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s Subje
t Classi�
ation: 90B27.1 Introdu
tionThe input of the test 
over problem (TCP) 
onsists of a set of items, f1; : : : ;mg,and a 
olle
tion of tests, T1; : : : ; Tn � f1; : : : ;mg. A test Tj 
overs or di�eren-tiates the item pair fh; ig if either h 2 Tj or i 2 Tj , i.e., if jTj \ fh; igj = 1. Asub
olle
tion T � fT1; : : : ; Tng of tests is a test 
over if ea
h of the m(m� 1)=2item pairs is 
overed by at least one test in T . The obje
tive is to �nd a test
over of minimum 
ardinality, if one exists.The test 
over problem arises naturally in identi�
ation problems. Given aset of individuals and a set of binary attributes that may or may not o

ur inea
h individual, the goal is to �nd a minimum-
ardinality subset of attributes{ an optimal test 
over { that identi�es ea
h individual uniquely. That is, thein
iden
e ve
tor of ea
h individual with the test 
over is a unique binary signa-ture, distinguishing him or her from any other individual. The problem is alsoknown in the literature as the minimum test 
olle
tion problem [10℄ [4℄ and min-imum test set problem [15℄ [4℄. It arises 
ommonly in fault testing and diagnosis,pattern re
ognition, and biologi
al identi�
ation [15℄.This paper is the work of two independent groups of resear
hers. The �rstgroup was motivated, over twenty years ago, by a request from the Agri
ul-tural University in Wageningen, the Netherlands, 
on
erning the identi�
ationof potato diseases [13℄. Ea
h potato variety is vulnerable to a number of diseases.In order to diagnose diseases eÆ
iently, one wished to have a minimum sele
tionof varieties that dis
riminates between all diseases. This appli
ation involved 28diseases (items) and 63 varieties (tests).The problem 
ame to the attention of the se
ond group of resear
hers ina proje
t on protein identi�
ation by epitope re
ognition [6℄. It proposed anew approa
h of using a set of antibodies that re
ognize and bind spe
i�
allyto short peptide sequen
es, 
alled epitopes. Su
h an epitope 
an distinguishproteins that 
ontain it from those that do not. The epitopes are 
uores
entlytagged, so that the binding of antibodies to an unidenti�ed protein 
an bedete
ted. Thus the output is a binary ve
tor of dimension equal to the number ofantibodies, indi
ating to whi
h of the antibodies the protein is bound. The idea isto generate a set of antibodies with three properties: they re
ognize epitopes thatare shared by many proteins, the epitopes together 
over all possible proteinsin the organism's proteome, and ea
h protein is re
ognized by a unique subsetof antibodies. This leads to a test 
over problem, with proteins as items andantibodies as tests. The 
ited appli
ation involved about 6,000 proteins. Theeventual goal is to handle mu
h larger 
atalogues and, in parti
ular, the humanorganism, whi
h has between 40,000 and 100,000 proteins.Both problems were su

essfully atta
ked by a 
ombination of greedy andlo
al improvement algorithms. For the Dut
h problem, optimality of the result-2



ing solution was proved by a simple bran
h-and-bound algorithm, using a lowerbound based on the observation that, for distinguishing m items, one needsat least dlog2me tests, and a bran
hing s
heme preferring tests of size 
loseto m=2 to smaller or larger ones. This work inspired resear
h into the perfor-man
e of greedy and lo
al improvement algorithms for the problem and into its
omplexity and approximability. After two earlier reports [5℄ [12℄, the presentpaper gives a joint a

ount of our resear
h. A 
omplementary paper [2℄ dis
ussesoptimization algorithms for the test 
over problem.The TCP is NP-hard in the strong sense [4℄. Moret & Shapiro [15℄ establisheda strong relation between the TCP and the well-known set 
overing problem,and used it to prove that the greedy algorithm for the TCP has a worst-
aseperforman
e ratio to the optimum of �(logm). In Se
tion 2 we re
all theseresults, and we show that no polynomial-time algorithm for the TCP is likelyto have a lower-order performan
e ratio.In Se
tion 3 we 
onsider the 
ase that ea
h test 
ontains at most k items,where k is part of the input. This is a 
ommon restri
tion for the TCP. Forthe above protein identi�
ation problem the novelty of the approa
h is theutilization of antibodies that bind to many proteins. However, most knownantibodies bind spe
i�
ally to protein fragments, whi
h justi�es interest in theTCP with small tests. We give an O(log k)-approximation algorithm for theTCP with no more than k items per test.In Se
tion 4 we turn to the spe
ial 
ase that ea
h test 
ontains at mosttwo items, denoted by TCP2. We formulate it as an optimization problem on agraph and derive a performan
e ratio of 11=8 for the natural greedy algorithm;the proof is given in Appendix A. We then relate the TCP2 to the problemof pa
king paths of length 2 in a graph, whi
h implies its NP-hardness. (TheTCP2 has been stated to be solvable in polynomial time [4℄, a 
laim that waswithdrawn due to our work [9℄.) The relation between the two problems 
arriesover to approximation bounds. In fa
t, the greedy algorithm for the path pa
kingproblem gives an algorithm for the TCP2 with performan
e ratio 4=3, whi
h isbetter than 11=8. We prove that both problems are APX-hard and hen
e do nothave a polynomial-time approximation s
heme unless P = NP.Finally, in Se
tion 5 we present a series of lo
al improvement heuristi
s forthe path pa
king problem and the TCP2. Ea
h next heuristi
 in the seriessear
hes over a larger neighborhood. An analysis of these heuristi
s is givenin a 
ompanion paper [1℄, whi
h adds to the growing body of literature onperforman
e guarantees for lo
al sear
h.2 The general TCPThe TCP has a natural reformulation as a 
ut 
overing problem on a 
ompletegraph. Items 
orrespond to verti
es and item pairs to edges. Ea
h test de�nes a
ut, 
onsisting of the item pairs 
overed by the test. The obje
tive is to �nd aminimum-size sub
olle
tion of those 
uts whose union is the 
omplete edge set.The 
ut 
overing problem 
an in turn be formulated as a set 
overing problem3



(SCP). In the SCP, given a set of M elements and a 
olle
tion of N subsets,one wishes to �nd a minimum-size sub
olle
tion of subsets whose union is theentire set. Obviously, edges 
orrespond to elements and 
uts to subsets. Startingwith a TCP instan
e with m items and n tests, one obtains an equivalent SCPinstan
e withM = m(m�1)=2 elements andN = n subsets.As a 
onsequen
e, algorithms for the SCP also apply to the TCP. The greedyalgorithm for the SCP, whi
h iteratively sele
ts a subset 
overing the largestnumber of yet un
overed elements, has a performan
e ratio 1 + lnM [8℄ [14℄. Itdire
tly gives a greedy algorithm for the TCP, always 
hoosing a test 
overing thelargest number of un
overed pairs, with performan
e ratio 1+2 lnm [15℄ [10℄.Moret & Shapiro [15℄ showed, 
onversely, how to redu
e the SCP to theTCP. They observe that this alternative strong NP-hardness proof pre
ludesthe existen
e of a fully polynomial-time approximation s
heme, unless P = NP,and also use the redu
tion to show that the performan
e ratio of the greedyalgorithm is tight up to a 
onstant fa
tor. We repeat their redu
tion here.Consider an SCP instan
e with elements f1; : : : ;Mg and subsets S1; : : : ; SN .Constru
t a TCP instan
e with m = 2M items and N + dlog2Me tests, asfollows. For ea
h element i 
reate a female item fi and a male item mi. For ea
hsubset Sj de�ne a test Tj = ffi : i 2 Sjg. In addition, introdu
e a minimum-size
olle
tionM of tests that 
overs all pairs of male items; note that dlog2Me testsare ne
essary and suÆ
ient for this purpose. Finally, if a test in M 
ontains anitemmi, put its partner fi in the test as well. See Figure 1.We 
laim that there is a set 
over of size at most � if and only if there isa test 
over of size at most � + dlog2Me. Any test 
over must in
lude M, asthere is no other way to 
over the male pairs. M also 
overs the female pairsand the mixed pairs with nonequal index values. Any other tests are of type Tjand only serve to 
over pairs of type (fi;mi). Sin
e the tests Tj only 
ontainfemale items, a 
olle
tion of su
h tests 
overs all pairs (fi;mi) (i = 1; : : : ;M) ifand only if the 
orresponding subsets form a set 
over. That is, S is a set 
overS1 S2 S3 M T1 T2 T311 1 11100 000 1 11 111 11
00 0000 00 0 00 00000 0 000

1 11 1 11101 0 000234 f1f3f4m1m3m4
1 f2

m2Figure 1: Redu
tion from SCP to TCP4



if and only ifM[fTj jSj 2 Sg is a test 
over.This argument not only shows that the TCP is NP-hard. Also inapproxima-bility results for the SCP 
arry over to the TCP. However, if we apply the aboveredu
tion to the 
lass of bad SCP instan
es due to Johnson [8℄, on whi
h thegreedy algorithm a
hieves a logarithmi
 performan
e ratio, then we obtain a
lass of TCP instan
es on whi
h the greedy solution is within a 
onstant fa
-tor of the optimum, due to the presen
e of the tests in M. Following Moret &Shapiro [15℄, given an SCP instan
e with M elements and N subsets, we makek = dlog22Me disjoint 
opies of it so as to obtain a multiplied SCP instan
e withkM elements and kN subsets. We then 
onstru
t a TCP instan
e with (k+1)Mitems and kN + dlog2Me tests, with kM female items 
orresponding to the el-ements, M additional male items, kN tests 
orresponding to the subsets, anddlog2Me \even splitting" tests. The original SCP instan
e has a solution of sizeat most � if and only if the multiplied instan
e has a solution of size at mostk�, and hen
e if and only if the TCP instan
e has a solution of size at mostk�+dlog2Me � k�(1+O(1= logM)).Now, if we were able to approximate the TCP optimum within a fa
tor of�, then we 
ould apply our method to the instan
e 
onstru
ted above, dividethe result by dlog22Me, and obtain an algorithm for the SCP with performan
eratio �(1 + O(1= logM)). We 
ite two inapproximability results for the SCP:No polynomial-time algorithm 
an have a performan
e ratio o(logM) unlessP = NP [17℄. And no su
h algorithm 
an have a performan
e ratio (1� �) lnM ,for any � > 0, unless NP � DTIME(M log logM ) [3℄.Theorem 2.1 The TCP has no polynomial-time algorithm with performan
ebound o(logm), unless P = NP, and no polynomial-time algorithm with perfor-man
e bound (1� �) lnm, for any � > 0, unless NP�DTIME(mlog logm).3 The TCP with tests of size at most kWe now 
onsider the TCP in whi
h ea
h test 
ontains at most k items, denotedby TCPk. We propose an algorithm with performan
e ratioO(log k).First note that a partial test 
over de�nes an equivalen
e relation on the setof items, where two items are equivalent if there is no test in the partial 
overthat di�erentiates them. The equivalen
e 
lasses are the subsets of pairwiseequivalent items.Our two-phase greedy algorithm pro
eeds as follows. In phase 1, given a TCPinstan
e, view it as an SCP instan
e with items as elements and tests as subsets,and apply the greedy algorithm for the SCP to �nd a set 
over SG. If SG is atest 
over, then stop. Otherwise, in phase 2 apply the greedy algorithm for theTCP to extend the partial test 
over SG to a 
omplete test 
over.Let �� and �� denote the size of an optimum set 
over and an optimum test
over for the item set, respe
tively. The greedy set 
over SG found in phase 1has size �G � (1+ln k)�� [8℄ [14℄. Sin
e any test 
over is a set 
over of all but atmost one of the items, we have �� � ��+1 and hen
e �G = O(log k)��.5



At the start of phase 2, ea
h equivalen
e 
lass 
ontains at most k items,be
ause ea
h item is in some test of SG and thereby di�erentiated from at leastm�k other items. It follows that any test 
overs at most k(k�1) more item pairs,so that the greedy test 
over found in phase 2 has size �G � (1+ln(k(k�1)))��[8℄ [14℄. The overall test 
over has size �G+�G = O(log k)��.Theorem 3.1 The two-phase greedy algorithm for TCPk has a performan
eratio O(log k).4 The TCP with tests of size at most 24.1 A problem on graphsThe rest of this paper is 
on
erned with the spe
ial 
ase that ea
h test 
ontainsat most two items, denoted by TCP2. We �rst argue that we may assume thatea
h test 
ontains exa
tly two items.Lemma 4.1 Any instan
e of the TCP with tests of size at most 2 
an betransformed into an instan
e of the TCP with tests of size exa
tly 2.Proof. Let T = fT1; : : : ; Tng, and let T � T be a minimum test 
over. Supposethat we have u items not 
ontained in any test in T with u 2 f0; 1g, v itemsg1; : : : ; gv with gt only 
ontained in the test fgtg 2 T, for t = 1; : : : ; v, and w itempairs fh1; i1g; : : : ; fhw; iwg with the property that, for t = 1; : : : ; w, fht; itg 2 T,fhtg 2 T, possibly fitg 2 T, and no other test 
ontains ht or it. If u+v+w > 0,then T 
ontains, without loss of generality, the �rst u + v + 2w � 1 tests fromfg1g; : : : ; fgvg; fh1g; fh1; i1g; : : : ; fhwg; fhw; iwg, leaving one item isolated.Ea
h item h not among those u + v + 2w ones has the properties that (a)there exists an item i su
h that fh; ig 2 T, and (b) for all su
h fh; ig there existsan fh0; i0g 2 T su
h that jfh; ig\fh0; i0gj = 1.We may assume without loss of generality that T does not 
ontain singletontests ex
ept the ones mentioned above. For suppose T 
ontains another singletontest fhg. As T is minimum, it does not 
ontain two tests fh; ig and fh; i0g. IfT 
ontains no test fh; �g, repla
e fhg by any test fh; ig 2 T, whi
h exists by(a). If by this a
tion h and i be
ome indistinguishable (i was apparently leftisolated), or if T already 
ontains a test fh; ig, repla
e fhg by the 
orrespondingtest fh0; i0g 2 T, see (b).By eliminating all u + v + 2w items involved, the tests that 
ontain them,and all other singleton tests, and adding one isolated item if u+ v +w > 0, weobtain an equivalent instan
e of the TCP2 with tests of size 2 only. �From now on we will restri
t our attention to the TCP2 with tests of sizeexa
tly 2. This TCP2 
an be formulated as an optimization problem on a graph,in whi
h the m items 
orrespond to verti
es and the n tests to edges. We obtainthe following 
hara
terization of test 
overs.6



Lemma 4.2 In a graph G = (V;E), a subset E0 � E is a test 
over if and onlyif the graph G0 = (V;E0) has no isolated edges and at most one isolated vertex.Proof. If E0 is a test 
over, then G0 = (V;E0) has at most one isolated vertex(an item with an all-zero signature) and no isolated edges (sin
e otherwise itsverti
es would not be di�erentiated). Conversely, a graph with these propertiessatis�es the 
ondition that, for any two verti
es, there is an edge in
ident toexa
tly one of them. �Note that this lemma also 
hara
terizes feasible instan
es of the TCP2. We willassume from now on that the instan
es that we 
onsider are feasible.A test 
over is minimal if no edge 
an be deleted from it without 
ausinginfeasibility. In addition to having the properties stated in Lemma 4.2, a minimaltest 
over is obviously a
y
li
. This implies the following.Lemma 4.3 In a graph G = (V;E), if E0 � E is a minimal test 
over, then atmost one of the 
omponents of G0 = (V;E0) is an isolated vertex and ea
h other
omponent is a tree of at least two edges.The greedy algorithm for the TCP2 iteratively sele
ts an edge that 
oversthe largest number of yet un
overed vertex pairs. In Appendix A we prove thefollowing performan
e bound for the greedy algorithm.Theorem 4.1 The greedy algorithm for the TCP2 has performan
e ratio 11=8.This bound is asymptoti
ally tight.4.2 Pa
king paths of length 2We will now examine the relation of the TCP2 to another optimization problemon a graph. In the problem of pa
king paths of length 2 (PPP2), we are given agraph on m verti
es, and we wish to �nd a maximum number of vertex-disjointpaths of length 2, leaving at least one vertex isolated. We will often use the termpath pa
king to indi
ate a feasible solution to the PPP2. Sin
e the problem ofpartitioning a graph into paths of length 2 is NP-
omplete [11℄ [4℄, the PPP2 isNP-hard.The seemingly arti�
ial 
ondition that any solution to the PPP2 has at leastone isolated vertex is mat
hed by the property that any solution to the TCP2has at most one isolated vertex. It is introdu
ed for the sake of a duality relationbetween the PPP2 and the TCP2, as elaborated below.Given a test 
over, we 
an easily �nd a path pa
king.Lemma 4.4 If a graph G = (V;E) has a minimal test 
over of size � , then ithas a path pa
king of size � = m� 1� � .Proof. Let E0 � E be the minimal test 
over. Suppose that the graph G0 =(V;E0) has k 
omponents. By Lemma 4.3, G0 is a forest, and hen
e � = jE0j =m�k. By the same lemma, we 
an sele
t a path of length 2 from ea
h but one ofthe 
omponents, and obtain a path pa
king of size � = k�1 = m�1�� . �7



A 
onverse relation holds as well. A path pa
king is maximal if no path 
an beadded to it.Lemma 4.5 If a graph G = (V;E) has a maximal path pa
king of size �, thenit has a test 
over of size � = m� 1� �.Proof. The graph indu
ed by the path pa
king 
ontains m � 3� isolated ver-ti
es. We distinguish two 
ases.(1) The path pa
king has a path in ea
h 
omponent of G. We extend it to atest 
over by su

essively 
onne
ting all but one of the isolated verti
es to one ofthe paths, and obtain a test 
over of size � = 2�+m�3��1 = m�1��.(2) The path pa
king has a path in ea
h but one 
omponent of G. (Sin
e Gis feasible, the 
omponent without a path has one or three verti
es.) We extendthe path pa
king to a test 
over by spanning a tree in the 
omponent without apath and 
onne
ting ea
h of the remaining isolated verti
es to one of the paths,and thus obtain a test 
over of size � = 2� +m� 3� � 1 = m� 1� �. �Given any algorithm that produ
es a maximal path pa
king, its extension to theTCP2 
onstru
ts a test 
over by the pro
edure in the above proof.Lemmas 4.4 and 4.5 together imply a relation between optimal solutionvalues to the TCP2 and the PPP2, and also allow us to relate the performan
eof approximation algorithms.Theorem 4.2 In a graph G = (V;E), the size �� of a maximum path pa
kingand the size �� of a minimum test 
over satisfy �� + �� = m� 1.Sin
e the PPP2 is NP-hard, it follows that the TCP2 is NP-hard too.Theorem 4.3 If the PPP2 has an algorithm with performan
e ratio �, thenthe TCP2 has an algorithm with performan
e ratio 3=2� �=2.Proof. Suppose algorithm A for the PPP2 satis�es �A � ���. Consider itsextension A0 to the TCP2. We know that �A0 + �A = m� 1 = �� + ��. Hen
e,�A0 = �� + �� � �A � �� + (1 � �)��. Sin
e 3�� � m � 1 = �� + ��, we have�� � ��=2 and thereby �A0 � �� + (1� �)��=2 = (3=2� �=2)��. �
Figure 2: Worst-
ase instan
e for the greedy algorithm for the PPP2
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The greedy algorithm for the PPP2 iteratively sele
ts a path of length 2 fromthe graph and deletes its verti
es and adja
ent edges. When the graph 
ontainsno path of length 2 or when it has at most three verti
es, the algorithm hasobtained a maximal path pa
king and terminates. A bad example is given bythe graph in Figure 2. The greedy algorithm may sele
t only one path of length2, whereas three is optimal. We show that this is the worst 
ase.Theorem 4.4 The greedy algorithm for the PPP2 has performan
e ratio 1=3.Its extension to the TCP2 has performan
e ratio 4=3. These bounds are tight.Proof. Any path of length 2 in the greedy solution interse
ts at most threepaths of length 2 in the optimal solution. Sin
e the greedy solution is maximal,either ea
h path in the optimal solution interse
ts a greedy path, whi
h impliesthe desired performan
e bound, or the greedy solution leaves exa
tly three ver-ti
es isolated that form a path of length 2, in whi
h 
ase the greedy solution isoptimal. Theorem 4.3 implies the bound for the extension to the TCP2. �Theorems 4.1 and 4.4 tell us that, for the TCP2, pi
king paths of length 2 atrandom gives a better guarantee than 
hoosing most distin
tive single edges.4.3 APX-hardnessWe will show that the PPP2 and thereby also the TCP2 is APX-hard. Ourresult will follow through a redu
tion from 3-dimensional mat
hing with at mostthree o

urren
es per element (3DM3): Given disjont sets X;Y; Z 
ontaining selements ea
h, and a set C of t triples in X � Y � Z, su
h that ea
h elementof X [ Y [ Z o

urs in at most three triples of C, �nd a maximum-
ardinalitymat
hing C 0 � C, i.e., a subset of triples su
h that no element ofX[Y [Z o

ursin more than one triple. For 3DM3, it is NP-hard to de
ide whether a maximummat
hing is perfe
t or misses a 
onstant fra
tion of the elements [16℄.Lemma 4.6 There exists a 
onstant � > 0 su
h that it is NP-hard to determinewhether an instan
e of the PPP2 has a path pa
king of size (m� 1)=3 or of sizeat most (1� �)(m� 1)=3.Proof. Given an instan
e of 3DM3, we 
reate a graph G with m = 6s+3t+1verti
es{ �xg ; xg for ea
h xg 2 X , �yh; yh for ea
h yh 2 Y , �zi; zi for ea
h zi 2 Z,{ 
xj ; 
yj ; 
zj for ea
h 
j 2 C,{ w, a vertex that will remain isolated,and n = 3s+ 5t edges{ f�xg ; xgg for ea
h xg 2 X , f�yh; yhg for ea
h yh 2 Y , f�zi; zig for ea
h zi 2 Z,{ fxg ; 
xj g; fyh; 
yj g; fzi; 
zjg for ea
h triple 
j = fxg ; yh; zig 2 C,{ f
xj ; 
yj g; f
yj ; 
zjg for ea
h 
j 2 C. 9
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tion of 3DM3 to PPP2We 
laim that G 
ontains 2s+ t vertex-disjoint paths of length 2 if and only ifthere exists a mat
hing of size s. The redu
tion is illustrated in Figure 3.If the instan
e of 3DM3 has a mat
hing C 0 of size s, then G 
ontains paths(�xg ; xg ; 
xj ), (�yh; yh; 
yj ), (�zi; zi; 
zj ) for ea
h triple 
j = fxg; yh; zig 2 C 0 and apath (
xj ; 
yj ; 
zj ) for ea
h triple 
j 2 CnC 0, giving a total number of 3s+(t�s) =2s+ t paths.Now, let a maximum mat
hing 
onsist of �� triples, and let an optimal pathpa
king P 
onsist of �� paths. P 
ontains element paths of type (�
; 
; 

) andtriple paths of type (
xj ; 
yj ; 
zj ); it is easy to see that other types of paths in anypath pa
king 
an be repla
ed by element paths. We will bound �� in terms of��. Let t0; t1; t2; t3 be the number of triples in C interse
ting 0; 1; 2; 3 elementpaths in P , respe
tively. Then,�� � t0 + t1 +2t2 +3t3 = t+ t2 +2t3 = t+ 12(2t2 +3t3) + 12t3 � t+ 32s+ 12��:The �rst equality holds be
ause t = t0+t1+t2+t3. The se
ond inequality followsfrom t1 + 2t2 + 3t3 � 3s (P 
ontains at most 3s element paths) and t3 � ��.Hen
e, if �� = 2s+ t, then �� = s.Let �0 > 0 be su
h that it is NP-hard to de
ide whether �� = s or �� �(1 � �0)s. Hen
e, it is NP-hard to de
ide whether �� = 2s + t = (m � 1)=3 or�� � 2s+ t� �0s=2 = (1� �)(m�1)=3, if we 
hoose � = �0s=(4s+2t). For 3DM3,we have t � 3s, so that � � �0=10. This 
ompletes the proof. �Lemma 4.6 and Theorem 4.2 imply the following.10



Theorem 4.5 The PPP2 and the TCP2 are both APX-hard.5 Lo
al improvement for PPP2 and TCP2In this �nal se
tion we propose a series of lo
al improvement algorithms for thePPP2. Ea
h next algorithm in the series starts from a maximal path pa
king,sear
hes over a larger neighborhood, and requires more time. Its extension to theTCP2, as des
ribed in Se
tion 4.2, transforms the lo
ally optimal path pa
kinginto a test 
over.The basi
 heuristi
, denoted H0, applies the greedy algorithm to obtain amaximal path pa
king. For k � 1, the kth heuristi
 in the series, denoted Hk,starts from a maximal path pa
king, and attempts to improve it by repla
ingany k paths of length 2 by k + 1 paths of length 2. This involves a 
ompletesear
h over all sets of k paths and, for ea
h su
h set, over all possibilities forimprovement. When no further improvements are found, Hk terminates. For�xed k, Hk runs in polynomial time. Hk is unlikely to run in time polynomial ink, sin
e then we 
ould �nd the optimum in polynomial time and P = NP.Let �k be the performan
e ratio of heuristi
 Hk, for k � 0. Obviously, �k isnonde
reasing in k. Theorem 4.4 states that �0 = 1=3. Here we will dis
uss �1,�2, �3, and �4.Theorem 5.1 The lo
al improvement algorithms H1, H2, H3, and H4 for thePPP2 have performan
e ratios �1 = 1=2, �2 = 5=9, �3 = 7=11, and �4 = 2=3.These bounds are tight.Hurkens & S
hrijver [7℄ 
onsider a series of analogous lo
al improvementalgorithms for the more general problem of pa
king vertex-disjoint subgraphson t verti
es in a given graph. Their work was, in fa
t, inspired by questionsabout the performan
e of our heuristi
s Hk. They derive a lower bound �kon the performan
e ratio of their kth heuristi
, and prove that it is tight if thesubgraph is a 
lique. In parti
ular, for t = 3,�k = ( 2�2(k+2)=2�33�2(k+2)=2�3 if k is even;2�2(k+1)=2�23�2(k+1)=2�2 if k is odd:problem k 0 1 2 3 4 5 6 7 8 � � � 1triangle pa
king �k 13 12 59 35 1321 1422 2945 3046 6193 � � � 23PPP2 �k 13 12 59 711 23TCP2 32 � �k2 43 54 119 1311 76Table 1: Performan
e ratios for lo
al improvement heuristi
s11



Figure 4: Worst-
ase instan
e for H1
Figure 5: Worst-
ase instan
e for H2
Figure 6: Worst-
ase instan
e for H3
Figure 7: Worst-
ase instan
e for H4Sin
e a path of length 2 is a subgraph on three verti
es, we know that �k � �k.Table 1 lists the values of �k (k � 0) for the problem of pa
king triangles,�k (k = 0; : : : ; 4) for the PPP2, and the 
orresponding ratios for the TCP2 thatare implied by Theorem 4.3. Note that �4 = limk!1 �k. The asymptoti
 valuelimk!1 �k remains open, but it is likely to be stri
tly smaller than 1, in viewof Theorem 4.5.Instan
es for whi
h H1, H2, H3, and H4 meet their 
laimed performan
eratios are given in Figures 4, 5, 6, and 7, respe
tively. In ea
h 
ase the dashed12



lines indi
ate a lo
ally optimal path pa
king, and the solid lines indi
ate a largerpa
king. Note that we have omitted the mandatory isolated vertex and that here,as well as in Figure 2, we 
an provide an in�nite family of worst-
ase instan
esby 
reating multiple 
opies of the graph.The upper bounds on �k provided by these examples mat
h the lower bounds�k for k = 1 and k = 2, whi
h proves part of Theorem 5.1. The proof for k = 3and k = 4 is more involved. We outline the general idea here, and refer to a
ompanion paper [1℄ for details. The argument may be extended to handle H5and H6, but we have not attempted to do so.Our approa
h to obtain lower bounds on �k is based on linear programming.Consider a graph G with a lo
ally optimal path pa
king P found by Hk andany other path pa
king Q. In order to show that jPj=jQj � �k, we may makethe following assumptions:{ G does not 
ontain other edges than those appearing in P and Q;{ jPj < jQj;{ ea
h path in P interse
ts at least one path in Q;{ ea
h path in Q interse
ts at least one path in P ;{ no set of three verti
es is 
overed by a P-path and by a Q-path;{ ea
h middle vertex of a P-path is 
overed by some Q-path.For every vertex that is both on a P-path and on a Q-path, we de�ne a label,whi
h expresses the intera
tion of its Q-path with the P-paths. Based on thislabeling we distinguish several types of P-paths. This leads to eight vertex labelsand 96 path types, 40 of whi
h 
an be ex
luded due to the above assumptions.For ea
h remaining path type we introdu
e a variable, denoting the fra
tion ofP-paths of that type in P . The variables add up to 1. Furthermore, the ratiojQj=jPj 
an be written as a linear 
ombination of these variables.By 
arefully analyzing 
on�gurations that 
an or 
annot be improved by Hk,we are able to formulate restri
tions on 
ertain 
ombinations of the variables.For instan
e, 
onsider a Q-path that interse
ts exa
tly one P-path, in exa
tlyone vertex. Su
h a vertex is labeled 1. It is immediate from the de�nition of H1that no path in P 
ontains two or three verti
es labeled 1. This observation setssixteen variables to 0.When des
ribing the 
onditions 
orresponding to 
on�gurations that are notimproved by H1, H2, H3, or H4, we end up with three, �ve, eight, or ten linear
onstraints, respe
tively. Maximizing the ratio under these 
onstraints provesTheorem 5.1, and yields fra
tions that are in agreement with the instan
es givenin Figures 4, 5, 6, and 7.A
knowledgmentWe are grateful to the referees, whose 
omments helped us to improve thepaper.
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overs the largest number of yet un
overed vertex pairs.To examine the options, 
onsider a partial test 
over E0 � E. Let Vk denotethe set of verti
es that lie in any 
omponent of G0 = (V;E0) of size k. Byadding an edge 
onne
ting h; i 2 V1 we 
over 2(jV1j � 2) more vertex pairs.An edge between h 2 V1 and i 2 V2 
overs jV1j more vertex pairs, whereas anedge between h 2 V1 and i 62 V1 [ V2 
overs jV1j � 1 more vertex pairs. Anedge between h; i 2 V2 
onne
ts two isolated edges and hen
e 
overs two morevertex pairs. Finally, an edge between h 2 V2 and i 62 V1 [ V2 
overs one morevertex pair.It follows that, as long as at least four verti
es are isolated, the greedyalgorithm will sele
t isolated edges. In phase 1 it 
onstru
ts a maximal mat
h-ing, leaving at least two verti
es isolated. (If it would 
ontinue adding edges tothe mat
hing until just one vertex remains isolated, then the latest edge 
ov-ered two more pairs, while 
onne
ting one of the three isolated verti
es to themat
hing would have 
overed three more pairs.) Let E01 be the set of edges inthe mat
hing.In phase 2 the greedy algorithm sele
ts edges that are in
ident to only oneedge in E01, thus 
reating paths of length 2 in the graph, until this is no longerpossible, or until only one vertex is left isolated. Let E02 be the set of edgessele
ted in this phase. After phase 2, the graph G2 = (V;E01 [ E02) 
onsists ofpaths of length 2, isolated edges, and isolated verti
es.In phase 3 edges are sele
ted that 
onne
t isolated verti
es to a path in G2,until at most two verti
es are left isolated. Let E03 be the set of edges sele
ted inthis phase. The graph G3 = (V;E01 [E02 [E03) 
onsists of trees on three or moreverti
es, isolated edges, and at most two isolated verti
es.In phase 4 edges are sele
ted that 
onne
t two isolated edges in G3, 
onsti-tuting the set E04. The resulting graph is G4.Finally, in phase 5 edges are sele
ted that 
onne
t the remaining isolatededges and at most one isolated vertex to trees inG4, 
onstituting the setE05.We are now ready to prove Theorem 4.1.15
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Figure 8: Worst-
ase instan
e for the greedy algorithm for the TCP2The edges that are isolated at the start of phase 4 were already isolated atthe end of phase 2. Thus, reversing phases 3 and 4 does not 
hange the out
omeof the greedy algorithm. After phases 1, 2, and 4, the 
omponents of the graphG04 = (V;E01 [ E02 [ E04) are paths of length 3 or 2, isolated edges, and isolatedverti
es. We denote their number by 
4, 
3, 
2, and 
1, respe
tively, where theindex denotes the number of verti
es in the 
omponents. In phases 3 and 5, allisolated edges and all but one of the isolated verti
es in G04 are 
onne
ted to oneof the paths in G04. Therefore, the size of the greedy test 
over is�G = 3
4 + 2
3 + 
2 + (
2 + 
1 � 1) = 3
4 + 2
3 + 2
2 + 
1 � 1: (1)Theorem 4.2 together with �� � (m � 1)=3 implies that �� � 2(m � 1)=3.Sin
e m = 4
4+3
3+2
2+
1, we have�� � 23(4
4 + 3
3 + 2
2 + 
1 � 1): (2)To obtain another lower bound on ��, we 
onsider the graph G04 again. Ea
h ofits isolated edges and ea
h of its isolated verti
es ex
ept one needs an adja
entedge in any test 
over. Moreover, no pair of isolated edges or verti
es 
an be
ombined by an extra edge into a path of length 2 or 3, as otherwise this wouldhave been done in phase 2 or phase 4. Hen
e,�� � 2
2 + 
1 � 1: (3)Adding 9=8 times (2) and 2=8 times (3) and applying (1) yields118 �� � 3
4 + 94
3 + 2
2 + 
1 � 1 � �G:To show that the ratio is asymptoti
ally tight, 
onsider the graph given inFigure 8. It 
onsists of one isolated vertex and 
 isomorphi
 
omponents ontwelve verti
es ea
h. The number displayed at an edge indi
ates the phase inwhi
h the edge is sele
ted by the greedy algorithm. The greedy test 
over hassize �G = 11
 � 1. Sin
e ea
h of the large 
omponents 
an be 
overed by fourpaths of length 2, we have �� = 8
. Thus, lim
!1 �G=�� = 11=8.16


