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Abstract

In the test cover problem a set of m items is given together with a
collection of subsets, called tests. A smallest subcollection of tests is to
be selected such that for each pair of items there is a test in the selection
that contains exactly one of the two items. It is known that the problem is
NP-hard and that the greedy algorithm has a performance ratio O(log m).
We observe that, unless P = NP, no polynomial-time algorithm can do
essentially better. For the case that each test contains at most k items,
we give an O(log k)-approximation algorithm.

We pay special attention to the case that each test contains at most
two items. A strong relation with a problem of packing paths in a graph is
established, which implies that even this special case is NP-hard. We prove
APX-hardness of both problems, derive performance guarantees for greedy
algorithms, and discuss the performance of a series of local improvement
heuristics.
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1 Introduction

The input of the test cover problem (TCP) consists of a set of items, {1,...,m},
and a collection of tests, T1,...,T,, C {1,...,m}. A test T} covers or differen-
tiates the item pair {h,i} if either h € Tj or i € Tj, i.e., if [Ty N{h,i}| =1 A
subcollection 7 C {T1,...,T,} of tests is a test cover if each of the m(m —1)/2
item pairs is covered by at least one test in 7. The objective is to find a test
cover of minimum cardinality, if one exists.

The test cover problem arises naturally in identification problems. Given a
set of individuals and a set of binary attributes that may or may not occur in
each individual, the goal is to find a minimum-cardinality subset of attributes
— an optimal test cover — that identifies each individual uniquely. That is, the
incidence vector of each individual with the test cover is a unique binary signa-
ture, distinguishing him or her from any other individual. The problem is also
known in the literature as the minimum test collection problem [10] [4] and min-
imum test set problem [15] [4]. It arises commonly in fault testing and diagnosis,
pattern recognition, and biological identification [15].

This paper is the work of two independent groups of researchers. The first
group was motivated, over twenty years ago, by a request from the Agricul-
tural University in Wageningen, the Netherlands, concerning the identification
of potato diseases [13]. Each potato variety is vulnerable to a number of diseases.
In order to diagnose diseases efficiently, one wished to have a minimum selection
of varieties that discriminates between all diseases. This application involved 28
diseases (items) and 63 varieties (tests).

The problem came to the attention of the second group of researchers in
a project on protein identification by epitope recognition [6]. It proposed a
new approach of using a set of antibodies that recognize and bind specifically
to short peptide sequences, called epitopes. Such an epitope can distinguish
proteins that contain it from those that do not. The epitopes are fluorescently
tagged, so that the binding of antibodies to an unidentified protein can be
detected. Thus the output is a binary vector of dimension equal to the number of
antibodies, indicating to which of the antibodies the protein is bound. The idea is
to generate a set of antibodies with three properties: they recognize epitopes that
are shared by many proteins, the epitopes together cover all possible proteins
in the organism’s proteome, and each protein is recognized by a unique subset
of antibodies. This leads to a test cover problem, with proteins as items and
antibodies as tests. The cited application involved about 6,000 proteins. The
eventual goal is to handle much larger catalogues and, in particular, the human
organism, which has between 40,000 and 100,000 proteins.

Both problems were successfully attacked by a combination of greedy and
local improvement algorithms. For the Dutch problem, optimality of the result-



ing solution was proved by a simple branch-and-bound algorithm, using a lower
bound based on the observation that, for distinguishing m items, one needs
at least [log, m] tests, and a branching scheme preferring tests of size close
to m/2 to smaller or larger ones. This work inspired research into the perfor-
mance of greedy and local improvement algorithms for the problem and into its
complexity and approximability. After two earlier reports [5] [12], the present
paper gives a joint account of our research. A complementary paper [2] discusses
optimization algorithms for the test cover problem.

The TCP is NP-hard in the strong sense [4]. Moret & Shapiro [15] established
a strong relation between the TCP and the well-known set covering problem,
and used it to prove that the greedy algorithm for the TCP has a worst-case
performance ratio to the optimum of ©(logm). In Section 2 we recall these
results, and we show that no polynomial-time algorithm for the TCP is likely
to have a lower-order performance ratio.

In Section 3 we consider the case that each test contains at most k items,
where k is part of the input. This is a common restriction for the TCP. For
the above protein identification problem the novelty of the approach is the
utilization of antibodies that bind to many proteins. However, most known
antibodies bind specifically to protein fragments, which justifies interest in the
TCP with small tests. We give an O(log k)-approximation algorithm for the
TCP with no more than k items per test.

In Section 4 we turn to the special case that each test contains at most
two items, denoted by TCP2. We formulate it as an optimization problem on a
graph and derive a performance ratio of 11/8 for the natural greedy algorithm;
the proof is given in Appendix A. We then relate the TCP2 to the problem
of packing paths of length 2 in a graph, which implies its NP-hardness. (The
TCP2 has been stated to be solvable in polynomial time [4], a claim that was
withdrawn due to our work [9].) The relation between the two problems carries
over to approximation bounds. In fact, the greedy algorithm for the path packing
problem gives an algorithm for the TCP2 with performance ratio 4/3, which is
better than 11/8. We prove that both problems are APX-hard and hence do not
have a polynomial-time approximation scheme unless P = NP.

Finally, in Section 5 we present a series of local improvement heuristics for
the path packing problem and the TCP2. Each next heuristic in the series
searches over a larger neighborhood. An analysis of these heuristics is given
in a companion paper [1], which adds to the growing body of literature on
performance guarantees for local search.

2 The general TCP

The TCP has a natural reformulation as a cut covering problem on a complete
graph. Items correspond to vertices and item pairs to edges. Each test defines a
cut, consisting of the item pairs covered by the test. The objective is to find a
minimum-size subcollection of those cuts whose union is the complete edge set.
The cut covering problem can in turn be formulated as a set covering problem



(SCP). In the SCP, given a set of M elements and a collection of N subsets,
one wishes to find a minimum-size subcollection of subsets whose union is the
entire set. Obviously, edges correspond to elements and cuts to subsets. Starting
with a TCP instance with m items and n tests, one obtains an equivalent SCP
instance with M = m(m—1)/2 elements and N = n subsets.

As a consequence, algorithms for the SCP also apply to the TCP. The greedy
algorithm for the SCP, which iteratively selects a subset covering the largest
number of yet uncovered elements, has a performance ratio 1+ In M [8] [14]. It
directly gives a greedy algorithm for the TCP, always choosing a test covering the
largest number of uncovered pairs, with performance ratio 1+2 Inm [15] [10].

Moret & Shapiro [15] showed, conversely, how to reduce the SCP to the
TCP. They observe that this alternative strong NP-hardness proof precludes
the existence of a fully polynomial-time approximation scheme, unless P = NP,
and also use the reduction to show that the performance ratio of the greedy
algorithm is tight up to a constant factor. We repeat their reduction here.

Consider an SCP instance with elements {1,..., M} and subsets S1,...,Sn.
Construct a TCP instance with m = 2M items and N + [log, M tests, as
follows. For each element i create a female item f; and a male item m;. For each
subset S; define a test T; = {f; : ¢ € S;}. In addition, introduce a minimum-size
collection M of tests that covers all pairs of male items; note that [log, M tests
are necessary and sufficient for this purpose. Finally, if a test in M contains an
item m;, put its partner f; in the test as well. See Figure 1.

We claim that there is a set cover of size at most o if and only if there is
a test cover of size at most o + [log, M]. Any test cover must include M, as
there is no other way to cover the male pairs. M also covers the female pairs
and the mixed pairs with nonequal index values. Any other tests are of type T
and only serve to cover pairs of type (f;,m;). Since the tests T} only contain
female items, a collection of such tests covers all pairs (f;, m;) (i =1,..., M) if
and only if the corresponding subsets form a set cover. That is, S is a set cover

S1 S Ss M Ty Th T
111 0 O fi |1 1|1 0 O
210 1 0 f2 (1 0|0 1 O
311 1 1 |:> fs O 1|1 1 1
411 0 1 f, |0 0|1 0 1

mi|1l 1] 0 0 O
mx1 0| 0 0 O
m30 1] 0 0 O
my/0 0| O O O

Figure 1: Reduction from SCP to TCP



if and only if MU{T};|S; € S} is a test cover.

This argument not only shows that the TCP is NP-hard. Also inapproxima-
bility results for the SCP carry over to the TCP. However, if we apply the above
reduction to the class of bad SCP instances due to Johnson [8], on which the
greedy algorithm achieves a logarithmic performance ratio, then we obtain a
class of TCP instances on which the greedy solution is within a constant fac-
tor of the optimum, due to the presence of the tests in M. Following Moret &
Shapiro [15], given an SCP instance with M elements and N subsets, we make
k = [logy M disjoint copies of it so as to obtain a multiplied SCP instance with
kM elements and kN subsets. We then construct a TCP instance with (k+1)M
items and kN + [log, M tests, with kM female items corresponding to the el-
ements, M additional male items, kN tests corresponding to the subsets, and
[log, M “even splitting” tests. The original SCP instance has a solution of size
at most o if and only if the multiplied instance has a solution of size at most
ko, and hence if and only if the TCP instance has a solution of size at most
ko+[log, M| < ko(1+0(1/log M)).

Now, if we were able to approximate the TCP optimum within a factor of
p, then we could apply our method to the instance constructed above, divide
the result by [logs M1, and obtain an algorithm for the SCP with performance
ratio p(1 + O(1/log M)). We cite two inapproximability results for the SCP:
No polynomial-time algorithm can have a performance ratio o(log M) unless
P = NP [17]. And no such algorithm can have a performance ratio (1 —¢€)In M,
for any € > 0, unless NP C DTIME(M'08log M) [3].

Theorem 2.1 The TCP has no polynomial-time algorithm with performance
bound o(log m), unless P = NP, and no polynomial-time algorithm with perfor-
mance bound (1 — €) lnm, for any € > 0, unless NPCDTIME(m/!°81°6 ™).

3 The TCP with tests of size at most &k

We now consider the TCP in which each test contains at most &k items, denoted
by TCPE. We propose an algorithm with performance ratio O(log k).

First note that a partial test cover defines an equivalence relation on the set
of items, where two items are equivalent if there is no test in the partial cover
that differentiates them. The equivalence classes are the subsets of pairwise
equivalent items.

Our two-phase greedy algorithm proceeds as follows. In phase 1, given a TCP
instance, view it as an SCP instance with items as elements and tests as subsets,
and apply the greedy algorithm for the SCP to find a set cover S¢. If S¢ is a
test cover, then stop. Otherwise, in phase 2 apply the greedy algorithm for the
TCP to extend the partial test cover S¢ to a complete test cover.

Let o* and 7" denote the size of an optimum set cover and an optimum test
cover for the item set, respectively. The greedy set cover S¢ found in phase 1
has size 0% < (1+Ink)o* [8] [14]. Since any test cover is a set cover of all but at
most one of the items, we have o* < 7*+1 and hence 0% = O(log k)*.



At the start of phase 2, each equivalence class contains at most k items,
because each item is in some test of S¢ and thereby differentiated from at least
m—k other items. It follows that any test covers at most k(k—1) more item pairs,
so that the greedy test cover found in phase 2 has size 7¢ < (1 +1In(k(k—1)))7*
[8] [14]. The overall test cover has size 0% +7% = O(log k)7*.

Theorem 3.1 The two-phase greedy algorithm for TCPk has a performance
ratio O(log k).

4 The TCP with tests of size at most 2

4.1 A problem on graphs

The rest of this paper is concerned with the special case that each test contains
at most two items, denoted by TCP2. We first argue that we may assume that
each test contains exactly two items.

Lemma 4.1 Any instance of the TCP with tests of size at most 2 can be
transformed into an instance of the TCP with tests of size exactly 2.

ProoF. Let T = {13,...,T,},and let T C T be a minimum test cover. Suppose
that we have u items not contained in any test in T with v € {0,1}, v items
g1,---, 9, with g; only contained in the test {g;} € T,fort =1,...,v, and w item
pairs {h1,i1},..., {hw,iw} with the property that, fort = 1,...,w, {h,i;} € T,
{h:} € T, possibly {i;} € T, and no other test contains h; or ;. If u+v+w > 0,
then 7 contains, without loss of generality, the first u + v 4+ 2w — 1 tests from
{91}, -, {go}, {1}, {h1,i1}, - s {hw}, {Pw, iw}, leaving one item isolated.

Each item h not among those u + v + 2w ones has the properties that (a)
there exists an item i such that {h,i} € T, and (b) for all such {h, 4} there exists
an {h',i'} € T such that |{h,i}N{h',i'}| = 1.

We may assume without loss of generality that 7 does not contain singleton
tests except the ones mentioned above. For suppose T contains another singleton
test {h}. As T is minimum, it does not contain two tests {h,i} and {h,i'}. If
T contains no test {h,-}, replace {h} by any test {h,i} € T, which exists by
(a). If by this action h and ¢ become indistinguishable (i was apparently left
isolated), or if 7" already contains a test {h, i}, replace {h} by the corresponding
test {h',i'} € T, see (b).

By eliminating all 4 + v + 2w items involved, the tests that contain them,
and all other singleton tests, and adding one isolated item if u + v +w > 0, we
obtain an equivalent instance of the TCP2 with tests of size 2 only. 0

From now on we will restrict our attention to the TCP2 with tests of size
exactly 2. This TCP2 can be formulated as an optimization problem on a graph,
in which the m items correspond to vertices and the n tests to edges. We obtain
the following characterization of test covers.



Lemma 4.2 In a graph G = (V, E), a subset E' C E is a test cover if and only
if the graph G' = (V, E') has no isolated edges and at most one isolated vertex.

Proor. If E' is a test cover, then G' = (V, E') has at most one isolated vertex
(an item with an all-zero signature) and no isolated edges (since otherwise its
vertices would not be differentiated). Conversely, a graph with these properties
satisfies the condition that, for any two vertices, there is an edge incident to
exactly one of them. O

Note that this lemma also characterizes feasible instances of the TCP2. We will
assume from now on that the instances that we consider are feasible.

A test cover is minimal if no edge can be deleted from it without causing
infeasibility. In addition to having the properties stated in Lemma 4.2, a minimal
test cover is obviously acyclic. This implies the following.

Lemma 4.3 In a graph G = (V,E), if E' C E is a minimal test cover, then at
most one of the components of G' = (V, E') is an isolated vertex and each other
component is a tree of at least two edges.

The greedy algorithm for the TCP2 iteratively selects an edge that covers
the largest number of yet uncovered vertex pairs. In Appendix A we prove the
following performance bound for the greedy algorithm.

Theorem 4.1 The greedy algorithm for the TCP2 has performance ratio 11/8.
This bound is asymptotically tight.

4.2 Packing paths of length 2

We will now examine the relation of the TCP2 to another optimization problem
on a graph. In the problem of packing paths of length 2 (PPP2), we are given a
graph on m vertices, and we wish to find a maximum number of vertex-disjoint
paths of length 2, leaving at least one vertex isolated. We will often use the term
path packing to indicate a feasible solution to the PPP2. Since the problem of
partitioning a graph into paths of length 2 is NP-complete [11] [4], the PPP2 is
NP-hard.

The seemingly artificial condition that any solution to the PPP2 has at least
one isolated vertex is matched by the property that any solution to the TCP2
has at most one isolated vertex. It is introduced for the sake of a duality relation
between the PPP2 and the TCP2, as elaborated below.

Given a test cover, we can easily find a path packing.

Lemma 4.4 If a graph G = (V, E) has a minimal test cover of size T, then it
has a path packing of sizem =m —1 — 7.

PRrROOF. Let E' C E be the minimal test cover. Suppose that the graph G’ =
(V,E') has k components. By Lemma 4.3, G’ is a forest, and hence 7 = |E'| =
m — k. By the same lemma, we can select a path of length 2 from each but one of
the components, and obtain a path packing of sizem = k—1=m—-1—r. O



A converse relation holds as well. A path packing is mazimal if no path can be
added to it.

Lemma 4.5 If a graph G = (V, E) has a maximal path packing of size 7, then
it has a test cover of size t =m —1— .

Proor. The graph induced by the path packing contains m — 37 isolated ver-
tices. We distinguish two cases.

(1) The path packing has a path in each component of G. We extend it to a
test cover by successively connecting all but one of the isolated vertices to one of
the paths, and obtain a test cover of size 7 = 2r+m—37r—1 =m—1—m.

(2) The path packing has a path in each but one component of G. (Since G
is feasible, the component without a path has one or three vertices.) We extend
the path packing to a test cover by spanning a tree in the component without a
path and connecting each of the remaining isolated vertices to one of the paths,
and thus obtain a test cover of size T=2r4+m —-3r—1=m —1—7. l

Given any algorithm that produces a maximal path packing, its extension to the
TCP2 constructs a test cover by the procedure in the above proof.

Lemmas 4.4 and 4.5 together imply a relation between optimal solution
values to the TCP2 and the PPP2, and also allow us to relate the performance
of approximation algorithms.

Theorem 4.2 In a graph G = (V, E), the size m* of a maximum path packing
and the size 7* of a minimum test cover satisfy n* + 7 =m — 1.

Since the PPP2 is NP-hard, it follows that the TCP2 is NP-hard too.

Theorem 4.3 If the PPP2 has an algorithm with performance ratio p, then
the TCP2 has an algorithm with performance ratio 3/2 — p/2.

PROOF. Suppose algorithm A for the PPP2 satisfies 74 > pr*. Consider its

extension A’ to the TCP2. We know that 74 + 74 = m — 1 = 7* + 7*. Hence,
™ =7 41 — 74 <7 + (1 — p)r*. Since 37* < m — 1 = 7 + 7*, we have
7 < 7%/2 and thereby 74 < 7% + (1 — p)7*/2 = (3/2 — p/2)7*. U

Figure 2: Worst-case instance for the greedy algorithm for the PPP2



The greedy algorithm for the PPP2 iteratively selects a path of length 2 from
the graph and deletes its vertices and adjacent edges. When the graph contains
no path of length 2 or when it has at most three vertices, the algorithm has
obtained a maximal path packing and terminates. A bad example is given by
the graph in Figure 2. The greedy algorithm may select only one path of length
2, whereas three is optimal. We show that this is the worst case.

Theorem 4.4 The greedy algorithm for the PPP2 has performance ratio 1/3.
Its extension to the TCP2 has performance ratio 4/3. These bounds are tight.

PROOF. Any path of length 2 in the greedy solution intersects at most three
paths of length 2 in the optimal solution. Since the greedy solution is maximal,
either each path in the optimal solution intersects a greedy path, which implies
the desired performance bound, or the greedy solution leaves exactly three ver-
tices isolated that form a path of length 2, in which case the greedy solution is
optimal. Theorem 4.3 implies the bound for the extension to the TCP2. l

Theorems 4.1 and 4.4 tell us that, for the TCP2, picking paths of length 2 at
random gives a better guarantee than choosing most distinctive single edges.

4.3 APX-hardness

We will show that the PPP2 and thereby also the TCP2 is APX-hard. Our
result will follow through a reduction from 3-dimensional matching with at most
three occurrences per element (3DM3): Given disjont sets X,Y, Z containing s
elements each, and a set C of ¢ triples in X x Y x Z, such that each element
of X UY U Z occurs in at most three triples of (', find a maximum-cardinality
matching C' C C, i.e., a subset of triples such that no element of XUY UZ occurs
in more than one triple. For 3DM3, it is NP-hard to decide whether a maximum
matching is perfect or misses a constant fraction of the elements [16].

Lemma 4.6 There exists a constant € > 0 such that it is NP-hard to determine
whether an instance of the PPP2 has a path packing of size (m —1)/3 or of size
at most (1 —e€)(m —1)/3.

PROOF. Given an instance of 3DM3, we create a graph G with m = 6s+3t+1
vertices

— &4,y for each x, € X, yp, yp, for each y, €Y, z;, 2; for each z; € Z,

7
— w, a vertex that will remain isolated,

and n = 3s + 5t edges

—{Zg, 2,4} for each x4 € X, {Gn,yn} for each y, € Y, {Z;, 2;} for each z; € Z,
—{zy,cf}, {yh,c;’}, {zi, i} for each triple ¢; = {z,,yn, 2} € C,

—{cf, el {cf, ci} for each ¢; € C.

T z .
cj,ci,c; for each ¢; € C,
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Figure 3: Reduction of 3DM3 to PPP2
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We claim that G contains 2s + t vertex-disjoint paths of length 2 if and only if
there exists a matching of size s. The reduction is illustrated in Figure 3.

If the instance of 3DM3 has a matching C’ of size s, then G contains paths
(Zg,24,c J) (Fn, yn,c J) (Zi, 2i, cj) for each triple ¢; = {zg,yn,2:} € C' and a
path (cf,cf, c3) for each triple ¢; € C\C', giving a total number of 3s+ (t —s) =
2s +t paths.

Now, let a maximum matching consist of u* triples, and let an optimal path
packing P consist of 7* paths P contains element paths of type (7,7, ) and
triple paths of type (cj, cJ ,€3); it is easy to see that other types of paths in any
path packing can be replaced by element paths. We will bound 7* in terms of
w*. Let to,t1,ts,t3 be the number of triples in C intersecting 0,1, 2,3 element

paths in P, respectively. Then,

7" <to+ty + 2t + 3tz =t + 12+ 2t3 :t+%(2t2+3t3) +%t3 < t-l—gs-l—%u*.
The first equality holds because t = tg+t; +t2+t3. The second inequality follows
from ¢, + 2ty + 3t3 < 3s (P contains at most 3s element paths) and t3 < p*.
Hence, if 7* = 2s +t, then p* = s.

Let ¢ > 0 be such that it is NP-hard to decide whether p* = s or p* <
(1 — €')s. Hence, it is NP-hard to decide whether 7* = 2s +¢ = (m — 1)/3 or
™ <2s+t—€'s/2=(1—€)(m—1)/3,if we choose € = €'s/(4s + 2t). For 3DM3,
we have t < 3s, so that € > €'/10. This completes the proof. O

Lemma 4.6 and Theorem 4.2 imply the following.
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Theorem 4.5 The PPP2 and the TCP2 are both APX-hard.

5 Local improvement for PPP2 and TCP2

In this final section we propose a series of local improvement algorithms for the
PPP2. Each next algorithm in the series starts from a maximal path packing,
searches over a larger neighborhood, and requires more time. Its extension to the
TCP2, as described in Section 4.2, transforms the locally optimal path packing
into a test cover.

The basic heuristic, denoted Hy, applies the greedy algorithm to obtain a
maximal path packing. For £ > 1, the kth heuristic in the series, denoted Hy,
starts from a maximal path packing, and attempts to improve it by replacing
any k paths of length 2 by k + 1 paths of length 2. This involves a complete
search over all sets of k£ paths and, for each such set, over all possibilities for
improvement. When no further improvements are found, Hj terminates. For
fixed k, Hy runs in polynomial time. Hy, is unlikely to run in time polynomial in
k, since then we could find the optimum in polynomial time and P = NP.

Let pi be the performance ratio of heuristic Hy, for £ > 0. Obviously, py is
nondecreasing in k. Theorem 4.4 states that po = 1/3. Here we will discuss py,

P2, p3, and py.

Theorem 5.1 The local improvement algorithms H,, H>, Hs, and H, for the
PPP2 have performance ratios py = 1/2, p» = 5/9, ps = 7/11, and py = 2/3.
These bounds are tight.

Hurkens & Schrijver [7] consider a series of analogous local improvement
algorithms for the more general problem of packing vertex-disjoint subgraphs
on t vertices in a given graph. Their work was, in fact, inspired by questions
about the performance of our heuristics Hy. They derive a lower bound ¢y
on the performance ratio of their kth heuristic, and prove that it is tight if the
subgraph is a clique. In particular, for t = 3,

pokt1)/2 5 L
2:2 2 if k is odd.

9.9(k+2)/2_g .
¢ _{ 3202723 lfklseven,
=

3.2(k+1)/2_9

problem k o1 2 3 4 5 6 7 8 o0
- : 1 1 5 3 13 14 29 30 6l 2
triangle packing Ok 5 5 9 5 5 33 T 16 o3 g
1 1 5 7 2
PPP2 PR |3 3 35 11 3
3 4 5 11 13 7
TCP2 5513 1 % T s

Table 1: Performance ratios for local improvement heuristics
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Figure 5: Worst-case instance for H»
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Figure 7: Worst-case instance for Hy

Since a path of length 2 is a subgraph on three vertices, we know that p > ¢-

Table 1 lists the values of ¢y (k > 0) for the problem of packing triangles,
pr (k=0,...,4) for the PPP2, and the corresponding ratios for the TCP2 that
are implied by Theorem 4.3. Note that py = limy_, ¢. The asymptotic value
limy 00 pr. Temains open, but it is likely to be strictly smaller than 1, in view
of Theorem 4.5.

Instances for which Hy, Hy, Hs, and H, meet their claimed performance
ratios are given in Figures 4, 5, 6, and 7, respectively. In each case the dashed

12



lines indicate a locally optimal path packing, and the solid lines indicate a larger
packing. Note that we have omitted the mandatory isolated vertex and that here,
as well as in Figure 2, we can provide an infinite family of worst-case instances
by creating multiple copies of the graph.

The upper bounds on p;, provided by these examples match the lower bounds
¢ for k =1 and k = 2, which proves part of Theorem 5.1. The proof for k = 3
and k£ = 4 is more involved. We outline the general idea here, and refer to a
companion paper [1] for details. The argument may be extended to handle Hj
and Hg, but we have not attempted to do so.

Our approach to obtain lower bounds on py, is based on linear programming.
Consider a graph G with a locally optimal path packing P found by Hj and
any other path packing Q. In order to show that |P|/|Q| > pi, we may make
the following assumptions:

— (G does not contain other edges than those appearing in P and Q;

- [Pl <12k

— each path in P intersects at least one path in Q;

— each path in Q intersects at least one path in P;

— no set of three vertices is covered by a P-path and by a Q-path;

— each middle vertex of a P-path is covered by some Q-path.

For every vertex that is both on a P-path and on a Q-path, we define a label,
which expresses the interaction of its Q-path with the P-paths. Based on this
labeling we distinguish several types of P-paths. This leads to eight vertex labels
and 96 path types, 40 of which can be excluded due to the above assumptions.
For each remaining path type we introduce a variable, denoting the fraction of
P-paths of that type in P. The variables add up to 1. Furthermore, the ratio
|Q|/|P| can be written as a linear combination of these variables.

By carefully analyzing configurations that can or cannot be improved by Hy,
we are able to formulate restrictions on certain combinations of the variables.
For instance, consider a Q-path that intersects exactly one P-path, in exactly
one vertex. Such a vertex is labeled 1. It is immediate from the definition of H;
that no path in P contains two or three vertices labeled 1. This observation sets
sixteen variables to 0.

When describing the conditions corresponding to configurations that are not
improved by Hy, Ho, Hz, or Hy, we end up with three, five, eight, or ten linear
constraints, respectively. Maximizing the ratio under these constraints proves
Theorem 5.1, and yields fractions that are in agreement with the instances given
in Figures 4, 5, 6, and 7.
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A Analysis of the greedy algorithm for TCP2

We consider the greedy algorithm for the TCP2 defined on a graph G = (V, E)
with m vertices (items) and n edges (tests). The greedy algorithm iteratively
selects an edge that covers the largest number of yet uncovered vertex pairs.

To examine the options, consider a partial test cover E' C E. Let V} denote
the set of vertices that lie in any component of G' = (V,E') of size k. By
adding an edge connecting h,i € Vi we cover 2(|Vi| — 2) more vertex pairs.
An edge between h € V; and i € V3 covers |Vi| more vertex pairs, whereas an
edge between h € V; and i ¢ V4 U V; covers |Vi| — 1 more vertex pairs. An
edge between h,i € V5 connects two isolated edges and hence covers two more
vertex pairs. Finally, an edge between h € V5 and i € V3 U V5 covers one more
vertex pair.

It follows that, as long as at least four vertices are isolated, the greedy
algorithm will select isolated edges. In phase 1 it constructs a maximal match-
ing, leaving at least two vertices isolated. (If it would continue adding edges to
the matching until just one vertex remains isolated, then the latest edge cov-
ered two more pairs, while connecting one of the three isolated vertices to the
matching would have covered three more pairs.) Let E{ be the set of edges in
the matching.

In phase 2 the greedy algorithm selects edges that are incident to only one
edge in E], thus creating paths of length 2 in the graph, until this is no longer
possible, or until only one vertex is left isolated. Let E! be the set of edges
selected in this phase. After phase 2, the graph G2 = (V, E{ U E}) consists of
paths of length 2, isolated edges, and isolated vertices.

In phase 3 edges are selected that connect isolated vertices to a path in Gs,
until at most two vertices are left isolated. Let Ef be the set of edges selected in
this phase. The graph G5 = (V, E{ U E} U E%) consists of trees on three or more
vertices, isolated edges, and at most two isolated vertices.

In phase 4 edges are selected that connect two isolated edges in Gz, consti-
tuting the set Ej. The resulting graph is G4.

Finally, in phase 5 edges are selected that connect the remaining isolated
edges and at most one isolated vertex to trees in G4, constituting the set Ef.

We are now ready to prove Theorem 4.1.
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Figure 8: Worst-case instance for the greedy algorithm for the TCP2

The edges that are isolated at the start of phase 4 were already isolated at
the end of phase 2. Thus, reversing phases 3 and 4 does not change the outcome
of the greedy algorithm. After phases 1, 2, and 4, the components of the graph
G, = (V,E{ U E} U E)}) are paths of length 3 or 2, isolated edges, and isolated
vertices. We denote their number by c4, c3, ¢z, and c;, respectively, where the
index denotes the number of vertices in the components. In phases 3 and 5, all
isolated edges and all but one of the isolated vertices in Gy are connected to one
of the paths in G;. Therefore, the size of the greedy test cover is

79 =3cs+2c3+ o+ (c2+ 1 — 1) =3es + 263 + 202 + ¢, — 1. (1)

Theorem 4.2 together with 7* < (m — 1)/3 implies that 7* > 2(m — 1)/3.
Since m = 4¢4 + 3¢z +2¢2 + ¢1, we have

2
> 5(404 +3c3+2c2+c¢ —1). (2)

To obtain another lower bound on 7%, we consider the graph G again. Each of
its isolated edges and each of its isolated vertices except one needs an adjacent
edge in any test cover. Moreover, no pair of isolated edges or vertices can be
combined by an extra edge into a path of length 2 or 3, as otherwise this would
have been done in phase 2 or phase 4. Hence,

T > 2¢ ¢ — 1. (3)

Adding 9/8 times (2) and 2/8 times (3) and applying (1) yields
11
§T* > 304—{—%03 +20+¢ —1>79.

To show that the ratio is asymptotically tight, consider the graph given in
Figure 8. It consists of one isolated vertex and ¢ isomorphic components on
twelve vertices each. The number displayed at an edge indicates the phase in
which the edge is selected by the greedy algorithm. The greedy test cover has
size 7¢ = 11c — 1. Since each of the large components can be covered by four
paths of length 2, we have 7* = 8c. Thus, lim._,, 7¢/7* = 11/8.
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