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Abstract—The random accumulation of variations in the human genome over time implicitly encodes a history of how human

populations have arisen, dispersed, and intermixed since we emerged as a species. Reconstructing that history is a challenging

computational and statistical problem but has important applications both to basic research and to the discovery of genotype-

phenotype correlations. We present a novel approach to inferring human evolutionary history from genetic variation data. We use the

idea of consensus trees, a technique generally used to reconcile species trees from divergent gene trees, adapting it to the problem of

finding robust relationships within a set of intraspecies phylogenies derived from local regions of the genome. Validation on both

simulated and real data shows the method to be effective in recapitulating known true structure of the data closely matching our best

current understanding of human evolutionary history. Additional comparison with results of leading methods for the problem of

population substructure assignment verifies that our method provides comparable accuracy in identifying meaningful population

subgroups in addition to inferring relationships among them. The consensus tree approach thus provides a promising new model for

the robust inference of substructure and ancestry from large-scale genetic variation data.

Index Terms—Biology and genetics, trees, information theory, graph algorithms.

Ç

1 INTRODUCTION

UNDERSTANDING how modern human populations arose
from our common ancestors is one of the central

questions of human genetics. The completion of the human
genome [1], [2], and the subsequent discovery of millions of
common genetic variations in the human genome [3] has
created an unprecedented opportunity to address this
question. Several major studies have recently been under-
taken to assess genetic variation in human population
groups and enable detailed reconstruction of the ancestry of
human population groups [4], [5], [6], [7]. In addition to its
importance as a basic research problem, this topic has great
practical relevance to the discovery of genetic risk factors of
disease due to the confounding effect of unrecognized
substructure on genetic association tests [8].

Past work on human ancestry inference has essentially
treated it as two distinct problems: identifying meaningful
population groups and inferring evolutionary trees among
them. Population groups may be assumed in advance based

on common conceptions of ethnic groupings, although the
field increasingly depends on computational analysis to
make such inferences automatically. Probably, the most
well-known system for this problem is STRUCTURE [9],
which uses a Markov Chain Monte Carlo (MCMC) method
to group sequences into K ancestral population group each
with its own allele frequency profile. Another well-known
program for this problem is EIGENSOFT [10], which uses
principal components analysis (PCA) to identify a set of
distinguishing vectors of alleles that allow one to spatially
separate a set of individuals into subgroups. Recently, two
additional algorithms known as Spectrum [11] and mStruct
[12] have been proposed by Sohn and Xing and Shringar-
pure and Xing, respectively. While both algorithms are
similar in nature to STRUCTURE, Spectrum constructs a
more realistic model by incorporating recombination and
mutation into their statistical model and avoids the
specification of ancestral population number a priori by
modeling genetic polymorphism based on the Dirichlet
process. On the other hand, mStruct propose a new
admixture model to identify subgroups by representing
each population as mixtures of ancestral alleles rather than a
single ancestral allele profile.

A separate literature has arisen on the inference of
relationships between populations, typically based on
phylogenetic reconstruction of limited sets of genetic
markers—such as classic restriction fragment length poly-
morphisms [13], mtDNA genotypes [14], [15], short tandem
repeats [14], [16], and Y chromosome polymorphism
[17]—supplemented by extensive manual analysis informed
by population genetics theory. While current phylogenetic
reconstruction algorithms, such as maximum parsimony or
maximum likelihood, work well on small data sets with
little recombination, most do not work well when utilizing
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genome wide data sets. Furthermore, there has thus far
been little crosstalk between the two problems of inferring
population substructure and inferring phylogenetics of
subgroups, despite the fact that both problems depend on
similar data sources and, in principle, can help inform the
decisions of one another.

We propose a novel approach for reconstructing a
species history that is intended to unify these two inference
problems. The method is conceptually based on the idea of
consensus trees [18], which represent inferences as to the
robust features of a family of trees. The approach takes
advantage of the fact that the availability of large-scale
variation data sets, combined with new algorithms for fast
phylogeny inference on these data sets [19], has made it
possible to infer likely phylogenies on millions of small
regions spanning the human genome. The intuition behind
our method is that each such phylogeny will represent a
distorted version of the global evolutionary history and
population structure of the species, with many trees
supporting the major splits or subdivisions between
population groups while few support any particular splits
independent of those groups. By detecting precisely the
robust features of these trees, we can assemble a model of
the true evolutionary history and population structure that
can be made resistant to overfitting and to noise in the SNP
data or tree inferences.

In the remainder of this paper, we describe and evaluate
our approach. We first present in more detail our
mathematical model of the consensus tree problem and a
set of algorithms for finding consensus trees from families
of local phylogenies. We next evaluate our method on a set
of simulated data and two real data sets from the HapMap
Phase II [4] and the Human Genome Diversity Project [5].
Finally, we consider some of the implications of the results
and future prospects of the consensus tree approach for
evolutionary history and substructure inference.

2 METHODS

2.1 Consensus Tree Model

We assume that we are given a set S of m taxa representing
the paired haplotypes from each individual in a population
sample. If we let T be the set of all possible labeled trees
connecting the s 2 S, where each node of any t 2 T may be
labeled by any subset of zero or more s 2 S without
repetition, then our input will consist of some set of n trees
D ¼ ðT1; . . . ; TnÞ � T . Our desired output will also be some
labeled tree TM 2 T , intended to represent a consensus of
T1; . . . ; Tn.

Our objective function for choosing TM is based on the
task of finding a consensus tree [18] from a set of
phylogenies each describing inferred ancestry of a small
region of a genome. The consensus tree problem aims to
identify tree structure that is persistent across a set of trees.
The typical approach for finding the optimal consensus tree
involves counting occurrences of each edge across the set of
trees. If the frequency of the edge exceeds some threshold,
the edge will be incorporated into the consensus tree. The
present application is, however, fairly different from
standard uses of consensus tree algorithms in that our
phylogenies are derived from many variant markers, each

only minimally informative, within a single species.
Standard consensus tree approaches, such as majority
consensus [20] or Adam consensus [21], would not be
expected to be effective in this situation as it is likely that
there is no single subdivision of a population that is
consistently preserved across more than a small fraction of
the local intraspecies trees and that many similar but
incompatible subdivisions are supported by different
subsets of the trees. We therefore require an alternative
representation of the consensus tree problem designed to be
robust to large numbers of trees and high levels of noise and
uncertainty in data.

For this purpose, we chose a model of the problem based
on the principle of minimum description length (MDL) [22],
a standard technique for avoiding overfitting when making
inferences from noisy data sets. An MDL method models an
observed data set by seeking to minimize the amount of
information needed to encode the model and to encode the
data set given knowledge of the model. Suppose we have
some function L : T ! R that computes a description
length, LðTiÞ, for any tree Ti. We will assume the existence
of another function, which for notational convenience we
will also call L, L : T � T ! R, which computes a descrip-
tion length, LðTijTjÞ, of a tree Ti given that we have reference
to a model tree Tj. Then, given a set of observed trees, D ¼
fT1; T2; . . . ; Tng for Ti 2 T , our objective function is

LðTM; T1; . . . ; TnÞ

¼ arg min
TM2T

LðTMÞ þ
Xn
i¼1

LðTijTMÞ þ fðTMÞ
 !

:

The first term computes the description length of the model
(consensus) tree TM . The sum computes the cost of
explaining the set of observed (input) trees D. The function
fðTMÞ ¼ cjTM j log2 m defines an additional penalty on
model edges where c is a constant used to define a
minimum confidence level on edge predictions. The higher
the penalty term, the stronger the support for each edge
must be for it to be incorporated into the consensus tree.

We next need to specify how we compute the description
length of a tree. For this purpose, we use the fact that a
phylogeny can be encoded as a set of bipartitions (or splits)
of the taxa with which it is labeled, each specifying the set of
taxa lying on either side of a single edge of the tree. We
represent the observed trees and candidate consensus trees
as sets of bipartitions for the purpose of calculating
description lengths. Once we have identified a set of
bipartitions representing the desired consensus tree, we
then apply a tree reconstruction algorithm to convert those
bipartitions into a tree.

A bipartition b can in turn be represented as a string of
bits by arbitrarily assigning elements in one part of the
bipartition the label “0” and the other part the label “1.” As
an example, in the tree of Fig. 1, the edge labeled a induces
the bipartition f1; 3; 5; 6; 9; 10g : f0; 2; 4; 7; 8g. This edge
would have the bit representation “10101001100.” Such a
representation allows us to compute the encoding length of
a bipartition b as the entropy [22] of its corresponding bit
string. If we define HðbÞ to be the entropy of the
corresponding bit string, p0 to be the fraction of bits of b
that are zero and p1 as the fraction that are one, then:

TSAI ET AL.: A CONSENSUS TREE APPROACH FOR RECONSTRUCTING HUMAN EVOLUTIONARY HISTORY AND DETECTING POPULATION... 919



LðbÞ ¼ mHðbÞ
¼ mð�p0 log2 p0 � p1 log2 p1Þ:

Similarly, we can encode the representation of one biparti-
tion b1 given another b2 using the concept of conditional
entropy. If we let Hðb1jb2Þ be the conditional entropy of bit
string of b1, given bit string of b2, p00 be the fraction of bits
for which both bipartitions have value “0,” p01 be the
fraction for which the first bipartition has value “0” and the
second “1,” and so forth, then:

Lðb1jb2Þ ¼ mHðb1jb2Þ
¼ m Hðb1; b2Þ �Hðb2Þ½ �

¼ m
X

s;t2f0;1g
�pst log2 pst

2
4

þ
X

u2f0;1g
ðp0u þ p1uÞ log2ðp0u þ p1uÞ

3
5;

where the first term is the joint entropy of b1 and b2 and the
second term is the entropy of b2.

We can use these definitions to specify the minimum
encoding cost of a tree LðTiÞ or of one tree given another
LðTijTMÞ. We first convert the tree into a set of bipartitions
b1; . . . ; bk. We can then observe that each bipartition bi can be
encoded either as an entity to itself, with cost equal to its
own entropy LðbiÞ, or by reference to some other bipartition
bj with cost LðbijbjÞ. In addition, we must add a cost for
specifying whether each bi is explained by reference to
another bipartition and, if so, which one. The total minimum
encoding costs, LðTMÞ and LðTijTMÞ, can then be computed
by summing the minimum encoding cost for each biparti-
tion in the tree. Specifically, let bt;i and bs;M be elements from
the bipartition set Bi of Ti and BM of TM , respectively. We
can then compute LðTMÞ and LðTijTMÞ by optimizing for the
following objectives over possible reference bipartitions, if
any, for each bipartition in each tree:

LðTMÞ ¼ arg min
bs2BM[f;g

XjBM j

s¼1

½Lðbs;M jbsÞ þ log2ðjBM j þ 1Þ�;

LðTijTMÞ ¼ arg min
bt2BM[Bi[f;g

XjBij

t¼1

½Lðbt;ijbtÞ þ log2ðjBM j þ jBij þ 1Þ�:

2.2 Algorithms

Encoding algorithm. To optimize the objectives for com-
puting LðTMÞ and LðTijTMÞ, we can pose the problem as a
weighted directed minimum spanning tree (DMST) pro-
blem by constructing a graph, illustrated in Fig. 2, such that
finding a directed minimum spanning tree allows us to
compute LðTMÞ and LðTijTMÞ. We construct a graph G ¼
ðV ;EÞ in which each node represents either a bipartition or
a single “empty” root node r explained below. Each
directed edge ðbj; biÞ represents a possible reference
relationship by which bj explains bi. If a bipartition bi is to
be encoded from another bipartition bj, the weight of
the edge eji would be given by wji ¼ LðbijbjÞ þ log2 jV j
where the term log2 jV j represents the bits we need to
specify the reference bipartition (including no bipartition)
from which bi might be chosen. This term introduces a
penalty to avoid overfitting. We add an additional edge
directly from the empty node to each node to be encoded
whose weight is the cost of encoding the edge with
reference to no other edge, wempty;j ¼ LðbjÞ þ log2 jV j.

To compute LðTMÞ, the bipartitions BM of TM and the
single root node collectively specify the complete node set
of the directed graph. One edge is then created from every
node BM [ frg to every node of BM . To compute LðTijTMÞ,
the node set will include the bipartitions Bi of Ti, the
bipartitions BM of TM , and the root node r. The edge set will
consist of two parts. Part one consists of one edge from each
node of Bi [BM [ frg to each node of Bi, with weights
corresponding to the cost of possible encodings of Bi. Part
two will consist of a zero-cost edge from r to each node in
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Fig. 1. (a) A maximum parsimony (MP) tree consisting of 11 labeled individuals or haplotypes. (b) The set of bipartitions induced by edges
(ea; eb; ec; ed) in the tree. (c) 0-1 bit sequence representation for each bipartition.

Fig. 2. Illustration of the DMST construction for determining model description length. (a) Hypothetical model tree TM (gray) and observed tree Ti
(white). (b) Graph of possible reference relationships for explaining Ti (white nodes) by reference to TM (gray nodes). (c) A possible resolution of the
graph of (b). (d) Graph of possible reference relationships for explaining TM by itself.



BM , representing the fact that the presumed cost of the
model tree has already been computed. Fig. 2 illustrates the
construction for a hypothetical model tree TM and observed
tree Ti (Fig. 2a), showing the graph of possible reference
relationships (Fig. 2b), a possible solution corresponding to
a specific explanation of Ti in terms of TM (Fig. 2c), and the
graph of possible reference relationships for TM by itself
(Fig. 2d).

Given the graph construction, the minimum encoding
length for both constructions is found by solving for the
DMST with the algorithm of Chu and Liu [23] and
summing the weights of the edges. This cost is computed
for a candidate model tree TM and for each observed tree Ti,
for i ¼ 1; . . . ; n, to give the total cost ½LðTM; T1; . . . ; TnÞ�.

Tree search. While the preceding algorithm gives us a
way to evaluate LðTMÞ, LðTijTMÞ, and LðTM; T1; . . . ; TnÞ for
any possible consensus tree TM , we still require a means of
finding a high-quality (low-scoring) tree. The space of
possible trees is too large to permit exhaustive search and
we are unaware of an efficient algorithm for finding a
global optimum of our objective function. We therefore
employ a heuristic search strategy based on simulated
annealing. The algorithm relies on the intuition that the
bipartitions to be found in any high-quality consensus tree
are likely to be the same as or similar to bipartitions
frequently observed in the input trees. The algorithm runs
for a total of t iterations and at each iteration i will either
insert a new bipartition chosen uniformly at random from
the observed (nonunique) bipartitions with probability 1�
i=t or delete an existing bipartition chosen uniformly at
random from the current TM with probability i=t to create a
candidate model tree T 0M . This strategy is intended to
encourage the addition of new bipartitions at the beginning
of the search and the cleanup of redundant bipartitions at
the end of the search cycle.

If the algorithm chooses to insert a new bipartition b, it
then performs an additional expectation-maximization-like
(EM) local optimization to improve the fit, as many of the
bipartitions in the observed trees will be similar but not
exact matches to the global splits inferred for the popula-
tions. The EM-like local optimization repeatedly identifies
the set Bo of observed bipartitions explained by b and then
locally improves b by iteratively flipping any bits that lower
the cost of explaining Bo, continuing until it converges on
some locally optimal b. This final bipartition is then added
to TM to yield the new candidate tree T 0M . Once a new
candidate tree T 0M has been established, the algorithm tests
the difference in cost between TM and T 0M . If T 0M has
reduced cost then the move is accepted and T 0M becomes the
new starting tree. Otherwise, the method accepts T 0M with
probability p ¼ exp

LðTM;T1;...;TnÞ�LðT 0M;T1;...;TnÞ
T where T ¼ 400=t

is the simulated annealing temperature parameter.
Tree reconstruction. A final step in the algorithm is the

reconstruction of the consensus tree from its bipartitions.
Given the bipartitions found by the tree search heuristics, we
first sort the model bipartitions b1 � b2 � � � � bk in decreasing
order of numbers of splits they explain (i.e., the number of
out-edges from their corresponding nodes in the DMST). We
then initialize a tree T0 with a single node containing all
haplotype sequences in S and introduce the successive
bipartitions in sorted order into this tree. The intuition is that

bipartitions that explain a greater fraction of the observed
variation should generally correspond to earlier divergence
events. For each bi ¼ 1 to k, we subdivide any node vj that
contains elements with label 0 in bi (b0

i ) and elements labeled
as 1 in bi (b1

i ) into nodes vj1 and vj2 corresponding to the
subpopulations of vj in b0

i or b1
i . We also introduce a Steiner

node sj for each node vj to represent the ancestral
population from which vj1 and vj2 diverged. We then
replace the prior tree Ti�1 with Ti ¼ ðVi; EiÞ where Vi ¼
Vi�1 � fvjg þ fvj1; vj2; sjg and

Ei ¼ Ei�1 � fe ¼ ðt; vjÞje 2 Ei�1; t 2 parentðvjÞg
þ fe ¼ ðt; sjÞjt 2 parentðvjÞg þ fðsj; vj1Þ; ðsj; vj2Þg:

After introducing all k bipartitions, Tk is then the final
consensus tree.

2.3 Validation Experiments

Simulated data set. We first evaluated our method on a
simulated data set consisting of three independent popula-
tions, each with 150 individuals (300 chromosomes). We
generated the genealogy trees for each population using
the coalescent simulator MS [24] on sequence of length 107

base pair long with a mutation rate of 10�9, a recombination
rate of 10�8, and an effective population size of 25,000. The
resulting simulated branch length between the root node of
each population and the leaves was 1,600 generations. In
order to simulate the effect of three populations diverging
from a common ancestor, we subsequently merged the
genealogy trees from each population. We first defined a
common ancestor for the root nodes of populations one and
two as shown in Fig. 3 with branch length 1,000 generations
between their most recent common ancestor (MRCA) and
the root nodes of the two populations. We then defined a
common ancestor between the MRCA of populations one
and two and the root node of population three, with branch
length 1,000 generations to the MRCA of populations one
and two, and 2,000 generations to the root node of
population three. The sum of branch lengths between any
leaf and the MRCA of all of the populations was thus
estimated at 3,600 generations. Given this defined tree
structure, we generated sequence for each individual using
Seq-Gen [25]. We used a mutation rate of 10�9 per site to
generate a 10 million base pair sequence with 83,948 SNP
sites in order to accommodate the branch lengths simulated
from MS. Using the 83,948 SNP sites, we constructed
83,944 trees from five consecutive SNPs spanning across
the sequences. Given the data set, we ran the algorithms on
10,000 randomly selected trees or their corresponding
33,295 unique SNPs.

Real data. We further evaluated our method by applying
it to samples from two real SNP variation data sets. We first
used the Phase II HapMap data set (phased, release 22) [4]
which consists of over 3.1 million SNP sites genotyped for
270 individuals from four populations: 90 Utah residents
with ancestry from Northern and Western Europe (CEU);
90 individuals with African ancestry from Ibadan, Nigeria
(YRI); 45 Han Chinese from Beijing, China (CHB); and
45 Japanese from Tokyo, Japan (JPT). For the CEU and YRI
groups, which consist of trio data (parents and a child), we
used only the 60 unrelated parents with haplotypes as
inferred by the HapMap consortium. For each run, we
randomly sampled 10,000 trees each constructed from five
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consecutive SNPs uniformly at random from 45,092 trees
generated from chromosome 21, which represented an
average of 28,080 unique SNPs. For the purpose of
comparison, we used 10,000 trees or the corresponding
28,080 SNPs as inputs to our method and the comparative
algorithms. We next used phased data (version 1.3) from the
Human Genome Diversity Project (HGDP) [5], which
genotyped 525,910 SNP sites in 597 individuals from
29 populations categorized into seven regions of origin:
Central South Asia (50 individuals), Africa (159 indivi-
duals), Oceania (33 individuals), Middle East (146 indivi-
duals), America (31 individuals), East Asia (90 individuals),
and Europe (88 individuals). For each test with the HGDP
data, we sampled 10,000 trees from a set of 39,654 trees
uniformly at random from chromosome 1. The 10,000 trees
on average consisted of 30,419 unique SNPs.

Benchmarks. We are not aware of any comparable
method to ours and therefore cannot directly benchmark it
against any competitor. We therefore assessed it by two
criteria. We first assessed the quality of the inferred
population histories from the simulated data using the
gold standard tree and assessed the quality of the inferred

population histories from the real data by reference to a
expert-curated model of human evolution derived from a
review by Shriver and Kittles [26], which we treat as a “gold
standard.” Shriver and Kittles used a defined set of known
human population groups rather than the coarser grouping
inferred by our method. To allow comparison with either of
our inferred trees, we therefore merged any subgroups that
were joined in our tree but distinct in the Shriver tree and
deleted any subgroups corresponding to populations not
represented in the samples from which our trees were
inferred. (For example, for the HapMap Phase II data set,
we removed Melanesian, Polynesian, Middle Eastern,
American, and Central South Asian subgroups from the
tree, as individuals from those populations were not typed
in the Phase II HapMap). We also ignored inferred
admixture events in the Shriver and Kittles tree. We then
manually compared our tree to the resulting condensed
version of the Shriver and Kittles “gold standard” tree.

As a secondary validation, we also assessed the quality of
our inferred population subgroups relative to those inferred
by two of the leading substructure algorithms: STRUCTURE
(version 2.2) [9] and Spectrum [11]. We selected these
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Fig. 3. Inferred consensus trees. Node labels show numbers of haplotypes belonging to each known population. Edges in inferred trees are labeled
by the number of splits assigned to each and, in parentheses, the fraction of all splits assigned to each. For the simulated gold standard tree, edges
are labeled by a number of generations and, in parentheses, the expected number of substitutions per site occuring on the corresponding edge in
generating the data. (a) Consensus tree obtained from simulated data. (b) Gold standard for the simulated data. (c) Consensus tree obtained from
the HapMap data set. (d) Trimmed and condensed tree from [26]. (e) Consensus tree obtained from the HGDP data set. (f) Trimmed and condensed
tree from [26].



programs because they are well accepted as leading
methods for the substructure problem and are able to
handle comparable sizes of data set to our method. We chose
to omit EIGENSOFT, despite its wide usage in this field, as
the program is mainly used to visualize substructure and
does not lead to an unambiguous definition of substructure
to which we can compare. STRUCTURE requires that
the user specify a desired number of populations, for which
we supplied the true number for each data set (three for
simulated data, four for HapMap, and seven for HGDP). For
each run of STRUCTURE, we performed 10,000 iterations of
burn-in and 10,000 iterations of the STRUCTURE MCMC
sampling. We did not make use of STRUCTURE’s capacity
to infer admixture or to use additional data on linkage
disequilibrium between sites. Spectrum did not require any
user inputs other than the data set itself.

We first visualize the cluster assignments by plotting
each individual in each population as a vertical line
showing the population(s) to which he or she is assigned.
Because the clusters assigned by the algorithms have
arbitrarily labels, we assign colors to these labels so as to
best capture their correspondence to the true population
groups. To do so, we first arbitrarily assign a color to each
population group in the gold standard. For our consensus
tree method, all sequences found in a common node of the
consensus tree are considered a single cluster; we assign to
each such cluster the color of the gold standard group that
has maximum overlap with that cluster. For STRUCTURE,
which assigns each individual a probability of being in each
cluster, we color each cluster according to the gold standard
population that has maximum overlap with the most
probable cluster assignments for all individuals. For
Spectrum, which assigns each individual a fractional
ancestry from a set of inferred founder haplotypes, we
choose an arbitrary color for each founder haplotype and
color each individual to reflect that individual’s inferred
fractional ancestries. If we were to use the same assignment
protocol for Spectrum as for STRUCTURE, all individuals
would be assigned to the same subgroup.

We quantify clustering quality using variation of
information [27], a measure commonly used to assess
accuracy of a clustering method relative to a predefined
“ground truth.” Variation of information (VI) is defined as

VIðX;YÞ ¼ 2HðX;Y Þ �HðXÞ �HðY Þ;

where HðX;Y Þ is the joint entropy of the two labels
(inferred clustering and ground truth), and HðXÞ and
HðY Þ are their individual entropies. Given that most
algorithms return the fraction or probability that each
individual belongs to population k, for the purpose of
evaluation, we assigned each individual to the population
group of the highest likelihood as determined by STRUC-
TURE. While Spectrum also provided a fraction or prob-
ability profile for each individual, the number specifies
probability or fraction a person originated from an ancestral
haplotype rather than the ancestral population. As a result,
arbitrarily assigning each individual by the likelihood
fraction will lead to poor clustering results. Consequently,
we chose not to evaluate Spectrum by this criterion.

For the three comparative algorithms (STRUCTURE,
Spectrum, and Consensus Tree), we also assessed robust-
ness of the method to repeated subsamples. For each pair of
individuals ði; jÞ across five independent samples, we

computed the number of samples aij in which those
individuals were grouped in the same cluster and the
number bij in which they were grouped in different clusters.
Each method was assigned an overall inconsistency score:

Inconsistency ¼
X
i;j

min 1� 2bij
bðaijþbijÞc ; 1�

2aij
bðaijþbijÞc

n o
n
2

� � :

The measure will be zero if clusters are perfectly
consistent from run-to-run and approach one for comple-
tely inconsistent clustering. We defined the ground truth for
HapMap as the four population groups. For the HGDP
data, we treated the ground truth as the seven regions of
origin rather than the 29 populations, because many
population groups are genetically similar and cannot be
distinguished with limited numbers of SNPs.

Sensitivity test. To characterize the relationship between
data quantity and accuracy of the inference, we further
performed the analysis for a variable number of tree sizes.
We ran our method, STRUCTURE, and Spectrum for four
different data sizes—10,000, 1,000, 100, and 10 trees (or the
corresponding SNPs)—and computed the variation of
information and the inconsistency score for each.

3 RESULTS

Fig. 3 shows the trees inferred by our method on the
simulated data and the two real data sets alongside their
corresponding true simulated tree or the condensed Shriver
and Kittles “gold standard” trees. Fig. 3a shows the inferred
tree produced by our model on the simulated data set.
Based on the numbers of observed bipartitions explained by
each model bipartition, the tree reconstruction correctly
infers the key divergence events across the three popula-
tions when compared to Fig. 3b. The method also picks up
some additional splits below the division into three
subgroups that represent substructure within the defined
subgroups. The fractions of mutations assigned to each
edge roughly correspond to the number of generations
simulated on that edge, although with the edge from the
MRCA of all populations to the MRCA of populations one
and two assigned slightly fewer mutations and the two
edges below that somewhat more mutations than would be
proportional to their divergence times.

Fig. 3c shows the inferred tree from the HapMap data
set. The tree reconstruction infers there to be an initial
separation of the YRI (African) subpopulation from the
others (CEUþ JPTþ CHB) followed by a subsequent
separation of CEU (European) from JPTþ CHB (East
Asian). When collapsed to the same three populations
(African, European, and East Asian), the gold standard tree
(Fig. 3d) shows an identical structure. Furthermore, these
results are consistent with many independent lines of
evidence for the out-of-Africa hypothesis of human origins
[26], [28], [29]. The edge weights indicate that a comparable
number of generations elapsed between the divergence of
African and non-African subgroups and the divergence of
Asian from European subgroups, consistent with a single
migration of both groups out of Africa long before the two
separated from one another.

For the HGDP data set, the trees differ slightly from run
to run, so we arbitrarily provide our first run, Fig. 3e, as a
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representative. The tree infers the most ancient divergence
to be that between Africans and the rest of the population
groups, followed by a separation of Oceanian from other
non-Africans, a separation of AsianþAmerican from
EuropeanþMiddle Eastern (and a subset of Central South
Asian), and then a more recent split of American from
Asian. Finally, a small cluster of just two Middle Eastern
individuals is inferred to have separated recently from the
rest of the Middle Eastern, European, and subset of Central
South Asian. The tree is nearly identical to that derived
from Shriver and Kittles for the same population groups
(Fig. 3f). The only notable distinctions are that gold
standard tree has no equivalent to our purely Middle
Eastern node; that the gold standard does not distinguish
between the divergence times of Oceanian and other non-
African populations from the African, while ours predicts a
divergence of Oceanian and European/Asian well after the
African/non-African split; and that the gold standard
groups Central South Asian with East Asians while ours
splits Central South Asian groups between European and
East Asian subgroups (an interpretation supported by more
recent analyses [30]). Our results are also consistent with the
simpler picture provided by the HapMap data as well as
with a general consensus in the field derived from many
independent phylogenetic analyses [28], [31]. The relative
edge weights provide a qualitatively similar picture to that
of the HapMap data regarding relative divergence times of
their common subpopulations, although the HGDP data
suggest a proportionally longer gap between the divergence
of African from non-African subgroups and further diver-
gence between the non-African subgroups.

Fig. 4 visualizes the corresponding cluster assignments,
as described in Methods, in order to provide a secondary
assessment of our method’s utility for the simpler
subproblem of subpopulation inference. Note that STRUC-
TURE and our consensus tree method assign sequences to
clusters while Spectrum assigns each sequence a distribu-
tion of ancestral haplotypes, accounting for the very
different appearance of the Spectrum output.

The three methods produced essentially equivalent
output for the simulated and HapMap data. For the
simulated data (Fig. 4a), all of the methods were able to
separate the three population groups. For HapMap (Fig. 4b),

all three methods consistently identified YRI and CEU as
distinct subpopulations but failed to separate CHB and JPT.

Results were more ambiguous for HGDP (Fig. 4c). The
consensus tree method reliably finds five of the seven
populations, usually conflating Middle Eastern and Eur-
opean and failing to recognize Central South Asians,
consistent with a similar outcome from He et al. [32].
STRUCTURE showed generally greater sensitivity but
slightly worse consistency than our method, usually at
least approximately finding six of the annotated seven
population groups and having difficulty only in identifying
Central South Asians as a distinct group. Spectrum showed
a pattern similar to STRUCTURE but the individual
ancestral profile seemed to be similar in several population
subgroups. For example, the African subgroup seemed to
have a similar ancestral profile to the European subgroup.

We further quantified the quality of the cluster inference
from our method and STRUCTURE by converting the result
to the most likely cluster assignment and computing VI
scores and inconsistency scores. Fig. 5 shows the VI and
inconsistency scores of the three algorithms using inputs
with different number of trees and SNPs. When examining
the variation of information across different data sets, we
can see increased accuracy for both STRUCTURE and
consensus tree as we increase the number of trees or SNPs.
When we compare the inconsistency scores, neither of the
algorithms showed a clear trend with increasing numbers of
trees or SNPs. When the number of trees or SNPs is large,
however, our method typically becomes more consistent
than STRUCTURE.

We also measured the runtimes of the algorithms using
10, 100, 1,000, and 10,000 trees or the corresponding SNPs
(Fig. 6). In all cases, our method consistently ran faster than
both STRUCTURE and Spectrum, which both use similar
Gibbs sampling approaches.

Fig. 7 shows the consensus trees constructed using
different sizes of data set subsampled from the simulated
data. From the figure, we can see that the trees never infer
substructure that cuts across the true groups, but that as the
data set size increases, the method yields increasingly
refined tree structures. This observation is what we would
expect for the chosen MDL approach. The method identifies
the separation of populations one and two with 100 trees
but not with 10, and can discriminate substructure within
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Fig. 4. Inferred population structures. Each colored vertical line shows the assigned population(s) for a single sequence for one method. From top to

bottom: Spectrum (with colors representing fractional assignments to distinct ancestral haplotypes), STRUCTURE (with colors representing

probabilities of assignment to distinct clusters), consensus-tree (with colors showing assignments to single clusters), and ground truth (with colors

representing assignments to true clusters). (a) Inferred population structure from a single trial of 10,000 trees from simulated data. (b) Inferred

population structures from a single trial of 10,000 trees from the HapMap Phase II data set. (c) Inferred population structures from one trial of

10,000 trees from the HGDP data set.



the individual populations when provided 10,000 trees but
not 1,000 or fewer. The number of mutations assigned to
each edge increases as we increased the number of observed
trees, but the fraction of all mutations assigned to each edge
remains nearly constant with increasing data set size.

4 DISCUSSION

While population substructure inference is only one facet of
the problem solved by our method, it nonetheless provides
for a convenient partial validation. Comparison with
leading population substructure algorithms shows that
our method provides very good performance on the

substructure problem. Our approach shows equal or

slightly superior VI scores relative to STRUCTURE on both

simulated and HapMap data while showing slightly worse

VI scores in HGDP. Our method is also quite competitive on

runtime with these alternatives, although other substruc-

ture methods that were not amenable to a direct compar-

ison, such as mStruct [12], can yield substantially superior

runtimes for closely related analyses. Our method also

shows an ability to automatically adjust to varying amounts

of data while avoiding overfitting, as demonstrated by the

consistency scores, as would be expected for the chosen

MDL approach.
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Fig. 5. Variation of information and inconsistency scores. Lower VI reflects higher accuracy in identifying known population structure. Lower
inconsistency reflects greater reproducibility between independent samples.

(a) (b) (c)

Fig. 6. Average runtime of the algorithms on different data sets and different data set sizes.

Fig. 7. Consensus trees produced using varying numbers of input trees. Node labels show numbers of haplotypes belonging to each simulated
population. Edges are labeled by the number of splits assigned to each and, in parentheses, the fraction of all splits assigned to each. From left to
right: Consensus Tree from (a) 10, (b) 100, (c) 1,000, and (d) 10,000 observed trees.



One key advantage of our approach is that by treating
substructure inference as a phylogenetic rather than a
clustering problem, it can provide additional information
about relationships between subgroups. Such information
may be helpful in better completing our picture of how
modern human populations arose and may provide
information of use in correcting for population stratification
during association testing. Because we are aware of no
comparable methods for this problem, we must resort to
validation on simulated data and by comparison to our best
current models of true human population histories to
evaluate its performance on the full population history
inference problem. Our method correctly infers tree struc-
tures from the simulated data using as few as 100 trees.
Furthermore, application to HapMap and HGDP data also
shows that the method produces a portrait of human
evolution consistent with our best current understanding.
The basic qualitative model of human population history
that emerges is further consistent between the two inde-
pendent data sets, despite different individuals, populations
represented, and markers selected.

Our model also provides information about how many
mutations one can attribute to each edge of a given tree.
These edge lengths can be interpreted to approximately
correspond to divergence times along different edges of the
trees. In particular, provided one assumes that mutations
accumulate at a constant rate across human lineages then
one would expect that mutations would accumulate in any
subpopulation at a rate proportional to the size of that
subpopulation and to become fixed with a probability
inversely proportional to the size of that subpopulation. To a
first approximation, then, edge weight normalized by the
total number of mutations used in the model should be
approximately proportional to the time elapsed along a
given edge independent of the size of the population
represented or the number of input trees. The quantitative
results do approximately fit this expectation for the
simulated data. There is, however, some apparent bias
toward lengthening the edges from the MRCA of subpopu-
lations one and two to the MRCAs of the two individual
subpopulations and shorting the edge from their MRCA to
that of all three subpopulations. This observation may reflect
imprecision in the rough approximation that edge length
should be proportional to elapsed time. Alternatively, it may
derive from misattribution of some SNPs formed within the
subpopulations to the edges leading to those subpopula-
tions. While the method can provide estimates of relative
times elapsed along edges, it does not have sufficient
information to convert these numbers of mutations into
absolute elapsed time. In principle, one could make
inferences of absolute elapsed time along tree edges given
more detailed population genetics models and a complete,
unbiased set of variant markers from which to construct
phylogenies. Similarly, having some absolute time assigned
to even a single edge would allow one to estimate absolute
times along all other edges in a tree.

Given that edge weights can be expected to be approxi-
mately proportional to elapsed time, we can use those
derived on the real data to gain some additional insight into
how the inferred human subgroups may be related. The
two data sets yield qualitatively similar models supporting
a single emergence of an Asian/European ancestral group
from Africa followed by divergence of that ancestral
subgroup into Asian and European subgroups. There are,

however, some notable quantitative differences between
relative divergence times of various subgroups between the
two data sets. In particular, the HGDP data suggest a
proportionally longer gap between separation of African
from non-African and separation of Asian from European.
For example, if we assume that the African/non-African
divergence occurred 60 thousand years ago (60 kya),
around the middle of the range of recent estimates [29],
then the HapMap data would place the Asian/European
divergence at 32.7 kya while the HGDP would lead to an
estimate of 19.5 kya. This observation could reflect an
inherent bias in the edge length estimates, as noted for the
simulated data, or biases intrinsic to the data sets. Several
previous studies estimating divergence times have found
that inferences can be sensitive to the choice of population
groups, the specific genetic regions examined, or the
particular individuals in those populations [33], [34], [35].

While the results show that our methods are capable of
making robust but sensitive inferences of population
structure as well as tree structure, our method does
nonetheless have some significant limitations. One such
limitation is runtime; while our method is superior in this
regard to STRUCTURE and Spectrum, its runtime is still
considerable and far worse than other algorithms such as
mStruct and EIGENSOFT. Although this compute time is
still a trivial cost compared to the time required to collect
and genotype the data, it may nonetheless be an incon-
venience to users. Furthermore, it prevents us from
processing the full HapMap or HGDP data sets in a single
run, as opposed to the subsamples done in the present work,
likely preventing discovery of finer resolutions of popula-
tion substructure. This high runtime is largely due to the
many calls our method must make to the DMST algorithm
to repeatedly evaluate the MDL objective function and may
be addressed in future work by more sophisticated
optimization methods to reduce the number of function
evaluations or by introducing a more highly optimized
subroutine for evaluating MDL costs. In addition, our
computations should be easily amenable to parallelization.

Another limitation, noted above, is that our current
version of the consensus tree method does not handle
admixture in population groups as do competing methods.
We would expect admixture to appear during inference of
bipartitions as the discovery of sets of bipartitions that
cannot be reconciled with a perfect phylogeny. In principle,
then, our core MDL algorithm should function correctly on
admixed data but our conversion of the bipartitions into a
tree would need to be replaced with a method for inferring
a phylogenetic network rather than a tree, similar to
methods for inferring ancestral recombination graphs from
haplotype data [36]. New methods will likewise be required
to perform admixture mapping of individual admixed
genomes to label them by population group. These
additions are important goals for future work and will
help to determine whether this novel approach, whatever
its initial promise, proves a competitive method in practice
for detailed substructure analysis.

5 CONCLUSION

We have presented a novel method for simultaneously
inferring population ancestries and identifying population
subgroups. The method builds on the general concept of a
“consensus tree” summarizing the output of many inde-
pendent sources of information, using a novel MDL
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realization of the consensus tree concept to allow it to make
robust inferences across large numbers of measurements,
each individually minimally informative. It incidentally
provides a de novo inference of population subgroups
comparable in quality to that provided by leading methods.
Our method also provides edge length estimates that can
roughly be interpreted as relative times between divergence
events, although there appear to be some biases in these
estimates. It may be possible to translate these relative times
into estimates of absolute elapsed times given more detailed
population genetic models or independent sources of data
about absolute times along one or more edges of the trees.
The MDL approach also allows our method to automati-
cally adapt to larger data sets, producing more detailed
inferences as the data to support them becomes available. In
future work, we hope to better test these assumptions, in
part by developing more accurate models for estimating the
branch lengths, and to extend the method to inferences of
ancestry in the presence of admixture.
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