IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007 561

Algorithms for Efficient Near-Perfect
Phylogenetic Tree Reconstruction
In Theory and Practice

Srinath Sridhar, Kedar Dhamdhere, Guy E. Blelloch, Eran Halperin, R. Ravi, and Russell Schwartz

Abstract—We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as
BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for
binary character states that is computationally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes
the perfect phylogeny assumption by allowing at most a constant number of additional mutations. We develop two algorithms for
constructing optimal near-perfect phylogenies and provide empirical evidence of their performance. The first simple algorithm is fixed-
parameter tractable when the number of additional mutations and the number of characters that share four gametes with some other
character are constants. The second, more involved, algorithm for the problem is fixed-parameter tractable when only the number of
additional mutations is fixed. We have implemented both algorithms and have shown them to be extremely efficient in practice on
biologically significant data sets. This work proves that the BNPP problem is fixed-parameter tractable and provides the first practical
phylogenetic tree reconstruction algorithms that find guaranteed optimal solutions while being easily implemented and computationally
feasible for data sets of biologically meaningful size and complexity.

Index Terms—Computations on discrete structures, trees, biology and genetics.

1 INTRODUCTION

THE reconstruction of evolutionary trees is a classical
computational biology problem [15], [24]. In the max-
imum parsimony (MP) model of this problem, one seeks the
smallest tree to explain a set of observed organisms.
Parsimony is a particularly appropriate metric for trees
representing short time scales, which makes it a good choice
for inferring evolutionary relationships among individuals
within a single species or a few closely related species. The
intraspecific phylogeny problem has become especially
important in studies of human genetics now that large-scale
genotyping and the availability of complete human genome
sequences have made it possible to identify millions of single
nucleotide polymorphisms (SNPs) [26], sites at which a single
DNA base takes on two common variants.

Minimizing the length of a phylogeny is the problem of
finding the most parsimonious tree, a well-known NP-
complete problem [12]. Researchers have thus focused on

o S. Sridhar and G.E. Blelloch are with the Computer Science Department,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213.
E-mail: {srinath, blelloch}@cs.cmu.edu.

o K. Dhamdhere is with Google Inc., Mountain View, CA 94043.

E-mail: kedar.dhamdhere@gmail.com.

e E. Halperin is with the International Computer Science Institute,
University of California, Berkeley, Berkeley, CA 94704.

E-mail: heran@icsi.berkeley.edu.

e R. Ravi is with the Tepper School of Business, Carnegie Mellon University,
Pittsburgh, PA 15213. E-mail: ravi@cmu.edu.

e R. Schwartz is with the Department of Biological Sciences, Carnegie
Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213.

E-mail: russells@andrew.cmu.edu.

Manuscript received 18 July 2006; accepted 17 Jan. 2007; published online
6 Mar. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0145-0706.
Digital Object Identifier no. 10.1109/TCBB.2007.1070.

1545-5963/07/$25.00 © 2007 IEEE

either sophisticated heuristics or solving optimally for
special cases (for example, fixed-parameter variants [1],
[8], [20]). Previous attempts at such solutions for the general
parsimony problem have only produced theoretical results,
yielding algorithms too complicated for practical imple-
mentation. A large number of related works have been
published, but it is impossible to mention all of them here.
In this work, we focus on the case when the set of
character states is binary. In this setting, the input is often
represented as an n x m matrix I. The n rows of the matrix
(taxa) can be viewed as points on an m-cube. Therefore, the
problem is equivalent to finding the Steiner minimum tree
in a hypercube. In the binary-state case, a phylogeny is
called perfect if its length equals m. Gusfield showed that
such phylogenies can be reconstructed in linear time [14].
If there exists no perfect phylogeny for input I, then one
option is to slightly modify I so that a perfect phylogeny
can be constructed for the resulting input. Upper bounds
and negative results have been established for such
problems. For instance, Day and Sankoff [7] showed that
finding the maximum subset of characters containing a
perfect phylogeny is NP-complete, whereas Damaschke [8]
showed fixed-parameter tractability for the same problem.
The problem of reconstructing the most parsimonious tree
without modifying the input I seems significantly harder.
Fernandez-Baca and Lagergren recently considered the
problem of reconstructing optimal near-perfect phylogenies
[11], which assume that the size of the optimal phylogeny is at
most ¢ larger than that of a perfect phylogeny for the same
input size. They developed an algorithm to find the most
parsimonious tree in time nm®@20s") where s is the
number of states per character, n is the number of taxa, and
m is the number of characters. This bound may be impractical

Published by the IEEE CS, Cl, and EMB Societies & the ACM



562 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007

for sizes of m to be expected from SNP data, even for
moderate g. Given the importance of SNP data, it would
therefore be valuable to develop methods able to handle large
m for the special case of s = 2, a problem we call Binary Near-
Perfect Phylogenetic tree reconstruction (BNPP).

1.1 Our Work

Algorithm 1. We first present theoretical and practical results
on the optimal solution of the BNPP problem. We completely
describe and analyze an intuitive algorithm for the BNPP
problem that has a runtime of O((72x)nm + nm?), where &
is the number of characters that violate the four-gamete
condition, a test of perfectness of a data set explained
below. Since x < m, this result significantly improves the
prior runtime. Furthermore, the complexity of the previous
work would make its practical implementation daunting; to
our knowledge, no implementation of it has ever been
attempted. Our results thus describe the first practical
phylogenetic tree reconstruction algorithm that finds
guaranteed optimal solutions while being computationally
feasible for data sets of biologically relevant complexity. A
preliminary paper on this algorithm appeared in [23].

Algorithm 2. We then present a more involved algorithm
that runs in time O(217 + 8/nm?). Fernandez-Baca and
Lagergren [11] in concluding remarks state that the most
important open problem in the area is to develop a
parameterized algorithm or prove W([t] hardness for the
near-perfect phylogeny problem. We make progress on this
open problem by showing for the first time that BNPP is
fixed-parameter tractable (FPT). To achieve this, we use a
divide-and-conquer algorithm. Each divide step involves
performing a “guess” (or enumeration) with cost exponen-
tial in ¢. Finding the Steiner minimum tree on a g¢-cube
dominates the runtime when the algorithm bottoms out.
The present work substantially improves on the time
bounds derived for a preliminary version of this algorithm,
which was first presented by Blelloch et al. in [2].

We further implement variants of both algorithms and
demonstrate them on a selection of real mitochondrial,
Y-chromosome, and bacterial data sets. The results demon-
strate that both algorithms substantially outperform their
worst-case time bounds, yielding optimal trees with high
efficiency on real data sets typical of those for which such
algorithms would be used in practice.

2 PRELIMINARIES

In defining formal models for parsimony-based phylogeny
construction, we borrow definitions and notations from a
couple of previous works [11], [24]. The input to a
phylogeny problem is an n x m binary matrix I, where
rows R(I) represent input taxa and are binary strings. The
column numbers C = {1,---,m} are referred to as char-
acters. In a phylogenetic tree or phylogeny, each vertex v
corresponds to a taxon (not necessarily in the input) and has
an associated label [(v) € {0,1}™.

The following are equivalent definitions of a phylogeny,
both of which have been used in prior literature:

Definition 1. A phylogeny T for matrix I is:

1. A tree T(V, E) with the following properties: R(I) C
(V(T)) and, for all (u,v) € E(T), H(l(u),l(v)) =1,
where H is the Homming distance.

2. A tree T(V, E) with the following properties: R(I) C
(V(T)) and 1({ve V(T)|degree(v) < 2}) C R(I).
That is, every input taxon appears in T and every
leaf or degree-2 vertex is an input taxon.

The following two definitions provide some useful
terminology when discussing either definition of a
phylogeny:

Definition 2. A vertex v of phylogeny T is terminal if I(v) €

R(I) and Steiner otherwise.

Definition 3. For a phylogeny T,

length(T) = d(l(u), l(v)),
(uw)eE(T)

where d is the Hamming distance.

A phylogeny is called an optimum phylogeny if its
length is minimized. We will assume that both states, 0 and
1, are present in all characters. Therefore, the length of an
optimum phylogeny is at least m. This leads to the
following two definitions:

Definition 4. For a phylogeny T on input I,
penalty(7T) = length(7T) — m;penalty(l) = penalty(T*"),

where TP is any optimum phylogeny on I.

Definition 5. A phylogeny T is called q-near-perfect if
penalty(T) = ¢ and perfect if penalty(T") = 0.

Note that, in an optimum phylogeny, no two vertices
share the same label. Therefore, we can equivalently define
an edge of a phylogeny as (¢, t2), where ¢; € {0,1}". Since
we will always be dealing with optimum phylogenies, we
will drop the label function i(v) and use v to refer to both a
vertex and the taxon it represents in a phylogeny.

With the above definitions, we are now prepared to
define our central computational problem.

2.1 The BNPP Problem

Given an integer ¢ and an n x m binary input matrix I, if
penalty(l) < g, then return an optimum phylogeny T; else,
declare NIL. The problem is equivalent to finding the
minimum Steiner tree on an m-cube if the optimum tree is at
most g larger than the number of dimensions m or declaring
NIL otherwise. The problem is fundamental and therefore
expected to have diverse applications besides phylogenies.

Definition 6. We define the following notations:

o r[i] € {0,1}: The state in character i of taxon r.

o u(e): B(T) — 2¢: The set of all characters corre-
sponding to edge e = (u,v) with the property for any
i € p(e), uli] # v[i]. Note that, for the first definition
of a phylogeny, p(e) : E(T) — C.

e  Fora set of taxa M, we use T, to denote an optimum
phylogeny on M.



SRIDHAR ET AL.: ALGORITHMS FOR EFFICIENT NEAR-PERFECT PHYLOGENETIC TREE RECONSTRUCTION IN THEORY AND PRACTICE 563

0000

Fig. 1. (@) Phylogeny T and skeleton s(T',C"), C' = {3, 4}. Edges are labeled with characters that mutate 1 and supernodes with tags ¢. (b) Transform
to remove a degree-2 Steiner root from a supernode. Note that the size of the phylogeny is unchanged.

We say that an edge e mutates character ¢ if i € u(e). We
will use the following well-known definition and lemma on
phylogenies.

Definition 7. Given matrix I, the set of gametes G;; for

characters i and j is defined as G;; = {(r[i], r[j])|r € R({)}.

Two characters i and j share t gametes in I iff |G, ;| =t.

In other words, the set of gametes G, ; is a projection on the ¢
and j dimensions.

Lemma 2.1 [14]. An optimum phylogeny for input I is not
perfect iff there exist two characters, i and j, that share (all)
four gametes in I.

Definition 8 (Conflict Graph [17]). A conflict graph G for
matrix I with character set C' is defined as follows: Every
vertex v of G corresponds to unique character c¢(v) € C. An
edge (u,v) is added to G iff c(u), c(v) share all four gametes in
I. Such a pair of characters is defined to be in conflict.

Note that if the conflict graph G contains no edges, then a
perfect phylogeny can be constructed for I. Gusfield [14]
provided an efficient algorithm to reconstruct a perfect
phylogeny in such cases.

2.2 Simplifications

We assume that the all-zero taxon is present in the input. If
not, using our freedom of labeling, we convert the data into
an equivalent input containing the all-zero taxon (see the
work of Eskin et al. [9, Section 2.2] for details). We also
remove any character that contains only one state. Such
characters do not mutate in the whole phylogeny and are
therefore useless in any phylogeny reconstruction. The
BNPP problem asks for the reconstruction of an unrooted
tree. For the sake of analysis, we will, however, assume that
all of the phylogenies are rooted at the all-zero taxon.

3 SIMPLE ALGORITHM

This section describes a simple algorithm for the recon-
struction of a binary near-perfect phylogenetic tree.
Throughout this section, we will use the first definition of
a phylogeny (Definition 1).

We begin by performing the following preprocessing
step: For every pair of characters ¢, ¢, if |Gy | =2, we
(arbitrarily) remove character ¢’. After repeatedly perform-
ing the above step, we have the following lemma:

Lemma 3.1. For every pair of characters ¢, ¢, |G | > 3.

We will assume that the above lemma holds on the input
matrix for the rest of the paper. Note that such characters ¢,
¢” are identical (after possibly relabeling one character) and
are usually referred to as noninformative. It is not hard to
show that this preprocessing step does not change the
correctness or runtime of our algorithm.

The following additional definitions are required for the
description and analysis of the simple algorithm:

Definition 9. For any phylogeny T and set of characters C' C C:

e A supernode is a maximal connected subtree T of T
such that, for all edges e € T', pu(e) & C'.

e The skeleton of T, s(T,C"), is the tree that results
when all supernodes are contracted to a vertex. The
vertex set of s(T',C") is the set of supernodes. For all
edges e € s(T,C"), p(e) € C.

Definition 10. A tag t(u) € {0,1}" of supernode v in s(T,C")
has the property that t(u)[c] = v[c] for all ¢ € C', vertices
vew tulli] =0 forall i ¢ C'.

Throughout this paper, we will assume without loss of
generality that we are working with phylogenies and
skeletons that are rooted at the all-zero taxon and tag,
respectively. Furthermore, the skeletons used in this work
themselves form a perfect phylogeny in the sense that no
character mutates more than once in the skeleton. Note that,
in such skeletons, tag ¢(u)[i] =1 iff character i mutates
exactly once in the path from the root to u. Fig. 1a shows an
example of a skeleton of a phylogeny. We will use the term
subphylogeny to refer to a subtree of a phylogeny.

Throughout the analysis, we fix an optimal phylogeny 7™
and show that our algorithm finds it. We assume that both
T.,»+ and its skeleton are rooted at the all-zero label and tag,
respectively. The high-level idea of our algorithm is to first
guess the characters that mutate more than once in 7,,;. The
algorithm then finds a perfect phylogeny on the remaining
characters. Finally, it adds back the imperfect components
by solving a Steiner tree problem. The algorithm is divided
into two functions, buildNPP and linkTrees, whose
pseudocodes are provided in Figs. 2 and 3.

Function buildNPP starts by determining the set of
characters ¢(V,;s) that corresponds to the nonisolated



564 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007

function buildNPP ( binary matrix /, integer ¢ )
1) let G(V, E) be the conflict graph of I
2) let V,;s C V be the set of non-isolated vertices
3) for all M € 2¢(Vwis) | M| < g
a) construct rooted perfect phylogeny PP(Vpp, Epp) on
characters C'\ M
b) define A : R — Vpp s.t. A(r) = uiff foralli € C\M,
rlil = ()l
c) T} := linkTrees (PP)
d) if penalty(Ty) < ¢ then return T}

4) return NIL

Fig. 2. Pseudocode to find the skeleton.

vertices of the conflict graph in Step 2. From set ¢(V,,;,), the
algorithm then selects by brute force the set of characters M
that mutate more than once in 7T,,. Only characters
corresponding to nonisolated vertices can mutate more
than once in any optimal phylogeny (a simple proof follows
from Buneman graphs [24]). Since all characters of C'\ M
mutate exactly once, the algorithm constructs a perfect
phylogeny on this character set using Gusfield’s linear time
algorithm [14]. The perfect phylogeny is unique because of
Lemma 3.1. Note that PP is the skeleton s(Tp,, C\ M).
Since the tags of the skeleton are unique, the algorithm can
now determine the supernode where every taxon resides as
defined by function A in Step 3b. This rooted skeleton PP is
then passed into function link Trees to complete the
phylogeny.

Function 1inkTrees takes a rooted skeleton Sk (sub-
skeleton of PP) as argument and returns a tuple (r, ¢). The
goal of function 1inkTrees is to convert skeleton Sk into a
phylogeny for the taxa that reside in Sk by adding edges that
mutate ). Notice that, by using function A, we know the set of
taxa that reside in skeleton Sk. The phylogeny for Sk is built
bottom-up by first solving the phylogenies on the subskeleton
rooted at the children supernodes of Sk. Tuple (r, c¢) returned
by the function call to 1inkTrees(Sk) represents the cost c of
the optimal phylogeny when the label of the root vertex in the
root supernode of Skis r. Let S = root(Sk) represent the root
supernode of skeleton Sk. Ry is the set of input taxa that map
to supernode S under function . Let its children supernodes
be 51,52, .... Assume that recursive calls to 1inkTrees(sS;)
return (r;, ¢;). Notice that the parents of the set of roots r; all
reside in supernode S. The parents of r; are denoted by p; and
are identical to r; except in the character that mutates in the
edge connecting S; to S. Set 7 is the union of p; and Rg and
forms the set of vertices inferred to be in S. Set D is the set of
characters on which the labels of T differ, thatis, foralli € D,
Iri,re € 7, r1[i] # r2fi]. In Step 9, we guess the root rg of
supernode S. This guess is “correct” if it is identical to the
label of the root vertex of S in 7T,,. Notice that we are only
guessing | D| bits of rg. Corollary 3.3 of Lemma 3.2, along with
optimality, requires that the label of the root vertex of T,,, be
identical to 7 in all the characters C'\ D.

Lemma 3.2. There exists an optimal phylogeny T, that does not
contain any degree 2 Steiner roots in any supernode.

function linkTrees ( skeleton Sk(V;, E) )
1) let S :=root(Sk)
2) let Rg :={s € R|A(s) =S}
3) for all children S; of S
a) let Sk; be subtree of Sk rooted at .S;
b) (ri,c;) := linkTrees(Sk;)
4) let cost :=3;¢;
5) for all ¢, let I; := u(S, ¢;)
6) for all 4, define p; € {0,1}™ s.t. p;[l;] # m:[l;] and for all
J # b, pild] = rils]
7) let 7 := Rg U (U;{p;})
8) let D C C be the set of characters where taxa in 7 differ
9) guess root taxon of S, rg € {0,1}™ s.t. Vi € C'\ D,Vu €
7, rsli] = uli]

10) let cs be the size of the optimal Steiner tree of 7 U {rg}

11) return (rg, cost + cg)

Fig. 3. Pseudocode to construct and link imperfect phylogenies.

Proof. Fig. 1b shows how to transform a phylogeny that
violates the property into one that does not. Root 10 is a
degree 2 Steiner and is moved into a parent supernode as
01. Since 10 was a Steiner, the transformed tree contains
all input. O

Corollary 3.3. In Ty, the LCA of the set T is the root of
supernode S.

In Step 10, the algorithm finds the cost of the optimum
Steiner tree for the terminal set of taxa 7 U {rg}. We use the
Dreyfus-Wagner recursion [22] to compute this minimum
Steiner tree. The function now returns rg, along with the
cost of the phylogeny rooted in S, which is obtained by
adding the cost of the optimum Steiner tree in S to the cost
of the phylogenies rooted at ¢;. The following lemma
bounds the runtime of our algorithm and completes the
analysis:

Lemma 3.4. The algorithm described above runs in time
O((18k)*nm + nm?) and solves the BNPP problem with a
probability of at least 2724, The algorithm can be easily
derandomized to run in time O((72k)nm + nm?).

Proof. The probability of a correct guess at Step 9 of
function linkTrees is exactly 27PI. Notice that the
Steiner tree in supernode S has at least |D| edges. Since
penalty(Ty,) < g, we know that there are at most
2q edges that can be added in all of the recursive calls
to linkTrees. Therefore, the probability that all
guesses at Step 9 are correct is at least 2729, The time
to construct the optimum Steiner tree in Step 10 is
O(3M2IP1). Assuming that all guesses are correct, the
total time spent in Step 10 over all recursive calls is
0(3%27). Therefore, the overall runtime of the rando-
mized algorithm is O((18x)nm + nm?). To implement
the randomized algorithm, since we do not know if the
guesses are correct, we can simply run the algorithm
for the above time and, if we do not have a solution,
then we restart. Although presented as a randomized



SRIDHAR ET AL.: ALGORITHMS FOR EFFICIENT NEAR-PERFECT PHYLOGENETIC TREE RECONSTRUCTION IN THEORY AND PRACTICE 565

buildNPP (input matrix I)
1) let L:={I},E:=0
2) while |Uper N(M;)| >q
a) guess vertex v from UpmerN(M;), let
v e N(M;)
b) let MO := M;(c(v),0) and M1 := M;(c(v),1)
c) guess taxa r and p
d) add r to M1, p to MO and (r,p) to E
e) remove M; from L, add M0 and M1 to L
3) for each M; € L compute an optimum phylogeny
T;
4) return EU (UT;)

Fig. 4. Pseudocode to solve the BNPP problem. For all M; € L, N(M;) is
the set of nonisolated vertices in the conflict graph of M;. The guess at
Step 2a is correct iff there exists T}, , where c(v) mutates exactly once.
The guess at Step 2c is correct iff there exists T}, , where ¢(v) mutates

exactly once and edge (r,p) € Tj, with rc(v)] =1, plc(v)] =0.
Implementation details for Steps 2a, 2c, and 3 are provided in

Section 4.3.

algorithm for ease of exposition, it is not hard to see that the
algorithm can be derandomized by exploring all possible
roots at Step 9. The derandomized algorithm has a total
runtime of O((72x)'nm + nm?). O

4 FPT ALGORITHM

This section deals with the complete description and
analysis of our FPT algorithm for the BNPP problem.
Throughout this section, we will use the second definition
of a phylogeny (Definition 1). For ease of exposition, we
first describe a randomized algorithm for the BNPP
problem that runs in time O(187+ gnm?) and returns an
optimum phylogeny with a probability of at least 877. We
later show how to derandomize it. In Section 4.1, we first
provide the complete pseudocode and describe it. In
Section 4.2, we prove the correctness of the algorithm. In
Section 4.3, we upper bound the runtime for the rando-
mized and derandomized algorithms and the probability
that the randomized algorithm returns an optimum
phylogeny. The above work follows that presented in a
preliminary paper on the topic [2]. Finally, in Section 4.4, we
show how to tighten the above bounds on the derando-
mized algorithm to achieve our final result of O(217+
8Inm?) runtime.

4.1 Description

We begin with a high-level description of our randomized
algorithm. The algorithm iteratively finds a set of edges E
that decomposes an optimum phylogeny 7} into at most
g components. An optimum phylogeny for each component
is then constructed using a simple method and returned
along with edges E as an optimum phylogeny for I.

We can alternatively think of the algorithm as a recursive
divide-and-conquer procedure. Each recursive call to the
algorithm attempts to reconstruct an optimum phylogeny
for an input matrix M. The algorithm identifies a character ¢
such that there exists an optimum phylogeny 7%, in which ¢
mutates exactly once. Therefore, there is exactly one edge

Fig. 5. Example reconstruction.

illustrating the
phylogeny is T}; taxa r and p (both could be Steiner) are guessed

The underlying

to create E = {(10000,10100),(01000,01010)}; E induces three
components in T;. When all taxa in T} are considered, character 3
conflicts with 1, 2, and 5 and character 4 conflicts with 1 and 2;
two components are perfect (penalty 0) and one has a penalty of 2;
penalty(l) =g penalty(T}) = 7.

e € T}, for which ¢ € p(e). The algorithm then guesses the
vertices that are adjacent to e as 7, p. The matrix M can now
be partitioned into matrices M0 and M1 based on the state
at character c. Clearly, all of the taxa in A1 reside on one
side of e and all of the taxa in M0 reside on the other side.
The algorithm adds r to M1 and p to M0 and recursively
computes the optimum phylogeny for A0 and M1. An
optimum phylogeny for M can be reconstructed as the
union of any optimum phylogeny for M0 and M1, along
with the edge (r,p). We require at most ¢ recursive calls.
When the recursion bottoms out, we use a simple method to
solve for the optimum phylogeny.

We describe and analyze the iterative method that
flattens the above recursion to simplify the analysis. For
the sake of simplicity, we also define the following
notations:

e For the set of taxa M, M(i, s) refers to the subset of
taxa that contains state s at character i.

e For a phylogeny T and character ¢ that mutates
exactly once in T, T(i,s) refers to the maximal
subtree of T that contains state s on character i.

The pseudocode for the above described algorithm is

provided in Fig. 4. The algorithm performs “guesses” at
Steps 2a and 2c. If all of the guesses performed by the
algorithm are “correct,” then it returns an optimum
phylogeny. The guess at Step 2a is correct iff there exists
T}y, where c(v) mutates exactly once. The guess at Step 2c is
correct iff there exists T}, , where ¢(v) mutates exactly once
and edge (r,p) € Ty, with 7[c(v)] = 1,ple(v)] = 0. Imple-
mentation details for Steps 2a, 2c, and 3 are provided in
Section 4.3. An example illustrating the reconstruction is
provided in Fig. 5.

4.2 Correctness

We will now prove the correctness of the pseudocode under
the assumption that all of the guesses performed by our
algorithm are correct. Specifically, we will show that, if
penalty(]) < ¢, then function buildNPP returns an opti-
mum phylogeny. The following lemma proves the correct-
ness of our algorithm:



566 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007

Lemma 4.1. At any point in the execution of the algorithm, an
optimum phylogeny for I can be constructed as E'U (U;T;),
where T; is any optimum phylogeny for M; € L.

Proof. We prove the lemma using induction. The lemma is
clearly true at the beginning of the routine when L = {I},
E =10. As an inductive hypothesis, assume that the
above property is true right before the execution of
Step 2e. Consider any optimum phylogeny 77, where
c(v) mutates exactly once and on the edge (r,p).
Phylogeny T, can be decomposed into T7; (c(v),0)U
Ty (c(v), 1)U (r p) with length

I = length(T}; (c(v),0)) + length(T}, (c(v), 1)) + d(r, p).

Again, since c¢(v) mutates exactly once in T}, , all of the taxa
in M0 and M1 are also in T;CI( c(v),0) and Ty (c(v), 1),
respectively. Let 7" and 7" be arbztmry optlmum phylo-
genies for M0 and M1, respectively. Since p € M0 and
r € M1,weknow thatT" UT" U (r, p) isa phylogeny for M;
with cost length(71”) + length(T") + d(r,p) < l. By the
inductive hypothesis, we know that an optimum
phylogeny for I can be constructed using any optimum
phylogeny for M;. We have now shown that, using any
optimum phylogeny for A0 and M1 and adding edge
(r,p), we can construct an optimum phylogeny for M;.
Therefore, the proof follows by induction. ]

4.3 Initial Bounds

In this section, we bound the probability of correct guesses,
analyze the runtime, and show how to derandomize the
algorithm. We perform two guesses at Steps 2a and 2c.
Lemmas 4.2 and 4.6 bound the probability that all of the
guesses performed at these steps are correct throughout the
execution of the algorithm.

Lemma 4.2. The probability that all guesses performed at Step 2a
are correct is at least 479.

Proof. Implementation. The guess at Step 2a is implemented
by selecting v uniformly at random from U; N(M;).

To prove the lemma, we first show that the number of
iterations of the while loop (Step 2) is at most ¢. Consider
any one iteration of the while loop. Since v is a nonisolated
vertex of the conflict graph, c(v) shares all four gametes
with some other character ¢’ in some M. Therefore, in
every optimum phylogeny T}, that mutates c(v) exactly
once, there exists a path P startmg withedge e; and ending
with e3, both mutating ¢ and containing edge e, mutating
¢(v). Furthermore, the path P contains no other mutations
of ¢(v) or ¢. At the end of the current iteration, M; is
replaced by M0 and M1. Both subtrees of T7, contammg
MO and M1 contain (at least) one mutation of ¢ each.
Therefore, penalty(MO0) + penalty(M1) < penalty(M;).
Since penalty(I) < ¢, there can be at most ¢ iterations of
the while loop.

We now bound the probability. Intuitively, if
| U; N(M;)| is very large, then the probability of a correct
guess is large since at most ¢ out of | U; N(M;)| characters
can mutate multiple times in 7}, . On the other hand, if
| Ui N(M;)| = g, then we terminate the loop. Formally, at
each iteration, | U; N(M;)| reduces by at least 1 (guessed
vertex v is no longer in U; N (;)). Therefore, in the worst

case (to minimize the probability of correct guesses), we
can have g iterations of the loop, with ¢ + 1 nonisolated
vertices in the last iteration and 2q in the first iteration.
The probability in such a case that all guesses are correct
is at least

<2iq) g (2qq_—11> A (ﬁ) B (21«) > 97,

q

4.3.1 Application of Buneman Graphs

We now show that r, p can be found efficiently. To prove
this, we need some tools from the theory of Buneman
graphs [24]. Let M be a set of taxa defined by character set C
of size m. A Buneman graph F for M is a vertex-induced
subgraph of the m-cube. Graph F' contains vertices v iff, for
every pair of characters 4, j € C, (v[i], v[j]) € G, ;. Recall that
G, ; is the set of gametes (or projection of M on dimensions 3
and j). Each edge of the Buneman graph is labeled with the
character at which the adjacent vertices differ.

We will use the Buneman graph to show how to
incrementally extend a set of taxa M by adding characters
that share exactly two gametes with some existing
character. As before, we can assume without loss of
generality that the all-zero taxon is present in M. Therefore,
if a pair of characters shares exactly two gametes, then they
are identical. Assume that we want to add character ¢ to M,
and ¢ € M is identical to i. We extend M to M’ by first
adding the states on character ¢’ for all taxa. For the rest of
the discussion, let G; ; be the set of gametes shared between
characters ¢ and j in matrix M’. We extend M’ to M" by
adding a taxon ¢ such that ¢[i] = 0, t[¢'] = 1, and, for all other
characters j, if (0,1) € G;;, then ¢[j] = 1; else, t[j] = 0. Since
we introduced a new gamete on i, 7/, no pair of characters
share exactly two gametes in M". Therefore, a Buneman
graph G” for M" can be constructed as before. A Buneman
graph is a median graph [24] and, clearly, a subgraph of the
m + 1-cube, where m + 1 is the number of characters in M"
Every taxon in M’ is present in G” by construction. Using
the two properties, we have the following lemma:

Lemma 4.3. Every optimum phylogeny for the taxa in M’ defined
over the m + 1 characters is contained in G" (see [24,
Section 5.5] for more details).

We now show the following important property on the
extended matrix M".

Lemma 4.4. If a pair of characters ¢, conflict in M", then they
conflict in M.

Proof. For the sake of contradiction, assume not. Clearly, ¢
and ¢ share exactly three gametes in M". Now,
consider any character j and assume that j and 1
shared exactly three gametes in A/’. For the newly
introduced taxon ¢, t[i] =0. If ¢t[j]=1, then j and ¢
cannot share the (0, 1) gamete in M” and, therefore,
they do not conflict. If t[j] =0, then the newly
introduced taxon creates the (0, 0) gamete, which
should be present in all pairs of characters. Now,
consider the pair of characters (j,'). If ¢[j] = 1, then, in



any taxon t' of M’, if ¢[j]=1, then ¢[{]=1 and,
therefore, ¢[i{] = 1 (since ¢ and ¢’ are identical on all taxa
except t) and, therefore, (1, 1) cannot be a newly
introduced gamete. If ¢[j] =0, then there exists some
taxon t' for which ¢[j] =0 and #[i] = 1 and, therefore,
t'[¢] =1 and, again, (0, 1) cannot be a newly introduced
gamete. Finally, consider any pair of characters j,7. If
taxon ¢ introduces gamete (0, 1), then there exists some
taxon ¢’ with ¢[j] =0 and ¢'[i]] = 1 If ¢[j/] = 1, then (0, 1)
cannot be a new gamete. If ¢'[j/] = 0, then ¢[j'] = 0 and not
1. The case when (1, 0) is introduced by ¢ is symmetric.
Finally, if ¢ introduces (1, 1), then consider any taxon ¢
with #'[i] = 1. It has to be the case that ¢'[j] =[] =1
and, therefore, (1, 1) cannot be a newly introduced
gamete. ad

We now have the following lemma:

Lemma 4.5. In every optimum phylogeny T%,, the conflict graph

on the set of taxa in Ty, (Steiner vertices included) is the same
as the conflict graph on M.

Proof. We say that a subgraph F’ of F is the same as an

edge-labeled tree T if I is a tree and T' can be obtained
from F” by suppressing degree-2 vertices. A phylogeny T
is contained in a graph F if there exists an edge-labeled
subgraph F’ that is the same as the edge-labeled (by
function ;1) phylogeny 7. We know from Lemma 4.3 that
all optimum phylogenies T}, for M are contained in the
(extended) Buneman graph of M. Lemma 4.4 shows that
the conflict graph on M” (and, therefore, on the extended
Buneman graph of M") is the same as the conflict graph
of M. 0

Lemma 4.6. The probability that all guesses performed at Step 2c

are correct is at least 274,

Proof. Implementation. We first show how to perform the

guess efficiently. For every character i, we perform the
following steps in order:

1. If all taxa in MO contain the same state s in i, then

fix r[i] = s.
2. If all taxa in M1 contain the same state s in ¢, then
fix r[i] = s.

3. If r[i] is unfixed, then guess r[i;] uniformly at
random from {0, 1}.

Assuming that the guess at Step 2a (Fig. 4) is correct,
we know that there exists an optimum phylogeny 77, on
M; where c(v) mutates exactly once. Let e € T}, such that

c(v) € p(e). Let 1’ be an end point of e such that r'[c(v)] =
1 and let p’ be the other end point. If the first two
conditions hold with the same state s, then character ¢
does not mutate in M;. In such a case, we know that
r'li] = s since T}, is optimal and the above method
ensures that 7[i] = s. Notice that, if both conditions are
satisfied simultaneously with different values of s, then ¢
and c(v) share exactly two gametes in M; and, therefore,
i,¢(v) € p(e). Hence, 7'[i] = r[i]. We now consider the
remaining cases when exactly one of the above condi-
tions holds. We show that, if r[i] is fixed to s, then
'[¢] = s. Note that, in such a case, at least one of M0, M1
contains both of the states on ¢ and i, ¢(v) share at least

SRIDHAR ET AL.: ALGORITHMS FOR EFFICIENT NEAR-PERFECT PHYLOGENETIC TREE RECONSTRUCTION IN THEORY AND PRACTICE 567

three gametes in M;. The proof can be split into two
symmetric cases based on whether r is fixed on
Condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on Condition 1. In this case,
all of the taxa in MO contain the same state s on .
Therefore, the taxa in M1 should contain both states on i.
Hence, i mutates in T}, (c(v),1). For the sake of contra-
diction, assume that 7’ [z] #s. If i & p(e), then p'[i] # s.
However, all of the taxa in MO0 contain state s. This
implies that i mutates in T}, (c(v),0) as well. Therefore, i
and ¢(v) share all four gametes on Ty, . However, i and

c(v) share at most three gametes in M;—one in M0 and at
most two in M1. This leads to a contradiction to
Lemma 4.5. Once r is guessed correctly, p can be
computed since it is identical to r in all characters except
c(v) and those that share two gametes with ¢(v) in M;.
We make a note here that we are assuming that e does
not mutate any character that does not share two
gametes with c¢(v) in M;. This creates a small problem
that, although the length of the tree constructed is
optimal, r and p could be degree-2 Steiner vertices. If,
after constructing the optimum phylogenies for M0 and
M1, we realize that this is the case, then we simply add
the mutation adjacent to r and p to the edge (r,p) and
return the resulting phylogeny where both r and p are
not degree-2 Steiner vertices.

The above implementation therefore requires only
guessing states corresponding to the remaining unfixed
characters of r. If a character ¢ violates the first two
conditions, then i mutates once in T}, (i,0) and once in
Ty, (i, 1). If r[i] has not been fixed, then we can associate a
pair of mutations of the same character ¢ with it. At the
end of the current iteration, M is replaced with M0 and
M1 and each contains exactly one of the two associated
mutations. Therefore, if ¢ characters are unfixed, then
penalty(MO0) + penalty(M1) < penalty(M;) —¢'. Since
penalty(l) < g, throughout the execution of the algo-
rithm, there are ¢ unfixed states. Therefore, the prob-
ability of all the guesses being correct is 279. O

This completes our analysis for upper bounding the
probability that the algorithm returns an optimum phylo-
geny. We now analyze the runtime. We use the following
lemma to show that we can efficiently construct optimum
phylogenies at Step 3 in the pseudocode:

Lemma 4.7. For a set of taxa M, if the number of nonisolated
vertices of the associated conflict graph is t, then an optimum
phylogeny Ti; can be constructed in time O(3°6' + nm?),
where s = penalty(M).

Proof. We use the approach described by Gusfield and Bansal
(see [16, Section 7]) that relies on the Decomposition
Optimality Theorem for recurrent mutations. We first
construct the conflict graph and identify the nontrivial
connected components of it in time O(nm?). Let x; be the
set of characters associated with componenti. We compute
the Steiner minimum tree T, for character set x;. The
remaining conflict-free charactersin C'\ U;x; canbe added
by contracting each T to vertices and solving the perfect
phylogeny problem using Gusfield’s linear time algo-
rithm [14].



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007

Since penalty(M) =s, there are at most s+¢+1
distinct bit strings defined over character set U;x;. The
Steiner space is bounded by 2! since | U; ;| = t. Using the
Dreyfus-Wagner recursion [22], the total runtime for
solving all Steiner tree instances is O(3°12). O

Lemma 4.8. The algorithm described solves the BNPP problem in

time O(18¢ + qnm?) with a probability of at least 874.

Proof. For a set of taxa M; € L (Step 3, Fig. 4), using

Lemma 4.7, an optimum phylogeny can be constructed
in time O(3*6% 4+ nm?), where s; = penalty(M;) and ¢, is
the number of nonisolated vertices in the conflict graph
of M;. We know that . s; < ¢ (since penalty(Il) < q)
and ), t; < ¢ (stopping condition of the while loop).
Therefore, the total time to reconstruct the optimum
phylogenies for all M; € L is bounded by O(187 + nm?).
The runtime for the while loop is bounded by O(gnm?).
Therefore, the total runtime of the algorithm is
O(187 + gnm?). Combining Lemmas 4.2 and 4.6, the total
probability that all guesses performed by the algorithm is
correct is at least 87. 0

Lemma 4.9. The algorithm described above can be derandomized

to run in time O(727 + 8/nm?).

Proof. It is easy to see that Step 2c can be derandomized by

exploring all possible states for the unfixed characters.
Since there are at most ¢ unfixed characters throughout
the execution, there are 2¢ possibilities for the states.

However, Step 2a cannot be derandomized naively.
We use the technique of a bounded search tree [6] to
derandomize it efficiently. We select an arbitrary vertex v
from U;N(M;). We explore both the possibilities on
whether v mutates once or multiple times. We can
associate a search (binary) tree with the execution of the
algorithm, where each node of the tree represents a
selection v from U; N(M;). One child edge represents the
execution of the algorithm assuming that v mutates once
and the other assuming that v mutates multiple times. In
the execution where v mutates multiple times, we select a
different vertex from U;N(M;) and again explore both
paths. The height of this search tree can be bounded by
2¢q because at most ¢ characters can mutate multiple
times. The path of height 2¢ in the search tree is an
interleaving of ¢ characters that mutate once and
q characters that mutate multiple times. Therefore, the
size of the search tree is bounded by 4.

Combining the two results, the algorithm can be
derandomized by solving at most 87 different instances
of Step 3 while traversing the while loop 87 times for a total
runtime of O(144% + 8nm?). This is, however, an over-
estimate. Consider any iteration of the while loop when M;
is replaced with M0 and M]1. If a state in character c is
unfixed and is therefore guessed, we know that there are
two associated mutations of character c in both A/0 and
M1. Therefore, at iteration i, if ¢, states are unfixed, then
penalty(MO0) + penalty(M1) < penalty(M;) — ¢}. At the
end of the iteration, we can reduce the value of ¢ used
in Step 2 by ¢, since the penalty has been reduced by ¢;.
Intuitively, this implies that, if we perform a total of
¢ guesses (or enumerations) at Step 2c, then, at Step 3,
we only need to solve Steiner trees on g — ¢ characters.

The additional cost, 27, that we incur results in reducing
the runtime of Step 3 to O(18" + gnm?). Therefore, the
total runtime is O(727 + 84nm?). O

4.4 Improving the Runtime Bounds

In Lemma 4.9, we showed that the guesses performed at
Step 2c of the pseudocode in Fig. 4 do not affect the overall
runtime. We can also establish a trade-off along similar lines
for Step 2a that can reduce the theoretical runtime bounds.
We now analyze the details of such a trade-off in the
following lemma:

Lemma 4.10. The algorithm presented above runs in time
O(217 + 8Inm?).

Proof. For the sake of this analysis, we can declare each
character to be in either a “marked” state or an
“unmarked” state. At the beginning of the algorithm,
all of the characters are “unmarked.” As the algorithm
proceeds, we will mark characters to indicate that the
algorithm has identified them as mutating more than
once in T™.

We will then examine two parameters, p and v, which
specify the progress made by the derandomized algo-
rithm in either identifying multiple-mutating characters
or reducing the problem to subproblems of lower total
penalty. Consider the set of characters S such that, for all
c € S, character c is unmarked and there exists matrix M;
such that ¢ mutates more than once in T},. We define
parameter p to be |S|. Parameter p intuitively refers to the
number of characters mutating more than once (within
trees T, ) that have not yet been identified. Parameter
denotes the sum of the penalties of the remaining
matrices M;, v = )", penalty(M;).

Consider Step 2a in Fig. 4, when the algorithm selects
character c¢(v). After selecting c(v), the algorithm pro-
ceeds to explore both cases when c(v) either mutates
once or multiple times in Tj,. In the first case,
penalty(7};,) decreases by at least 1. Therefore, ~
decreases by at least 1. In the second case, the algorithm
has successfully identified a multiple mutant. We now
proceed to mark character c¢(v), which reduces p by 1 and
leaves v unchanged.

If the main loop at Step 3 terminates, then the
algorithm finds optimal Steiner trees using the Drey-
fus-Wagner recursion and the runtime is bounded by 18”
using Lemma 4.7, as before. Therefore, the runtime of
this portion of our algorithm can be expressed as

T(v,p) < max{18",T(y—1,p) + T(v,p — 1) + 1}.

Function T(y,p) can be upper bounded by
187%1(19/17)”*!. We can verify this by induction. The
right side of the above equation is

max{18,187(19/17)""" + 1871(19/17)" + 1}
= max{187,187(19/17)"(19/17 + 18) + 1}
< max{187,187(19/17)"(19/17 + 19)}
=187+ (19/17)7.

Since we know that v < ¢ and p < ¢, we can bound
T(q,q) = O(20.127). Therefore, we can improve the



SRIDHAR ET AL.: ALGORITHMS FOR EFFICIENT NEAR-PERFECT PHYLOGENETIC TREE RECONSTRUCTION IN THEORY AND PRACTICE 569

runtime bound for the complete algorithm to
0(20.129 + 8Inm?). O

We note that further improvements may be achievable in
practice for moderate g by preprocessing possible Steiner
tree instances. If all Steiner tree-problem instances on the
g-cube are solved in a preprocessing step, then our runtime
would depend only on the number of iterations of the while
loop, which is O(8nm?). Such preprocessing would be
impossible to perform with previous methods. Alternate
algorithms for solving Steiner trees may be faster in practice
as well.

5 EXPERIMENTS

We tested both algorithms using a selection of nonrecom-
bining DNA sequences. These include mitochondrial DNA
(mtDNA) samples from two human populations [28] and a
chimpanzee population [27], Y-chromosome samples from
human [19] and chimpanzee populations [27], and a
bacterial DNA sample [21]. Such nonrecombining data
sources provide a good test for the algorithms’ ability to
perform inferences in situations where recurrent mutation
is the probable source of any deviation from the perfect
phylogeny assumption.

We implemented variants of both algorithms. The simple
algorithm was derandomized and used along with a
standard implementation of the Dreyfus-Wagner routine.
For the FPT algorithm, we implemented the randomized
variant described above using an optimized Dreyfus-
Wagner routine. The randomized algorithm takes two
parameters, ¢ and p, where ¢ is the imperfectness and p is
the maximum probability that the algorithm has failed to
find an optimal solution of imperfectness ¢g. On each
random trial, the algorithm tallies the probability of failure
of each random guess, allowing it to calculate an upper
bound on the probability that that trial failed to find an
optimal solution. It repeats random trials until the
accumulated failure probability across all trials is below
the threshold p. An error threshold of 1 percent was used
for the present study.

The results are summarized in Table 1. Successive
columns of the table list the source of the data, the input
size, the optimal penalty ¢, the parsimony score of the
resulting tree, the runtimes of both of our algorithms in
seconds, and the number of trials the randomized FPT
algorithm needed to reach a 1 percent error bound. All
runtimes reported are based on execution on a 2.4 GHz Intel
Pentium 4 computer with 1 Gbyte of RAM. One data point,
the human mtDNA sample from the Buddhist population,
was omitted from the results of the simple algorithm
because it failed to terminate after 20 minutes of execution.
All other instances were solved optimally by the simple
algorithm and all were solved by the randomized FPT
algorithm. The randomized variant of the FPT algorithm in
all but one case significantly outperformed the derando-
mized simple algorithm in runtime. This result may reflect
the superior asymptotic performance of the FPT algorithm
in general, the performance advantage of the randomized
versus the deterministic variants, and the advantage of a
more highly optimized Dreyfus-Wagner subroutine. The

TABLE 1
Empirical Results on a Collection of
Real SNP Variation Data Sets

Description Rows g | Pars. | Run Run trials
x Cols Score | time — | time

Simple | — FPT

(secs) (secs)
mtDNA, genus | 24x1041 2 | 63 0.59 0.14 25
Pan [27]
chr Y, genus Pan | 15x98 | 1| 99 0.33 0.02 12
[27]
Bacterial DNA | 17x151Q 7 | 96 0.47 4.61 262
sequence [21]
HapMap chr Y, | 150x49| 1| 16 0.3 0.02 16
4 ethnic groups
[19]
mtDNA, Humans | 13x48 | 3| 30 0.61 0.28 117
(Muslims) [28]
mtDNA, Humans | 26x48 | 7 | 43 — 18.44 1026
(Buddhists) [28]

randomized algorithm also generally needed far fewer trials
to reach a high probability of success than would be
expected from the theoretical error bounds, suggesting that
those bounds are quite pessimistic for realistic data sets.
Both implementations, however, appear efficient for biolo-
gically realistic data sets with moderate imperfection.

We can compare the quality of our solutions to those
produced on the same data sets by other methods. Our
methods produced trees of identical parsimony score to those
derived by the pars program from the PHYLIP package [10].
However, whereas we can guarantee the optimality of the
returned results, pars does not provide any guarantee on the
quality of the tree. (Note that our preliminary paper [23]
incorrectly stated that pars produced an inferior tree on the
chimpanzee mtDNA data set.) Our methods also yielded an
identical output for the chimpanzee Y-chromosome data to a
branch-and-bound method used in the paper in which that
data was published [27].

6 CONCLUSIONS

We have presented two new algorithms for inferring
optimal near-perfect binary phylogenies. The algorithms
substantially improve on the runtimes of any previous
methods for the BNPP problem. This problem is of
considerable practical interest for phylogeny reconstruction
from SNP data. Furthermore, our algorithms are easily
implemented, unlike previous theoretical algorithms for
this problem. The algorithms can also provide guaranteed
optimal solutions in their derandomized variants, unlike
popular fast heuristics for phylogeny construction. Experi-
ments on several nonrecombining variation data sets have
further shown the methods to be generally extremely fast
on real-world data sets typical of those for which one would
apply the BNPP problem in practice. Our algorithms
perform in practice substantially better than would be



570

expected from their worst-case runtime bounds, with both
proving practical for at least some problems with ¢ as high
as seven. The FPT algorithm in its randomized variant
shows generally superior practical performance to the
simple algorithm. In addition, the randomized algorithm
appears to find optimal solutions for these data sets in far
fewer trials than would be predicted from the worst-case
theoretical bounds. Even the deterministic variant of the
simple algorithm finds optimal solutions in less than one
second for all but one example. The algorithms presented
here thus represent the first practical methods for provably
optimal near-perfect phylogeny inference from biallelic
variation data.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation Grants CCR-0105548, 1I1S5-0612099, and CCR-
0122581 (the ALADDIN project). The authors thank the
anonymous reviewers of earlier work on this project for
their many helpful suggestions. Preliminary work on the
algorithms presented here was published in the Proceedings
of the International Workshop on Bioinformatics Research and
Applications [23] and the Proceedings of the International
Colloquium on Automata, Languages, and Programming [2].

REFERENCES

[1] R. Agarwala and D. Fernandez-Baca, “A Polynomial-Time
Algorithm for the Perfect Phylogeny Problem When the Number
of Character States Is Fixed,” SIAM . Computing, vol. 23, pp. 1216-
1224, 1994.

[2] G.E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz,
and S. Sridhar, “Fixed Parameter Tractability of Binary Near-
Perfect Phylogenetic Tree Reconstruction,” Proc. 33rd Int’l Collo-
quium Automata, Languages, and Programming, 2006.

[3] H. Bodlaender, M. Fellows, and T. Warnow, “Two Strikes against
Perfect Phylogeny,” Proc. 19th Int’l Colloquium on Automata,
Languages, and Programming, pp. 273-283, 1992.

[4] H. Bodlaender, M. Fellows, M. Hallett, H. Wareham, and T.
Warnow, “The Hardness of Perfect Phylogeny, Feasible Register
Assignment and Other Problems on Thin Colored Graphs,”
Theoretical Computer Science, vol. 244, nos. 1-2, pp. 167-188, 2000.

[S] M. Bonet, M. Steel, T. Warnow, and S. Yooseph, “Better Methods
for Solving Parsimony and Compatibility,” J. Computational
Biology, vol. 5, no. 3, pp. 409-422, 1992.

[6] R.G.Downey and M.R. Fellows, Parameterized Complexity. Spring-
er, 1999.

[77 W.H. Day and D. Sankoff, “Computational Complexity of
Inferring Phylogenies by Compatibility,” Systematic Zoology,
vol. 35, pp. 224-229, 1986.

[8] P. Damaschke, “Parameterized Enumeration, Transversals, and
Imperfect Phylogeny Reconstruction,” Proc. Int’l Workshop Para-
meterized and Exact Computation, pp. 1-12, 2004.

[9] E. Eskin, E. Halperin, and R.M. Karp, “Efficient Reconstruction of

Haplotype Structure via Perfect Phylogeny,” J. Bioinformatics and

Computational Biology, vol. 1, no. 1, pp. 1-20, 2003.

J. Felsenstein, PHYLIP (Phylogeny Inference Package) version 3.6,

distributed by the author, Dept. of Genome Sciences, Univ. of

Washington, Seattle, 2005.

D. Fernandez-Baca and ]. Lagergren, “A Polynomial-Time Algo-

rithm for Near-Perfect Phylogeny,” SIAM ]. Computing, vol. 32,

pp. 1115-1127, 2003.

L.R. Foulds and R.L. Graham, “The Steiner Problem in Phylogeny

Is NP-Complete,” Advances in Applied Math., vol. 3, pp. 43-49, 1982.

G. Ganapathy, V. Ramachandran, and T. Warnow, “Better Hill-

Climbing Searches for Parsimony,” Proc. Third Int’l Workshop

Algorithms in Bioinformatics (WABI '03), pp. 254-258, 2003.

D. Gusfield, “Efficient Algorithms for Inferring Evolutionary

Trees,” Networks, vol. 21, pp. 19-28, 1991.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(171

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(23]

[20]

(27]

(28]

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO.4, OCTOBER-DECEMBER 2007

D. Gusfield, Algorithms on Strings, Trees and Sequences. Cambridge
Univ. Press, 1999.

D. Gusfield and V. Bansal, “A Fundamental Decomposition
Theory for Phylogenetic Networks and Incompatible Characters,”
Proc. Ninth Ann. Int’'l Conf. Research in Computational Molecular
Biology, pp. 217-232, 2005.

D. Gusfield, S. Eddhu, and C. Langley, “Efficient Reconstruction
of Phylogenetic Networks with Constrained Recombination,”
Proc. Second IEEE CS Computational Systems Bioinformatics Conf.,
pp. 363-374, 2003.

D.A. Hinds, L.L. Stuve, G.B. Nilsen, E. Halperin, E. Eskin, D.G.
Ballinger, K.A. Frazer, and D.R. Cox, “Whole Genome Patterns of
Common DNA Variation in Three Human Populations,” Science,
vol. 307, no. 5712, pp. 1072-1079, 2005.

The International HapMap Consortium, “The International
HapMap Project,” Nature, vol. 426, pp. 789-796, 2003.

S. Kannan and T. Warnow, “A Fast Algorithm for the Computa-
tion and Enumeration of Perfect Phylogenies,” SIAM ]. Computing,
vol. 26, pp. 1749-1763, 1997.

M. Merimaa, M. Liivak, E. Heinaru, J. Truu, and A. Heinaru,
“Functional Co-Adaption of Phenol Hydroxylase and Catechol
2,3-Dioxygenase Genes in Bacteria Possessing Different Phenol
and P-Cresol Degradation Pathways,” Proc. Eighth Symp. Bacterial
Genetics and Ecology, 2005.

H.J. Promel and A. Steger, The Steiner Tree Problem: A Tour through
Graphs Algorithms and Complexity. Vieweg Verlag, 2002.

S. Sridhar, K. Dhamdhere, G.E. Blelloch, E. Halperin, R. Ravi, and
R. Schwartz, “Simple Reconstruction of Binary Near-Perfect
Phylogenetic Trees,” Proc. Int’l Workshop Bioinformatics Research
and Applications, 2006.

C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
M.A. Steel, “The Complexity of Reconstructing Trees from
Qualitative Characters and Subtrees,” . Classification, vol. 9,
pp. 91-116, 1992.

S.T. Sherry, M.H. Ward, M. Kholodov, J. Baker, L. Pham, E.
Smigielski, and K. Sirotkin, “dbSNP: The NCBI Database of
Genetic Variation,” Nucleic Acids Research, vol. 29, pp. 308-311,
2001.

A.C. Stone, R.C. Griffiths, S.L. Zegura, and M.F. Hammer, “High
Levels of Y-Chromosome Nucleotide Diversity in the Genus Pan,”
Proc. Nat'l Academy of Sciences USA, vol. 99, no. 1, pp. 43-48, 2002.
T. Wirth, X. Wang, B. Linz, R.P. Novick, ].K. Lum, M. Blaser, G.
Morelli, D. Falush, and M. Achtman, “Distinguishing Human
Ethnic Groups by Means of Sequences from Helicobacter pylori:
Lessons from Ladakh,” Proc. Nat’l Academy of Sciences USA,
vol. 101, no. 14, pp. 4746-4751, 2004.

Srinath Sridhar received the BS degree in
computer science from the University of Texas
at Austin in 2003. Since then, he has been a
PhD student in the Department of Computer
Science at Carnegie Mellon University. His
primary area of research is computational
biology.

Kedar Dhamdhere received the PhD degree
from the Computer Science Department, Carne-
gie Mellon University, in 2005. Since then, he
has joined Google Inc. where he works on
improving Web search.



SRIDHAR ET AL.: ALGORITHMS FOR EFFICIENT NEAR-PERFECT PHYLOGENETIC TREE RECONSTRUCTION IN THEORY AND PRACTICE 571

Guy E. Blelloch received the BA degree in
physics and the BS degree in engineering from
Swarthmore College in 1983 and the MS and
PhD degrees in computer science from the
Massachusetts Institute of Technology in 1986
and 1988, respectively. He is currently a profes-
sor of computer science at Carnegie Mellon
University and codirector of the ALADDIN center
for the study of algorithms. His research inter-
ests are in programming languages and applied
algorithms.

Eran Halperin received the MSc and PhD
degrees from the Computer Science Depart-
ment, Tel Aviv University, Israel. Since then, he
has held research positions at the University of
California, Berkeley, as a postdoctoral research-
er and at Princeton University as a research
associate and has been part of the Algorithm
Development Group of Compugen Ltd., a
bioinformatics company. Since 2005, he has
been a senior research scientist at the Interna-
tional Computer Science Institute (ICSI), Berkeley, California. His
research is focused on statistical and computational approaches in
biology, particularly genetics and applications to disease association
studies.

R. Ravi received the BTech degree in computer
science and engineering from the Indian Institute
of Technology, Madras, in 1989 and the PhD
degree in computer science from Brown Uni-
versity in 1993. After postdoctoral fellowships at
the University of California, Davis, and the
Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS) at Princeton Uni-
versity, he joined the Operations Research
Faculty in the Tepper School of Business at

Carnegie Mellon University in 1995, where he is currently a Carnegie
Bosch professor of operations research and computer science.

Russell Schwartz received the BS, MEng, and
PhD degrees from the Department of Electrical
Engineering and Computer Science at the
Massachusetts Institute of Technology, the last
of which was in 2000. He later worked in the
Informatics Research Group at Celera Geno-
mics. Since 2002, he has been an assistant
professor in the Department of Biological
Sciences at Carnegie Mellon University.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


