring structure is preferred for its reliability. Because of the “self-
healing” properties associated with SONET rings, ring structures promise to be
of increasing importance in future telecommunication networks ([Kli 98]). The
formal model follows.

We are given a graph G = (V, E), with length [, on edge e. Without loss of
generality, we use the metric completion of the given graph. That is, length of
an edge e is replaced by the shortest-path length d. between its endpoints. The
problem is to pick a tour (ring backbone) on a subset of the nodes and connect
the remaining nodes to the tour such that sum of the tour cost and the access cost
is minimized. The access cost of connecting a non-tour node ¢ to a tour node j
is d;;, i.e. the shortest-path length between ¢ and j. The access cost includes the
cost of connecting all non-tour nodes to the tour. On the other hand, the cost
of including an edge e in the tour is pd., where the constant p > 1 reflects the
more expensive cost of higher bandwidth connections in the backbone network.

! This is also called the generalized TSP in the literature; see [FGT 97].
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This problem is a special case of TPP where the vertices of the graph corre-
spond to both the set of markets and the set of products [V 90]. With the TPP
terminology, the purchase cost of a product of node ¢ at the market of node j is
the shortest path length between nodes 7 and j. Thus, if node i is included in
the tour, its product is purchased at its own market at zero cost. We consider a
bicriteria version of this problem with the two objectives of minimizing the tour
cost and minimizing the access cost. We use the following notation to denote the
problems considered.

(A, T, p): Minimize tour cost T subject to a budget on the access cost A,
where a tour edge costs p times the edge length.

(A + T,p): Minimize sum of the tour and access costs, where a tour edge
costs p times the edge length.

3.1 Hardness

The bicriteria problem (A, T, p) is NP-hard even when p = 1. When the budget
on the access cost A is set to zero, the problem reduces to the TSP since every
node must be included in the tour. We show that it is NP-hard to approximate
this problem with a sub-logarithmic performance ratio without violating the
budget constraint. This result does not follow from the inapproximability of
TSP since we assume that the distances d;; are metric.

Theorem 2. There ezists no (1, a)-approzimation algorithm, for any a = o(logn),
for the (A,T,1) problem unless P = NP. Here n is the number of nodes in the
(A,T,1) instance.

The proof (omitted) is by an approximation preserving reduction from the
connected dominating set problem. Note that since (A, T, 1) is a special case of
(A, T, p), the same hardness result holds for (A, T, p).

Theorem 3. The single criteria problem (A +T,1) is NP-hard.

The proof (omitted) is by a reduction from the Hamiltonian tour problem
in an unweighted graph which is known to be NP-hard [GJ 79]. Again, since
(A,T,1) is a special case of (A, T, p), NP-hardness of the latter follows as well.

3.2 Approximation

There exists a simple 2-approximation algorithm for the (A + 7,1) problem.
Find a minimum spanning tree of G, say M ST, duplicate the edges of M ST
and shortcut this to a tour. Note that every node is included in the tour so that
the access cost is zero. The cost of the tour is at most 2 times the cost of M ST,
which is a lower bound on the optimal cost.

Note that this heuristic is a 2p-approximation algorithm for (4 + 7T, p). How-
ever, we obtain a stronger constant factor approximation for both the bicriteria
and single objective problems for arbitrary p by LP rounding. The LP rounding
algorithm uses filtering to limit the set of tour nodes a node can be connected
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to, as in the TPP rounding algorithm. However, the construction of the tour
differs from the TPP rounding algorithm. Tour nodes are chosen based on the
access costs and the tour is built by shortcutting an MST on a graph obtained
by contracting balls around the tour nodes.

We assume that a root node r is required to be included to the tour (this is
similar to including the home city in the TPP). If no such node is specified, we
can run the algorithm n times, each time with a different root node, and pick the
best solution. We use the following relaxation of (A, T, p), which is very similar
to the relaxation that we used in the TPP rounding algorithm.

min p > de 2e
eck

st
> > dijzi; <D (1)
i€V jev
S oz =1 1eV (2)
jev
Saij+s Y z>1 i€V, ScV,r¢S(3)
j¢s e€d(S)
ry € {0,1) €N, jeM (4
Zx € {0,1} ke M (5)

Variable z;; indicates whether node 7 is connected to the tour at node j, and
variable z, indicates whether edge e is included in the tour. Constraint (1) is
the budget constraint on access cost. Here, d;; denotes the shortest path length
between nodes i and j. Constraint (2) ensures that every node has access to the
tour. For a node set S excluding r, constraint (3) ensures that at least two edges
of the cut around S, denoted by 4(S5), is included in the tour, if some node has
been assigned to access the tour at a node in S. We obtain the LP relaxation
(LPR) by relaxing the integrality in constraints (4) and (5).

@

a) A ball aroundi of radiusr b) Contraction of the ball
Fig. 1. The definition and contraction of a ball
We need a few definitions before we describe the algorithm. A ball of radius

r around a node 7 is the set of all points in G that are within distance r from
© under the length function d. on the edges. The ball may include nodes, edges
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and partial edges as illustrated in Figure 1la. When we contract a ball around a
node into a single node, (i) we delete edges with both ends in the ball; (ii) we
connect the edges with exactly one endpoint in the ball to the new node and
shorten their length by the length remaining in the ball (Figure 1b). Let € > 0
and a > 1 be input parameters. The algorithm is as follows:

Solve LPR, let &, 2 be an optimal solution.
Let D; denote the access cost of node 7 in this solution, i.e. D; = ZjEV dij ;.
Let 131 = (1 + €)D; and define a ball B; around every node ¢ of radius aﬁi.
Preprocessing step: remove all balls containing r and connect their centers
to r in the access network.
(5) While unprocessed balls remain:
(5.1) Pick a ball with minimum radius, say By, and mark it as a “tour ball”.
(5.2) Remove all balls intersecting By, and mark them as “connected via By”.
) Contract each tour ball to a node. Let G' be a complete graph on the con-
tracted nodes and r, with edge weights equal to shortest path lengths in G
(after contractions).
(7) Find an MST of G' and construct H by replacing edges of the MST by
shortest paths in G.
(8) Duplicate edges of H and shortcut them to a tour PT.
(9) Uncontract the balls. Construct tour 7' by connecting the center node ¢ of
each ball B; to PT.
(10) Connect the center of every ball marked “connected via By” directly to k in
the access network.

(1)
(2)
(3)
(4)

(6

Before we analyze the worst-case performance of the algorithm, let us clarify
how we process ball B; in Step (9). Let b; be the contracted node corresponding
to B;. Let e; and e2 be the edges incident on b; in PT. Let v; and vs be the
endpoints of e; and ez in B;. Connect the center node ¢ to the tour by adding
edges (i,v1) and (i,v2) (see Figure 2). Extend e; and es to include the portions
in the ball.

a) A contracted ball in PT b) Uncontracting the ball

Fig. 2. Uncontracting a ball B; to include in PT
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Lemma 5. The rounding algorithm outputs a solution with access cost at most
2a(1 + €) times the budget D.

Proof. Each nontour node ¢ is connected to a tour node k such that B; N By, is
nonempty and Dk < D by the choice of the tour balls in the algorithm. Then,
the access cost of ¢ is at most aD + aDk < 2cuDZ = 2a(l+¢) Z icv dijTij.
Since # is a solution to the relaxation LPR, it satisfies the budget constraint
> > dij&i; < D. Thus, the access cost is at most 2a(1 + €)D.

eV jem

Remark 1. The argument in the above proof is also valid for a problem where
an access cost budget is specified separately for each node instead of a single
budget constraint on the total access cost.

Lemma 6. The rounding algorithm outputs a solution with tour cost at most
max{2, =2 }(1+ 1) times the optimal cost.

Proof. We use the following definitions. For an edge set M, let c(M) = >, pde.
Let P be the set of nodes included in the tour 7" output by the algorithm. Let
G; be a ball around ¢ of radius D;. Let E¢ denote the edge set of the contracted
graph. That is, E¢ excludes from E all edges with both ends in a tour ball as
well as portions of the edges with one end point strictly inside a tour ball.

The proof follows from the following claims.

Claim 1: ¢(T) < ¢(PT) +2a(l1+¢€)p > D;.
i€EP

Claim 2: 2(a — 1)ep Z D;<p> > deze.
ieP ee(B —Gy)

Claim 3: ¢(PT) < 2c(MST) <2(1+3)p Y dee.
ecbEc

Proof of Claim 1: The cost of the tour T equals the cost of PT', the tour on
the contracted nodes, plus the cost of the edges in the tour balls that connect
the tour nodes to PT'. For a tour ball B;, suppose PT touches B; at points kp
and k,. The path in B; connecting k; to the center node ¢ and i to k; has cost
at most 2a(1l + €)pD; since B; has radius a(1 + €)D;.

Proof of Claim 2: By an argument similar to the proof Lemma 1 it can be
shown that for any i € V', ) &35 > 5. Then, by constraint (3) of LPR, it

1+e)

follows that ZeE(S(Gi) Ze Z for any 1 E V, and G; excluding . Note that a
t ZE

fractional £ value of at least {37 must go a distance of at least (o — 1)DZ to get
out of the ball B;. We can consider this distance as a moat around G; of width
(@ —1)D;. So, we get p Y. (p, ) dee > p%(a —1)D; = 2pe(a — 1)D; for
any i € P, since D; = (1+¢€)D;.

Proof of Claim 3: The first inequality easily follows since we obtain PT by
shortcutting M ST. To show the second inequality, we show that z = (1;6 s
feasible solution to an LP relaxation of a Steiner tree problem on the contracted
graph G¢ = (Vo, E¢), with terminal nodes being the contracted balls and 7.

Consider S containing B; but not r. By constraint (3) of LPR, ¢ &ij +

: > ces(s) e > 1. By the definition of B;, we also have 3 o5 & < 30, &ij <

]EG
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1+e Then, 2 3 Zeea(s Ze>1— 1+E = 1% So, Zeea(S) Ze > 1. Thus, z is a feasi-
ble solution to the LP relaxation of the Steiner tree problem on G¢. Let ¢(ST)
be the cost of the LP relaxation of the Steiner tree problem on G¢ with terminal
set the contracted nodes plus r and edge costs pd.. Then, ¢(MST) < 2¢(ST)
(see, e.g. [AKR 95]). Since z is a feasible solution, ¢(ST) < > cp. pdeZe =
1+e)

> ecp. PdeZe. Thus, the claim follows.

From Claims 1, 2 and 3 we get,

C(T)<2(1+ Zdze+—1+ WY D deke
e€Ec i€P ec(B; —Gy)

Since E¢ excludes edges in B; for any i € P, C(T') < max{2,-%-}(1 + 1)

€

p Y deze < max{2,-2}(1 + 1)OPT, where OPT is the optimal cost to
et G,
(A, T, p) problem.

From Lemmas 5 and 6, the next result follows immediately.

Theorem 4. For anye > 0, a > 1 and any p, the rounding algorithm outputs a
(20(1+¢€), max{2, =25} (1+ 1)) approzimate solution for the bicriteria problem
(A, T, p) in polynomial time.

For minimizing the sum of the two objectives, the performance ratio of the
algorithm is the maximum of the two ratios for the separate objectives. The best
ratio is obtained by setting ¢ = 1/v/2 and o = 14 1/v/2, yielding a performance
ratio of 3 + 2v/2.

Corollary 2. The rounding algorithm is a (3 + 2\/5)—approa:imation algorithm
for (A+T,p) problem.
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