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Consider the following problem: given a set system (U,�) and an edge-weighted graph G = (U, E) on the
same universe U , find the set A ∈ � such that the Steiner tree cost with terminals A is as large as possible—
“which set in � is the most difficult to connect up?” This is an example of a max-min problem: find the set
A ∈ � such that the value of some minimization (covering) problem is as large as possible.

In this article, we show that for certain covering problems that admit good deterministic online algorithms,
we can give good algorithms for max-min optimization when the set system � is given by a p-system or
knapsack constraints or both. This result is similar to results for constrained maximization of submodular
functions. Although many natural covering problems are not even approximately submodular, we show that
one can use properties of the online algorithm as a surrogate for submodularity.

Moreover, we give stronger connections between max-min optimization and two-stage robust optimization,
and hence give improved algorithms for robust versions of various covering problems, for cases where the
uncertainty sets are given by p-systems and knapsack constraints.
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1. INTRODUCTION

Recent years have seen a considerable body of work on the problem of constrained
submodular maximization: you are given a universe U of elements, a collection � ⊆ 2U

of “independent” sets, and a submodular function f : 2U → R≥0, and the goal is to solve
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the optimization problem of maximizing f over the “independent” sets:

max
S∈�

f (S). (Max-f )

It is a classical result that when f is a linear function and (U,�) is a matroid, the greedy
algorithm solves this exactly. Furthermore, results from the mid-1970s [Nemhauser
et al. 1978; Fisher et al. 1978] tell us that when f is monotone submodular and (U,�)
is a partition matroid, the problem becomes NP-hard, but the greedy algorithm is
an e

e−1 -approximation In fact, greedy is a 2-approximation for monotone submodular
maximization subject to any matroid constraint. Recent results have shed more light
on this problem: it is now known that when f is a monotone submodular function and
(U,�) is any matroid, there exists an e

e−1 -approximation algorithm [Călinescu et al.
2011]. We can remove the constraint of monotonicity and also generalize the constraint
� substantially: the most general results [Călinescu et al. 2011; Kulik et al. 2013;
Lee et al. 2010a, 2010b; Gupta et al. 2010] say that if f is a nonnegative submodular
function, and if � is a p-system,1 then one can approximate Max- f to within a factor
of O(p). Moreover, if � is the intersection of O(1) knapsack constraints, then one can
approximate Max- f to within a constant factor.

Given this situation, it is natural to ask: for which broad classes of functions can
we approximately solve the Max- f problem efficiently? Say, subject to constraints �
that correspond to a p-system, or a small number q of knapsack constraints, or both.
Clearly this class of functions includes submodular functions. Does this class contain
other interesting classes of functions which may be far from being submodular?

In this paper we consider the case of “max-min optimization”: here f is a monotone
subadditive function defined by a minimization covering problem, a natural subset
of all subadditive functions. We show conditions under which we can do constrained
maximization over such functions f . For example, given a set system (U,F), define
the “set cover” function fSC : 2U → N, where fSC(S) is the minimum number of sets
from F that cover the elements in S. This function fSC is not submodular, and in fact,
we can show that there is no submodular function g such that g(S) ≤ fSC(S) ≤ α g(S)
for subpolynomial α. (See Section 6.) Moreover, note that in general we cannot even
evaluate fSC(S) to better than an O(log n)-approximation factor in polynomial time.
However, our results imply that maxS∈� fSC(S) can indeed be approximated well. In
fact, the result that one could approximately maximize fSC subject to a cardinality
constraint was given by Feige et al. [2007]; our results should be seen as building on
their ideas.

At a high level, our results imply that if a monotone function f is defined by a
(minimization) covering problem, if f is subadditive, and if the underlying covering
problem admits good deterministic online algorithms, then there exist good approxi-
mation algorithms for Max- f subject to p-systems and q knapsacks. All these terms
will be made formal shortly. The resulting approximation guarantee for the max-min
problem depends on the competitive ratio of the online algorithm, p and q. Moreover,
the approximation ratio improves if there is a better algorithm for the offline mini-
mization problem or if there is a better online algorithm for a fractional version of the
online minimization problem.

Robust Optimization. Our techniques and results imply approximation algorithms
for covering problems in the framework of robust optimization as well. In particular,
we consider the setting of two-stage demand-robust optimization. Here we are given
a set system (U,�) (called the uncertainty set) representing possible demands, and an

1A p-system is similar to, but more general than, the intersection of p matroids; it is formally defined in
Section 2.5.
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Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets 10:3

inflation parameter λ ≥ 1. The actual demand is some set A ∈ �. We want an algorithm
that performs actions in two stages: the first stage is before the demand realization
and the second stage is after the actual demand A ∈ � is observed. The action costs in
the second stage are a factor of λ larger than those in the first stage. The objective is
to minimize the worst-case cost, that is,

(cost of first-stage actions) + λ · max
A∈�

(cost of second-stage actions for A)

subject to the constraint that the two sets of actions “cover” the demand set A ∈ �. As
an example, in robust set cover, one is given another set system (U,F): the allowed
actions in the first and second stage are to pick some subcollections F1 ⊆ F and F2 ⊆ F ,
respectively; the notion of “coverage” is that the union of the sets in F1 ∪ F2 must
contain A. If λ > 1, actions are costlier in the second stage, and hence there is a natural
tension between waiting for the identity of A, and overanticipating in the first stage
without any information about A.

Note that the robust and max-min objectives are related, at least in one direction:
if λ = 1, there is no incentive to perform any actions in the first stage, in which case
the robust objective degenerates into a max-min objective. In this article, we show a
reduction in the other direction as well—if one can approximate the max-min problem
well and if the covering problem admits a good deterministic online algorithm, then we
get an algorithm for the robust optimization version of the covering problem as well.
Previously, Feige et al. [2007] gave a reduction from the robust set-cover problem to
the max-min set cover problem, in the special case when � = (U

k

)
; this result was based

on a suitable LP-relaxation. Our reduction extends this in two ways: (a) the constraint
sets � can now be intersections of p-systems and q knapsack constraints, and (b)
more importantly, the reduction applies not only to set cover, but to many subadditive
covering problems (those with deterministic online algorithms).

Our Results and Techniques. Our algorithm for the max-min problem is based on the
observation that the cost of a deterministic online algorithm for the underlying covering
problem defining f can be used as a surrogate for submodularity. Specifically, we show
that the greedy algorithm that repeatedly picks an element maintaining membership
in � and maximizing the cost of the online algorithm gives us a good approximation
to the max-min objective function, as long as � is a p-system. This result appears in
Section 3.1.

We also show how to reduce the problem of maximizing such a function over the
intersection of q knapsacks to nO(1/ε2) runs of maximizing the function over a single
partition matroid, at a loss of a q(1 + ε) factor. A variant of this reduction involves
nO(q/ε2) runs of maximizing over a partition matroid, at a loss of a (1 + ε) factor. These
reductions are fairly general and likely to be of interest in other contexts as well. These
appear in Section 3.2.

We then turn to robust optimization. In Section 4, we show that given a deterministic
online algorithm for the covering function f , and a max-min algorithm for f over
a family �, we get an algorithm for the two-stage robust version of the underlying
covering problem with uncertainty set �—the approximation guarantee depends on
the competitive ratio of the online algorithm as well as the approximation guarantee
of the max-min problem.

Note that we can obtain approximation algorithms for robust optimization problems
by combining the two results above: (i) using online algorithms to obtain max-min
algorithms and (ii) using max-min algorithms for robust optimization. In Section 5, we
give a more careful analysis that gives better approximation ratios than that obtained
by simply combining the results above.
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Finally, in Section 6, we show that some common covering problems (vertex cover,
set cover, and multicut) give rise to functions f that cannot be well approximated (in a
multiplicative sense) by any submodular function. Still, these max-min problems admit
good approximation algorithms by our results in Section 3.

1.1. Related Work

Constrained submodular maximization problems have been very widely stud-
ied [Nemhauser et al. 1978; Fisher et al. 1978; Sviridenko 2004; Călinescu et al. 2011;
Vondrák 2008; Kulik et al. 2013]. However, as we mentioned above, some of the cov-
ering problems we consider are far from submodular. Interestingly, in a recent paper
on testing submodularity [Seshadhri and Vondrák 2011], the authors conjectured that
the success of greedy maximization algorithms may depend on a more general property
than submodularity; this work provides further corroboration for this, since we show
that in our context online algorithms can serve as surrogates for submodularity.

The study of approximation algorithms for robust optimization was initiated
by Dhamdhere et al. [2005] and Golovin et al. [2006]: they studied the case when
the scenarios were explicitly listed, and they gave constant-factor approximations for
several combinatorial optimization problems. See also the surveys [Ben-Tal et al. 2009;
Bertsimas et al. 2011] on robust optimization.

Feige et al. [2007] introduced the k-max-min and k-robust set cover problems, which
correspond to � = (U

k

)
, that is, “cardinality-constrained” uncertainty sets. This was

the first setting with an exponential number of scenarios in the uncertainty set for
which good approximation algorithms were obtained. They gave an O(log mlog n)-
approximation algorithm for both versions, where m and n are the numbers of sets and
elements. They also showed an �( log m

log log m) hardness of approximation for k-max-min
(and k-robust) set cover. The algorithm for k-max-min set cover [Feige et al. 2007] used
the connection to online algorithms; our results for max-min optimization build on this
by handling more general covering problems and sets �. To the best of our knowledge,
none of the max-min problems other than min-cut have been studied earlier; note that
the min-cut function is submodular, and hence the associated max-min problem can
be solved using submodular maximization. The algorithm for k-robust set cover [Feige
et al. 2007] used their k-max-min algorithm within an LP-rounding approach (see
also Shmoys and Swamy [2004]) to get the same O(log mlog n)-approximation guaran-
tee. As mentioned earlier, our approach is different (we use online algorithms directly
for robust optimization), and hence it applies to many other covering problems.

Khandekar et al. [2013] noted that this LP-based technique does not imply good
results for k-robust Steiner tree and developed new combinatorial constant-factor ap-
proximations for k-robust versions of Steiner tree, Steiner forest on trees, and facility
location, again for the cardinality-constrained case.

We investigate many of these covering problems in the cardinality-constrained case
of both the max-min and robust models in the companion paper [Gupta et al. 2014] and
obtain approximation ratios significantly better than the online competitive factors.
The algorithms and analysis in Gupta et al. [2014] rely crucially on the structure of the
cardinality uncertainty sets, and it is not clear if they can be extended to the setting of
this article. On the other hand, the goal in this article is to give a framework for robust
and max-min optimization under general uncertainty sets.

2. PRELIMINARIES

2.1. Deterministic Covering Problems

A covering problem � has a ground-set E of elements with costs c : E → R+ and n
covering requirements (often called demands or clients), where the solutions to the i-th
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requirement are specified—possibly implicitly—by a family Ri ⊆ 2E which is upwards
closed.2 Requirement i is satisfied by solution F ⊆ E if and only if F ∈ Ri. We use
[n] := {1, 2, . . . , n} to denote the set of covering requirements. The covering problem � =
〈E, c, {Ri}n

i=1〉 involves computing a solution F ⊆ E satisfying all n requirements and
having minimum cost

∑
e∈F ce. For example, in set cover, “requirements” are items to be

covered, and “elements” are sets to cover them with. In Steiner tree, requirements are
terminals to connect to the root and elements are the edges; in multicut, requirements
are terminal pairs to be separated, and elements are edges to be cut.

The min-cost covering function associated with � is:

f�(S) := min

{∑
e∈F

ce : F ∈ Ri for all i ∈ S

}
, ∀ S ⊆ [n].

2.2. Max-Min Problems

Given a covering problem � and a collection � ⊆ 2[n] of “independent sets,” the max-
min problem MaxMin(�) involves finding a set ω ∈ � for which the cost of the min-cost
solution to ω is maximized,

max
ω∈�

f�(ω).

2.3. Robust Covering Problems

This problem, denoted Robust(�), is a two-stage optimization problem, where elements
are chosen in either the first stage (at the given cost) or the second stage (at cost λ
times higher). In the second stage, some subset ω ⊆ [n] of requirements (also called
a scenario) materializes, and the elements bought in both stages must collectively
satisfy each requirement in ω. Formally, the input to problem Robust(�) consists of (a)
the covering problem � = 〈E, c, {Ri}n

i=1〉 as above, (b) an uncertainty set � ⊆ 2[n] of
scenarios (possibly implicitly given), and (c) an inflation parameter λ ≥ 1. A feasible
solution to Robust(�) is a set of first stage elements E0 ⊆ E (bought without knowledge
of the scenario), along with an augmentation algorithm that given any ω ∈ � outputs
Eω ⊆ E such that E0 ∪ Eω satisfies all requirements in ω. The objective function is to
minimize:

c(E0) + λ · max
ω∈�

c(Eω).

Given such a solution, c(E0) is called the first-stage cost and maxω∈� c(Eω) is the second-
stage cost.

Note that by setting λ = 1 in any robust covering problem, the optimal value of the
robust problem equals that of its corresponding max-min problem.

As in Gupta et al. [2014], our algorithms for robust covering problems are based on
the following type of guarantee.

Definition 2.1. An algorithm is (α1, α2, β)-discriminating if and only if given as input
any instance of Robust(�) and a threshold T , the algorithm outputs

• a set 	T ⊆ E, and
• an algorithm AugmentT : � → 2E,

2A family R of subsets is called upwards closed if for each S ∈ R and T ⊇ S we also have T ∈ R. Similarly,
R is called downwards closed if for each S ∈ R and T ⊆ S we also have T ∈ R.
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such that:

A. For every scenario D ∈ �,
(i) the elements in 	T ∪ AugmentT (D) satisfy all requirements in D, and

(ii) the resulting augmentation cost c(AugmentT (D)) ≤ β · T .
B. Let 	∗ and T ∗ (respectively) denote the first-stage and second-stage cost of an

optimal solution to the Robust(�) instance. If the threshold T ≥ T ∗, then the first
stage cost c(	T ) ≤ α1 · 	∗ + α2 · T ∗.

LEMMA 2.2 ([GUPTA ET AL. 2014]). If there is an (α1, α2, β)-discriminating algorithm for
a robust covering problem Robust(�), then for every ε > 0, there is a ((1 + ε) · max{α1,
β + α2

λ
})-approximation algorithm for Robust(�).

Although this lemma was only stated for k-robust uncertainty sets in Gupta et al.
[2014], its proof immediately extends to arbitrary uncertainty sets.

2.4. Desirable Properties of the Covering Problem

We now formalize certain properties of the covering problem � = 〈E, c, {Ri}n
i=1〉 that

are useful in obtaining our results. Given a partial solution S ⊆ E and a set X ⊆ [n] of
requirements, any set EX ⊆ E such that S ∪ EX ∈ Ri ∀i ∈ X is called an augmentation
of S for requirements X. Given X ⊆ [n] and S ⊆ E, define the min-cost augmentation
of S for requirements X as:

OptAug(X | S) := min{c(EX) | EX ⊆ E and S ∪ EX ∈ Ri, ∀i ∈ X}.

Also define Opt(X) := min{c(EX) | EX ⊆ E and EX ∈ Ri ∀i ∈ X} = OptAug(X | ∅), for
any X ⊆ [n].

An easy consequence of the fact that costs are nonnegative is the following:

PROPERTY 2.3 (MONOTONICITY). For any requirements X ⊆ Y ⊆ [n] and any solution
S ⊆ E, OptAug(X | S) ≤ OptAug(Y | S). Similarly, for any X ⊆ [n] and solutions
T ⊆ S ⊆ E, OptAug(X | S) ≤ OptAug(X | T ).

From the definition of coverage of requirements, we obtain:

PROPERTY 2.4 (SUBADDITIVITY). For any two subsets of requirements X, Y ⊆ [n] and any
partial solution S ⊆ E, we have:

OptAug(X | S) + OptAug(Y | S) ≥ OptAug(X ∪ Y | S).

To see this property: if FX ⊆ E and FY ⊆ E are solutions corresponding to OptAug(X | S)
and OptAug(Y | S) respectively, then FX ∪ FY ∪ S covers requirements X ∪ Y ; therefore,
OptAug(X ∪ Y | S) ≤ c(FX ∪ FY ) ≤ c(FX) + c(FY ) = OptAug(X | S) + OptAug(Y | S).

We assume two additional properties of the covering problem.

PROPERTY 2.5 (OFFLINE ALGORITHM). There is a polynomial time αoff-approximation
algorithm for the offline covering problem OptAug(X | S), for any S ⊆ E and X ⊆ [n].

An online algorithm for a covering problem � = 〈E, c, {Ri}n
i=1〉 is the following. It is

given in advance the ground-set E, cost function c, and the set [n] of possible covering
requirements. The actual subset of requirements arrive online one by one. The algo-
rithm must always maintain a feasible solution for the arrived requirements, and the
solution must be monotone (i.e., elements can only be added to the current solution).
The competitive ratio of an online algorithm is defined to be the maximum ratio (over
all input sequences τ ) of the algorithm’s cost to the optimal (offline) cost for covering
the requirements τ . We also require:
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PROPERTY 2.6 (ONLINE ALGORITHM). There is a polynomial-time deterministic αon-
competitive algorithm for the online version of � = 〈E, c, {Ri}n

i=1〉.
2.5. Models of Downward-Closed Families

All covering functions we deal with are monotone nondecreasing. So we may assume,
without loss of generality, that the collection � in both MaxMin(�) and Robust(�) is
downwards-closed, that is, A ⊆ B and B ∈ � ⇒A ∈ �. In this article, we consider the
following well-studied classes of downward-closed families.

Definition 2.7 (p-system). A downward-closed family � ⊆ 2[n] is called a p-system if
and only if:

maxI∈�(A) |I|
minJ∈�(A) |J| ≤ p, for each A ⊆ [n],

where �(A) denotes the collection of maximal subsets in {S ∈ � : S ⊆ A}.
Sets in � are called independent sets. We assume access to a membership-oracle, that

given any subset I ⊆ [n] returns whether or not I ∈ �.

Definition 2.8 (q-knapsack). Given q nonnegative functions w1, . . . , wq : [n] → R+
and capacities b1, . . . , bq ∈ R+, the q-knapsack constrained family is:

� =
{

A ⊆ [n] :
∑
e∈A

w j(e) ≤ bj, for all j ∈ {1, . . . , q}
}

.

These constraints model a rich class of downward-closed families. Some interesting
special cases of p-systems are p-matroid intersection [Schrijver 2003] and p-set
packing [Hurkens and Schrijver 1989; Berman 2000]; see the appendix in Călinescu
et al. [2011] for more discussion on p-systems. Jenkyns [1976] showed that the
natural greedy algorithm is a p-approximation for maximizing linear functions
over p-systems, which is the best-known result. Maximizing a linear function over
q-knapsack constraints is the well-studied class of packing integer programs (PIPs),
for example, Srinivasan [1999]. Again, the greedy algorithm is known to achieve an
O(q)-approximation ratio. When the number of constraints q is constant, there is a
PTAS [Frieze and Clarke 1984].

3. ALGORITHMS FOR MAX-MIN OPTIMIZATION

In this section, we give approximation algorithms for constrained max-min optimiza-
tion, that is, problem (Max- f ) where f is given by some underlying covering problem
and � is the intersection of a p-system and q-knapsack. We first consider the case
when � is a p-system. Then we show that any knapsack constraint can be reduced to
a 1-system (specifically a partition matroid) in a black-box fashion; this enables us to
obtain an algorithm for � being the intersection of a p-system and q-knapsack. The
results of this section assume Properties 2.4 and 2.6.

3.1. Algorithm for p-System Constraints

Algorithm 1 for the max-min problem is a greedy algorithm. However, it is relative to the
objective of the online algorithm Aon from Property 2.6 rather than the (approximate)
function value itself. For a sequence π of covering requirements, we let Aon(π ) ⊆ E
denote the solution constructed by the (deterministic) online algorithm Aon upon seeing
the input sequence π .

THEOREM 3.1. Assuming Properties 2.4 and 2.6 Algorithm 1 is a ((p + 1) αon)-
approximation algorithm for MaxMin(�) under p-systems.

ACM Transactions on Algorithms, Vol. 12, No. 1, Article 10, Publication date: November 2015.



10:8 A. Gupta et al.

ALGORITHM 1: Algorithm for MaxMin(� ) under p-system
Input: covering instance � that defines f and p-system �.
let current scenario A0 ← ∅, counter i ← 0, input sequence σ ← 〈〉;
while ( ∃e ∈ [n] \ Ai such that Ai ∪ {e} ∈ � ) do

ai+1 ← arg max{c(Aon(σ ◦ e)) − c(Aon(σ )) : e ∈ [n] \ Ai and Ai ∪ {e} ∈ �};
let σ ← σ ◦ ai+1, Ai+1 ← Ai ∪ {ai+1}, i ← i + 1 ;

end
let D ← Ai be the independent set constructed by the above loop;
Output: solution D.

PROOF. The proof of this lemma closely follows that in Călinescu et al. [2011] for sub-
modular maximization over a p-system. We use slightly more notation than necessary
since this proof will be used in the next section as well.

Suppose that the algorithm performed k iterations; let D = {a1, . . . , ak} be the ordered
set of elements added by the algorithm. Define σ = 〈〉, G0 := ∅, and Gi := Aon(σ ◦
a1 · · · ai) for each i ∈ [k]. Note that G0 ⊆ G1 ⊆ · · · ⊆ Gk. It suffices to show that:

OptAug(B | G0) ≤ (p + 1) · c(Gk \ G0) for every B ∈ �. (3.1)

This would imply Opt(B) ≤ (p + 1) · c(Gk) ≤ (p + 1) αon · Opt(D) for every B ∈ �, and
hence that D is the desired approximate solution. Also, c(Gk)/αon is output as the
(approximate) MaxMin(�) value.

We use the following claim proved in Călinescu et al. [2011], which relies on the
properties of a p-system.

CLAIM 3.2 ([CĂLINESCU ET AL. 2011]). Given p-system �, D = {a1, . . . , ak} ∈ � and any
B ∈ �, there exists a partition {Bi}k

i=1 of B such that for all i ∈ [k],

(1) |Bi| ≤ p, and
(2) For every e ∈ Bi, we have {a1, . . . , ai−1}

⋃{e} ∈ �.

For any sequence π of requirements and any e ∈ [n] define Aug(e; π ) := c(Aon(π ◦ e))−
c(Aon(π )). Note that this function depends on the particular online algorithm. From
the second condition in Claim 3.2, it follows that each element of Bi was a feasible
augmentation to {a1, . . . , ai−1} in the ith iteration of the while loop. By the greedy
choice,

c(Gi) − c(Gi−1) = Aug(ai; σ ◦ a1 · · · ai−1) ≥ max
e∈Bi

Aug(e; σ ◦ a1 · · · ai−1)

≥ 1
|Bi|

∑
e∈Bi

Aug(e; σ ◦ a1 · · · ai−1)

≥ 1
|Bi|

∑
e∈Bi

OptAug({e} | Gi−1) (3.2)

≥ 1
|Bi| · OptAug(Bi | Gi−1) (3.3)

≥ 1
p

· OptAug(Bi | Gi−1). (3.4)

Equation (3.2) is by the definition of Gi−1 = Aon(σ ◦ a1 · · · ai−1), Equation (3.3) uses the
subadditivity Property 2.4, and Equation (3.4) is by the first condition in Claim 3.2.
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Summing over all iterations i ∈ [k], we obtain:

c(Gk) − c(G0) =
k∑

i=1

Aug(ai; σ ◦ a1 · · · ai−1) ≥ 1
p

k∑
i=1

OptAug(Bi | Gi−1)

≥ 1
p

k∑
i=1

OptAug(Bi | Gk),

where the last inequality follows from monotonicity because Gi−1 ⊆ Gk for all i ∈ [k].
Using subadditivity Property 2.4, we get c(Gk) − c(G0) ≥ 1

p · OptAug(∪k
i=1 Bi | Gk) =

1
p · OptAug(B | Gk).

Let JB := arg min{c(J′) | J′ ⊆ E, and Gk ∪ J′ ∈ Re,∀e ∈ B}, that is, OptAug(B |
Gk) = c(JB). Observe that JB ∪ (Gk \ G0) is a feasible augmentation to G0 that covers
requirements B. Thus,

OptAug(B | G0) ≤ c(JB) + c(Gk \ G0) = OptAug(B | Gk) + c(Gk \ G0) ≤ (p + 1) · c(Gk \ G0).

This completes the proof.

3.2. Reducing Knapsack Constraints to Partition Matroids

In this section, we show that every knapsack constraint can be reduced to a suitable
collection of partition matroids. This property is then used to complete the algorithm for
MaxMin(�) when � is given by the intersection of a p-system a q-knapsack. Observe that
even a single knapsack constraint need not correspond exactly to a small p-system. For
example, the knapsack with weights w1 = 1 and w2 = w3 = · · · = wn = 1/n, and capacity
one is only an (n− 1)-system (since both {1} and {2, 3, . . . , n} are maximal independent
sets). However, we show that any knapsack constraint can be approximately reduced
to a partition matroid (which is a 1-system). The main idea in this reduction is an
enumeration method from Chekuri and Khanna [2005].

A partition matroid P on groundset [n] is given by a partition {P1, . . . , P} of [n] into
 parts with respective bounds n1, . . . , n ≥ 0. This implicitly defines a family I ⊆ 2[n]

of independent sets, where S ∈ I if and only if |S ∩ Pj | ≤ nj for all j ∈ {1, . . . , }. Notice
that independent sets of a partition matroid form a 1-system according to Definition 2.7.

LEMMA 3.3. Given any knapsack constraint
∑n

i=1 wi · xi ≤ B and fixed 0 < ε ≤ 1,
there is a polynomial-time computable collection of T = nO(1/ε2) partition matroids, with
I1, . . . , IT denoting the respective families of independent sets, such that:

(1) For every X ∈ ∪T
t=1It, we have

∑
i∈X wi ≤ (1 + ε) · B.

(2) {X ⊆ [n] | ∑
i∈X wi ≤ B} ⊆ ∪T

t=1It.

PROOF. Let δ = ε/6 and β = δB
n . Without loss of generality, we assume that

maxn
i=1 wi ≤ B. Partition the groundset [n] into G := � log(n/δ)

log(1+δ)� parts as follows.

Sk :=
{ {i ∈ [n] : wi ≤ β} if k = 0

{i ∈ [n] : β · (1 + δ)k−1 < wi ≤ β · (1 + δ)k} if 1 ≤ k ≤ G

Let T denote the number of nonnegative integer partitions of the number �G/δ� into G
parts. Note that

T :=
(�G/δ� + G − 1

G − 1

)
≤ exp(�G/δ� + G − 1) ≤ nO(1/δ2).
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We will define a collection of T partition matroids on [n], each over the partition
{S0, S1, . . . , SG}. For any integer partition τ = {Uk}G

k=1 of �G/δ� (i.e. ,Uk ≥ 0 are integers
and

∑
k Uk = �G/δ�), define a partition matroid Pτ that has bounds Nk(τ ) on each part

Sk, where

Nk(τ ) :=
{ ∞ if k = 0

� n·(Uk+1)
G·(1+δ)k−1 � if 1 ≤ k ≤ G .

We let Iτ denote the independent sets of Pτ . Clearly this collection of partition matroids
can be constructed in polynomial time for fixed ε. We now show that this collection
satisfies the two properties in the lemma.

(1) Consider any X ∈ Iτ , an independent set in some partition matroid Pτ . The total
weight of elements X ∩ S0 is at most n · β ≤ δ · B. For any group 1 ≤ k ≤ G, the weight
of elements X ∩ Sk is at most:

|X ∩ Sk| · β (1 + δ)k ≤ Nk(τ ) · β (1 + δ)k ≤ δ(1 + δ)(Uk + 1) · B
G

.

Hence, the total weight of all elements in X is at most:

δB+ δ(1 + δ)
B
G

·
(

G∑
k=1

Uk + G

)
≤ δB+ δ(1 + δ)

B
G

·
(

G
δ

+ 1 + G
)

≤ δB+ δ(1 + δ)
B
G

·
(

G
δ

+ 2G
)

≤ δB+ (1 + δ) · (B+ 2δ B)
≤ B+ 6δ B.

Above we use δ ≤ 1. Finally, since δ = ε/6, we obtain the first condition.
(2) Consider any Y ⊆ [n] that satisfies the knapsack constraint, that is,

∑
i∈Y wi ≤ B.

We will show that Y lies in Iτ , for some integer partition τ of �G/δ� as above. For each
1 ≤ k ≤ G let Qk denote the weight of elements in Y ∩ Sk, and Uk be the unique integer
that satisfies Uk · δB

G ≤ Qk < (Uk +1) · δB
G . Define τ to be the integer partition {Uk}G

k=1. We
have

∑
k Uk ≤ G/δ, which follows from the fact B ≥ ∑

k Qk ≥ δB
G · ∑

k Uk. By increasing
Uks arbitrarily so that they total to �G/δ�, we obtain a feasible integer partition τ . We
now claim that Y lies in Iτ . Since each element of Sk (for k ≥ 1) has weight at least
β · (1 + δ)k−1, we have

|Y ∩ Sk| ≤ Qk

β (1 + δ)k−1 ≤ (Uk + 1) · δB/G
(1 + δ)k−1 · δB/n

= n · (Uk + 1)
G · (1 + δ)k−1 .

Since |Y ∩ Sk| is integral, we obtain |Y ∩ Sk| ≤ � n·(Uk+1)
G·(1+δ)k−1 � ≤ Nk(τ ). Thus, Y ∈ Iτ and we

obtain the second condition.

3.3. Algorithm for p-System and q-Knapsack Constraints

Here we consider MaxMin(�) when � is the intersection of p-system M and a q-
knapsack (as in Definition 2.8). The idea is to reduce the q-knapsack to a single knap-
sack (losing factor ≈ q), then use Lemma 3.3 to reduce the knapsack to a 1-system, and
finally apply Theorem 3.1 on the resulting p + 1 system. Details appear below.

By scaling weights in the knapsack constraints, we may assume, without loss of
generality, that each knapsack has capacity exactly one; let w1, . . . , wq denote the
weights in the q knapsack constraints. We also assume, without loss of generality,
that each singleton element satisfies the q-knapsack; otherwise, such elements can
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be dropped from the groundset. The algorithm for MaxMin(�) under p-system and
q-knapsack constraints is as follows.

(1) Approximate the q-knapsack by a single knapsack with weights
∑q

j=1 w j and ca-
pacity q; applying Lemma 3.3 with ε = 1

2 on this knapsack, let {I j}L
j=1 denote the

independent sets of the resulting partition matroids. Note that L = nO(1).
(2) For each j ∈ {1, . . . , L}, define � j := M

⋂
I j .

(3) Run the algorithm from Theorem 3.1 under each p + 1 system {� j}L
j=1 to obtain

solutions {Ej ∈ � j}L
j=1.

(4) Let j∗ ← arg maxL
j=1 c(Aon(Ej)).

(5) Partition Ej∗ into {ωi}3q
i=1 such that each ωi ∈ �, as per Claim 3.5.

(6) Output ωi∗ where i∗ ← arg max3q
i=1 c(Aof f (ωi)). Here we use the offline algorithm

from Property 2.5.

Observe that in Step 2 of this algorithm, each � j is a (p + 1)-system since it is the
intersection of M which is a p-system and I j which is a 1-system (independent sets of
a partition matroid). We now establish the approximation ratio of this algorithm.

CLAIM 3.4. � ⊆ ∪L
j=1� j .

PROOF. For any ω ∈ �, we have
∑

e∈ω wi(e) ≤ 1 for all i ∈ [q]. Hence
∑

e∈ω

∑q
i=1 wi(e) ≤

q, i.e. it satisfies the combined knapsack constraint. Now by Lemma 3.3 (2), we obtain
ω ∈ ⋃L

j=1 I j .
Finally, since ω ∈ � ⊆ M, we have ω ∈ ∪L

j=1� j .

CLAIM 3.5. For each τ ∈ ∪L
j=1� j there is a polynomial-time computable collection

{ωi}3q
i=1 such that τ = ⋃3q

=1 ω, and ω ∈ � for all  ∈ [3q].

PROOF. Consider any τ ∈ � := ∪L
j=1� j . Note that τ ∈ M, so any subset of τ is also

in M (which is downwards-closed). We will show that there is a partition of τ into
{ω}3q

=1 such that each ω satisfies the q-knapsack. This suffices to prove the claim.
Since τ ∈ ⋃L

j=1 I j , by Lemma 3.3 (1) it follows that
∑

e∈τ

∑q
i=1 wi(e) ≤ 3

2q. Starting
with the trivial partition of τ into singleton elements, greedily merge parts as long
as each part satisfies the q-knapsack, until no further merge is possible. Note that
the trivial partition is indeed feasible since each element satisfies the q-knapsack.
Let {ω}r

=1 denote the parts in the final partition; we will show r ≤ 3q which would
prove the claim. Observe that for any pair {ω,ω′}, it must be that ω ∪ ω′ violates
some knapsack; therefore,

∑
e∈ω∪ω′

∑q
i=1 wi(e) > 1. Adding this inequality over the r

pairs {ω1, ω2}, {ω2, ω3}, · · · {ωr, ω1}, we obtain 2
∑

e∈τ

∑q
i=1 wi(e) > r. On the other hand,∑

e∈τ

∑q
i=1 wi(e) ≤ 3

2q, which implies r < 3q.

THEOREM 3.6. Assuming Properties 2.4, 2.5, and 2.6, there is an O((p + 1) (q +
1) αoff αon)-approximation algorithm for MaxMin(�) under a p-system and q-knapsack
constraint.

PROOF. Let Opt j denote the optimal value of MaxMin(�) under p + 1 system � j , for
each j ∈ [L]. By Claim 3.4, we have maxL

j=1 Opt j ≥ Opt, the optimal value of MaxMin(�)

under �. Observe that Theorem 3.1 actually implies c(Aon(Ej)) ≥ 1
p+2 · Opt j for each

j ∈ [q]. Thus, c(Aon(Ej∗ )) ≥ 1
p+2 · Opt; hence, Opt(Ej∗ ) ≥ 1

αon (p+2) · Opt. Now consider the
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partition {ωi}3q
i=1 of Ej∗ from Claim 3.5. By the subadditivity property,

∑3q
i=1 Opt(ωi) ≥

Opt(Ej∗ ); that is, there is some i′ ∈ [3q] with Opt(ωi′) ≥ 1
αon (p+2)(3q) · Opt. Thus, the i∗

found using the offline algorithm (Property 2.5) satisfies Opt(ωi∗ ) ≥ 1
αon αoff (p+2)(3q) · Opt.

The approximate MaxMin(�) value is c(Aof f (ωi∗ ))/αoff.

Remark: We can obtain a better approximation guarantee of O((p + 1) (q + 1) αon)
in Theorem 3.6 using randomization, but where the algorithm does not output the
approximate max-min value. The algorithm is same as the above, except for the last
step, where we output ω for  ∈ [3q] chosen uniformly at random. From the above
proof of Theorem 3.6, it follows that:

E[Opt(ω)] = 1
3q

3q∑
i=1

Opt(ωi) ≥ Opt(Ej∗ )
3q

≥ 1
αon (p + 2)(3q)

· Opt.

4. GENERAL FRAMEWORK FOR ROBUST COVERING PROBLEMS

In this section, we present an abstract framework for robust covering problems under
any uncertainty set �, as long as we are given access to offline, online, and max-min
algorithms for the base covering problem. Formally, this requires Properties 2.5, 2.6,
and the following additional property (recall the notation from Section 2).

PROPERTY 4.1 (MAX-MIN ALGORITHM). There is an αmm-approximation algorithm for
the max-min problem:

Given input S ⊆ E, MaxMin(S) := max
X∈�

min {c(A) | S ∪ A ∈ Ri,∀i ∈ X}.

THEOREM 4.2. Under Properties 2.4, 2.5, 2.6, and 4.1, Algorithm 2 is an O(αoff ·
αon · αmm)-approximation algorithm for the robust covering problem Robust(�) =
〈E, c, {Ri}n

i=1,�, λ〉.
PROOF. The algorithm proceeds as follows.

ALGORITHM 2: Algorithm Robust-with-General-Uncertainty-Sets
Input: Robust(�) instance and threshold T .
let counter t ← 0, initial online algorithm’s input σ = 〈〉, initial online solution F0 ← ∅;
repeat

set t ← t + 1;
let Et ⊆ [n] be the scenario returned by the algorithm of Property 4.1 on MaxMin(Ft−1);
let σ ← σ ◦ Et, and Ft ← Aon(σ ) be the current online solution;

until c(Ft) − c(Ft−1) ≤ 2αon · T ;
set τ ← t − 1;
Output: first-stage solution 	T := Fτ , and second-stage solution AugmentT where for any

ω ⊆ [n], AugmentT (ω) is the solution of the offline algorithm (Property 2.5) for the
problem OptAug(ω | 	T ).

Let 	∗ ⊆ E denote the optimal first stage solution (and its cost), and T ∗ the op-
timal second-stage cost; therefore, the optimal value is 	∗ + λ · T ∗ (notation as in
Definition 2.1). We prove the performance guarantee using the following claims.

CLAIM 4.3 (GENERAL 2ND STAGE). For any T ≥ 0 and X ∈ �,

• elements 	T
⋃

AugmentT (X) satisfy all the requirements in X, and
• c(AugmentT (X)) ≤ 2αoff · αmm · αon · T .
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PROOF. It is clear that 	T
⋃

AugmentT (X) satisfy all requirements in X. By the choice
of set Eτ+1 in the last iteration, for any X ∈ �, we have:

OptAug(X | Fτ ) ≤ αmm · OptAug(Eτ+1 | Fτ ) ≤ αmm · (c(Fτ+1) − c(Fτ )) ≤ 2αmm · αon · T

The first inequality is by Property 4.1, the second inequality uses the fact that Fτ+1 ⊇ Fτ

(since we use an online algorithm to augment Ft−1 to Ft),3 and the last inequality
follows from the termination condition of the repeat loop. Finally, since AugmentT (X)
is an αoff-approximation to OptAug(X | Fτ ), we obtain the claim.

CLAIM 4.4. Opt(∪t≤τ Et) ≤ τ · T ∗ + 	∗.

PROOF. Since each Et ∈ � (these are solutions to the MaxMin instances), the bound on
the second-stage optimal cost gives OptAug(Et | 	∗) ≤ T ∗ for all t ≤ τ . By subadditivity
(Property 2.4), we have OptAug(∪t≤τ Et | 	∗) ≤ τ · T ∗, which immediately implies the
claim.

CLAIM 4.5. Opt(∪t≤τ Et) ≥ 1
αon

· c(Fτ ).

PROOF. This follows directly from the competitiveness of the online algorithm in
Property 2.6.

CLAIM 4.6 (GENERAL 1ST STAGE). If T ≥ T ∗, then c(	T ) = c(Fτ ) ≤ 2 αon · 	∗.

PROOF. We have c(Fτ ) = ∑τ
t=1[c(Ft) − c(Ft−1)] > 2αonτ · T ≥ 2αonτ · T ∗ by the

termination condition. Combined with Claim 4.5, we have Opt(∪t≤τ Et) ≥ 2τ · T ∗. Now
using Claim 4.4, we have τ · T ∗ ≤ 	∗, and hence Opt(∪t≤τ Et) ≤ 2 · 	∗. Finally, using
Claim 4.5 again, we obtain c(Fτ ) ≤ 2αon · 	∗.

Claims 4.3 and 4.6 imply that the above algorithm is a (2αon, 0, 2αmmαonαoff)-
discriminating algorithm for the robust problem Robust(�) = 〈E, c, {Ri}n

i=1,�, λ〉. Now,
using Lemma 2.2, we obtain Theorem 4.2.

Explicit uncertainty sets. An easy consequence of Theorem 4.2 is for the explicit
scenario model of robust covering problems [Dhamdhere et al. 2005; Golovin et al.
2006], where � is specified as a list of possible scenarios. In this case, the MaxMin
problem can be solved using the αoff-approximation algorithm from Property 2.5, which
implies an O(α2

offαon)-approximation for the robust version. In fact, we can do slightly
better—observing that in this case the algorithm for second-stage augmentation is the
same as the Max-Min algorithm, we obtain an O(αoff ·αon)-approximation algorithm for
robust covering with explicit scenarios. As an application of this result, we obtain an
O(log n) approximation for robust Steiner forest with explicit scenarios, which is the
best result known for this problem.

5. ROBUST COVERING UNDER P-SYSTEM AND Q -KNAPSACK UNCERTAINTY SETS

Recall that any uncertainty set � for a robust covering problem can be assumed, without
loss of generality, to be downward-closed, that is, X ∈ � and Y ⊆ X implies Y ∈ �.
For example, in the k-robust model [Feige et al. 2007], � = {S ⊆ [n] : |S| ≤ k}. Hence,
it is of interest to obtain good approximation algorithms for robust covering when �
is specified by means of general models for downward-closed families. In this section,
we consider the two well-studied models of p-systems and q-knapsacks (Definitions 2.7
and 2.8).

3This is the technical reason we need an online algorithm. If instead we had used an offline algorithm to
compute Ft, then Ft �⊇ Ft−1, and we could not upper bound the augmentation cost OptAug(Et | Ft−1) by
c(Ft) − c(Ft−1).
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The result of this section says the following: if we can solve both the offline and online
versions of a covering problem well, we get good algorithms for Robust(�)under uncer-
tainty sets given by the intersection of p-systems and q-knapsack constraints. Naturally,
the performance depends on p and q; we note that this is unavoidable due to complexity
considerations. Based on Theorem 4.2, it suffices to give an approximation algorithm
for the max-min problem under p-systems and q-knapsack constraints; therefore, The-
orem 3.6 combined with Theorem 4.2 implies an O((p+1)(q+1) α2

on α2
off)-approximation

ratio. However, we can obtain a better guarantee by considering the algorithm for
Robust(�) directly. Formally, we show that:

THEOREM 5.1. Under Properties 2.4, 2.5, and 2.6, the robust covering problem
Robust(�)〈E, c, {Ri}m

i=1,�, λ〉 admits an O((p + 1) · (q + 1) · αoff · αon)-approximation
guarantee when � is given by the intersection of a p-system and q-knapsack constraints.

The outline of the proof is same as for Theorem 3.6. We first consider the case when
the uncertainty set is a p-system (Section 5.1). Then, using the reduction in Lemma 3.3,
we solve a suitable instance of Robust(�) under a (p + 1)-system uncertainty set.

5.1. p-System Uncertainty Sets

In this section, we consider Robust(�) when the uncertainty set � is some p-system.
The algorithm is a combination of the ones in Theorem 4.2 and Theorem 3.1. We start
with an empty solution and use the online algorithm to greedily try and build a scenario
of large cost. If we do find a scenario that has high cost, then we augment our current
solution to cover this scenario (again using the online algorithm) and continue. The
algorithm is given as Algorithm 3 below.

ALGORITHM 3: Algorithm Robust-with-p-system-Uncertainty-Sets
Input: Robust(�) instance and bound T .
let counter t ← 0, initial online algorithm’s input σ = 〈〉, initial online solution F0 ← ∅;
repeat

set t ← t + 1;
let current scenario At

0 ← ∅, counter i ← 0;
while (∃e ∈ [n] \ At

i such that At
i ∪ {e} ∈ �) do

ai+1 ← arg max{c(Aon(σ ◦ e)) − c(Aon(σ )) | e ∈ [n] \ At
i and At

i ∪ {e} ∈ �};
let σ ← σ ◦ ai+1, At

i+1 ← At
i ∪ {ai+1}, i ← i + 1;

end
let Et ← At

i be the scenario constructed by the above loop;
let Ft ← Aon(σ ) be the current online solution;

until c(Ft) − c(Ft−1) ≤ 2αon · T ;
set τ ← t − 1;
Output: first-stage solution 	T := Fτ , and second-stage solution AugmentT where for any

ω ⊆ [n], AugmentT (ω) is the solution of the offline algorithm (Property 2.5) for the
problem OptAug(ω | 	T ).

We first prove a useful lemma about the behavior of the while loop.

LEMMA 5.2 (MAX-MIN LEMMA). For any iteration t of the repeat loop, the scenario
Et ∈ � has the property that for any other scenario B ∈ �, OptAug(B | Ft−1) ≤ (p + 1) ·
c(Ft \ Ft−1).

PROOF. The proof is almost identical to that of Theorem 3.1.
Consider any iteration t of the repeat loop in Algorithm 3 that starts with a sequence

σ of elements (that have been fed to the online algorithm Aon). Let A = {a1, . . . , ak} be
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the ordered set of elements added by the algorithm in this iteration. Define G0 :=
Aon(σ ) and Gi := Aon(σ ◦ a1 · · · ai) for each i ∈ [k]. Note that Ft−1 = G0 and Ft = Gk, and
G0 ⊆ G1 ⊆ · · · ⊆ Gk. It suffices to show that OptAug(B | G0) ≤ (p + 1) · c(Gk \ G0) for
every B ∈ �. But this is precisely Equation (3.1) from the proof of Theorem 3.1.

COROLLARY 5.3 (SECOND STAGE). For any T ≥ 0 and B ∈ �,

• elements 	T
⋃

AugmentT (B) satisfy all the requirements in B, and
• c(AugmentT (B)) ≤ 2αoff · αon · (p + 1) · T .

PROOF. This is identical to Claim 4.3. Observe that 	T = Fτ = Aon(σ ), so the
first part of the corollary follows from the definition of AugmentT . By Lemma 5.2
and the termination condition, we have OptAug(B | Fτ ) ≤ (p + 1) · (c(Fτ+1) − c(Fτ )) ≤
2(p + 1)αon T . Now Property 2.5 guarantees that the solution AugmentT (B) found by
this approximation algorithm has cost at most 2αoff · αon · (p + 1) T .

It just remains to bound the cost of the first-stage solution Fτ . Below 	∗ denotes the
optimal first-stage solution (and its cost), and T ∗ is the optimal second-stage cost (as
in Definition 2.1). Therefore, the optimal cost is 	∗ + λ · T ∗.

LEMMA 5.4 (FIRST STAGE). If T ≥ T ∗, then c(	T ) = c(Fτ ) ≤ 2αon · 	∗.

PROOF. This is identical to Claim 4.6. For any set X ⊆ [n] of requirements, recall
that Opt(X) denotes the minimum cost to satisfy X. First, observe that Opt(∪t≤τ Et) ≤
τ · T ∗ + 	∗. This follows from the fact that each of the τ scenarios Et are in �, so the
bound on the second-stage optimal cost gives OptAug(Et | 	∗) ≤ T ∗ for all t ≤ τ . By
subadditivity (Property 2.4), we have OptAug(∪t≤τ Et | 	∗) ≤ τ · T ∗, which immediately
implies the inequality. Now, we claim that

Opt(∪t≤τ Et) ≥ 1
αon

· c(Fτ ) ≥ 1
αon

· 2αonτ · T ∗ = 2τ · T ∗. (5.5)

The first inequality follows directly from the competitiveness of the online algorithm
in Property 2.6. For the second inequality, we have c(Fτ ) = ∑τ

t=1[c(Ft) − c(Ft−1)] >
2αonτ · T ≥ 2αonτ · T ∗ by the termination condition. Putting the upper and lower
bounds on Opt(∪t≤τ Et) together, we have τ · T ∗ ≤ 	∗, and hence Opt(∪t≤τ Et) ≤ 2 · 	∗.
Using the competitiveness of the online algorithm again, we obtain c(Fτ ) ≤ 2αon ·	∗.

From Corollary 5.3 and Lemma 5.4, it follows that Algorithm 3 is (2αon, 0, 2αoff αon ·
(p + 1))-discriminating (Definition 2.1) to Robust(�). Thus, we obtain Theorem 5.1 for
the case q = 0.

5.2. Algorithm for p-Systems and q-Knapsacks

Here we consider Robust(�) when the uncertainty set � is the intersection of p-system
M and a q-knapsack. The algorithm is similar to that in Section 3.3. Again, by scaling
weights in the knapsack constraints, we may assume, without loss of generality, that
each knapsack has capacity exactly one; let w1, . . . , wq denote the weight functions
in the q knapsack constraints. We also assume, without loss of generality, that each
singleton element satisfies the q-knapsack. The algorithm for Robust(�) under � works
as follows.

(1) Consider a modified uncertainty set that is given by the intersection of M and the
single knapsack with weight function

∑q
j=1 w j and capacity q.

(2) Applying the algorithm in Lemma 3.3 to this single knapsack with ε = 1, let {I j}L
j=1,

denote the independent sets of the resulting partition matroids. Note L = nO(1).
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ALGORITHM 4: Modification to Algorithm 3 for unions of p-systems.
set t ← t + 1;
for ( j ∈ [L]) do

let current scenario Aj ← ∅ ;
while (∃e ∈ [n] \ Aj such that Aj ∪ {e} ∈ � j ) do

e∗ ← arg max{c(Aon(σ ◦ Aj ◦ e)) − c(Aon(σ ◦ Aj)) | e ∈ [n] \ Aj and Aj ∪ {e} ∈ � j} ;
Aj ← Aj ∪ {e∗} ;

end
Let � j ← c(Aon(σ ◦ Aj)) − c(Aon(σ )) ;

end
let j∗ ← arg max{� j | j ∈ [L]}, and Et ← Aj∗ ;
let σ ← σ ◦ Et and Ft ← Aon(σ ) be the current online solution ;

(3) For each j ∈ [L], define uncertainty-set � j := M
⋂

I j .
(4) Let � ← ∪L

j=1� j . Solve Robust(�) under � using the algorithm of Theorem 5.6.

As in the algorithm from Section 3.3, observe that here too each � j is a (p+1)-system.
Recall Claims 3.4 and 3.5, which hold here as well.

LEMMA 5.5. Any α-approximate solution to Robust(�) under uncertainty set � is a
(3qα)-approximate solution to Robust(�) under uncertainty-set �.

PROOF. As before, let 	∗ denote the optimal first-stage solution to Robust(�) under
� (and its cost), and let the T ∗ denote the optimal second-stage cost. The optimal value
Opt = 	∗ + λ · T ∗. Let τ ∈ � be any scenario, with partition {ωi}3q

i=1 given by Claim 3.5.
Using the subadditivity Property 2.4, we have OptAug(τ |	∗) ≤ ∑3q

=1 OptAug(ω|	∗) ≤
(3q) · T ∗. Thus, using 	∗ as the first-stage solution to Robust(�) under uncertainty-set
� results in an objective value at most 	∗ + λ · (3q) T ∗ ≤ 3q · Opt. In particular, the
optimal value of Robust(�) under � is at most 3q Opt.

Finally, Claim 3.4 implies that � ⊆ �; therefore, any solution to Robust(�) under �
is also a solution to Robust(�) under �, where the objective value may only decrease.
Thus, the lemma follows.

For solving Robust(�) under �, note that although � itself is not any p′-system,
it is the union of polynomially many (p + 1)-systems. We show below that a simple
extension of the algorithm in Section 5.1 also works for unions of p-systems; this would
solve Robust(�) under �.

THEOREM 5.6. There is an O((p + 1) αoff αon)-approximation algorithm for Robust(�)
when the uncertainty set is the union of polynomially many p-systems.

PROOF. Let � = ∪L
j=1� j denote the uncertainty set where each � j is a p-system. The

algorithm for Robust(�) under � is just Algorithm 3 where we replace the body of the
repeat-loop by Algorithm 4.

Fix any iteration t of the repeat loop. By Lemma 5.2 applied to each p-system � j ,

CLAIM 5.7. For each j ∈ [L], we have OptAug(B | Ft−1) ≤ (p + 1) · � j for every B ∈ � j .

By the choice of scenario Et and since � = ⋃L
j=1 � j , we obtain:

CLAIM 5.8. For any iteration t of the repeat loop and any B ∈ �, OptAug(B|Ft−1) ≤
(p + 1) · c(Ft \ Ft−1).
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Based on these claims and proofs identical to Corollary 5.3 and Lemma 5.4, we obtain
the same bounds on the first- and second-stage costs of the final solution Fτ . Thus our
algorithm is (2αon, 0, 2αoff αon · (p+ 1))-discriminating, which by Lemma 2.2 implies the
theorem.

Finally, combining Lemma 5.5 and Theorem 5.6, we obtain Theorem 5.1.
Remark: In Theorem 5.1, the dependence on the number of constraints describing

the uncertainty set � is necessary (under some complexity assumptions). We show
that the independent set problem on graphs is a special case of the robust covering
problem (with large p or q). Recall that in the independent set problem, we are given
an undirected graph G on n vertices with edge set F ⊆ ([n]

2

)
, and the objective is to

find a maximum cardinality subset S ⊆ [n] such that no edge has both endpoints in S.
Consider a very special case of the robustcovering problem on ground-set E := {ei}n

i=1
and requirements [n]. The requirement i ∈ [n] is satisfied if and only if the solution
contains ei. The cost function c on E is all ones, and the inflation parameter λ = 1.
The uncertainty set � is given by the intersection of p = |F| different cardinality
constraints, where for each edge (u, v) ∈ F, there is a constraint that “at most one of
the requirements {u, v} can appear.” Notice that � is precisely the set of independent
sets in graph G. In this case, the optimal value of the robust covering problem (which
is also the optimal max-min value) is exactly the optimal value of the independent set
instance G. The hardness result from Håstad [1999] now implies that the objective
value of this robust covering problem is �(p

1
2 −ε) hard to approximate. We note that this

hardness applies only to algorithms having running time that is polynomial in both |E|
and p; this is indeed the case for our algorithm.

Results for p-System and q-Knapsack Uncertainty Sets. We now list some specific re-
sults for robust covering under uncertainty sets described by p-systems and knapsack
constraints; these follow directly from Theorem 5.1 using known offline and (determin-
istic) online algorithms for the relevant problems.

Robust under
Problem Offline ratio Online ratio p-system, q-knapsack

Set Cover O(log m) O(log m · log n) O(pq · log2 m · log n)
Steiner Tree Steiner Forest 2 O(log n) O(pq · log n)
Minimum Cut 1 O(log3 n · log log n) O(pq · log3 n · log log n)
Multicut O(log n) O(log3 n · log log n) O(pq · log4 n · log log n)

The offline algorithms are: Steiner forest [Agrawal et al. 1995; Goemans and
Williamson 1995] and multicut [Garg et al. 1996]. The online algorithms are: set
cover [Alon et al. 2009], Steiner tree/forest [Imase and Waxman 1991; Berman and
Coulston 1997], and min-cut/multicut [Alon et al. 2006; Harrelson et al. 2003].

6. NONSUBMODULARITY OF SOME COVERING FUNCTIONS

In this section we show that some natural covering functions cannot be approximated
well (pointwise) by any submodular function. Formally, for f : 2U → R≥0 being a
monotone subadditive function, we define f to be α-approximately submodular if there
exists a submodular function g : 2U → R≥0 with g(S) ≤ f (S) ≤ α · g(S) for all S ⊆ U .

Recall the definition of a min-cost covering function from Section 2. We use [n] to
denote the set of covering requirements. Given a set system with universe [n] and
collection C of subsets of [n], define the min-set-cover function fSC as

fSC(S) := minimum number of subsets from C required to cover S, ∀S ⊆ [n].
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Similarly, given an undirected graph with [n] denoting a collection of terminal-pairs,
define the min-multicut function fMMC , which maps subset S ⊆ [n] to the minimum
number of edges whose deletion separates each pair of terminals in S.

PROPOSITION 6.1 ([IMMORLICA ET AL. 2008]). The min-set-cover and min-multicut func-
tions are not o(n1/4)-approximately submodular, where n is the number of covering
requirements.

PROOF. We show this result for the vertex cover problem, which is a special case of
set-cover as well as multicut (even on a star graph). The proof follows as a corollary of
a result from Immorlica et al. [2008], which gives a lower bound on the budget-balance
for cross-monotone cost allocations (the reader is not required to know the definition
of these terms). For the sake of completeness, we give a direct proof of the vertex-
cover covering function not being approximately submodular by adapting the proof
from Immorlica et al. [2008].

(For readers familiar with the notions of budget-balance and cross-monotonicity,
here is a shorter proof. Immorlica et al. [2008] showed that there is no subpolyno-
mial approximately-budget-balanced cross-monotone cost allocation for the vertex-
cover game. On the other hand, it is known (see Chapter 15.4.1 in Nisan et al. [2007])
that any submodular-cost game admits a budget-balanced cross-monotone cost allo-
cation. This also implies that any α-approximately submodular cost function admits
an α-approximate budget-balanced cross-monotone cost allocation. Thus, the vertex-
cover covering function is not approximately submodular, the precise bound following
from Immorlica et al. [2008].)

Now for the self-contained proof. Recall the vertex cover problem where, given an
undirected graph, the goal is to find a minimum cardinality set of vertices that covers
all edges (an edge is covered if either of its endpoints is chosen). Consider the vertex-
cover covering function fV C on a t-vertex complete graph, which is defined as follows.
The covering requirements are the n := (t

2

)
edges of the complete graph. For any subset

S of edges, define function fV C(S) to be the minimum cardinality of a vertex cover for
the edges S. Choose parameter m and set  := m2 and t := m+ 2.

Suppose that g is any submodular function satisfying g(S) ≤ fV C(S) ≤ α · g(S) for
all subsets S of edges. We will show that α ≥ m

3 . Below, for any subsets X and Y , we
denote gX(Y ) = g(X ∪ Y ) − g(X). By submodularity,

gX(Y ∪ Z) ≤ gX(Y ) + gX(Z), ∀ X, Y, Z ⊆ [n], Y ∩ Z = ∅. (6.6)

gX(Z) ≤ gY (Z), ∀ Y ⊆ X ⊆ [n], Z ⊆ [n] \ X. (6.7)

Consider the following random process. Pick a permutation π of [t] uniformly at ran-
dom. Let A denote the first m vertices in π , B the set of the next  vertices, and C the
remaining  vertices. Let b1, b2, . . . , b denote the ordered list of vertices in B; similarly
c1, c2, . . . , c the vertices in C. Define T = {(a, b) : a ∈ A, b ∈ B}, edges ei = (bi, ci) for
all i ∈ [], and M = {e1, e2, . . . , e}. Note that T and M are random sets.

By Equation (6.6), we have gT (M) ≤ ∑
i=1 gT ({ei}) for every possible T and M. Also,

gT (M) = g(T ∪ M) − g(T ) ≥ fV C(T ∪ M)
α

− fV C(T ) ≥ 

α
− m. (6.8)

The first inequality uses the fact that g is an α-approximation to fV C . The second
inequality follows from (i) fV C(T ) ≤ m, since A is a feasible vertex cover, and (ii)
fV C(T ∪ M) ≥ , since M is a matching of size .

Next we upper bound the expectation E[
∑

i=1 gT ({ei})]. First consider any term
gT ({ei}), which by Equation (6.7) is at most gTi ({ei}), where Ti = {(a, bi) : a ∈ A} ⊆ T .
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Notice that by symmetry, 〈Ti, ei〉 has an identical distribution for all i ∈ [], which is
the following:

Pick b ∈ [t] and A′ ⊆ [t] \ {b} of size m+ 1 randomly, then choose c ∈ A′ randomly.
Set Ti = {(a, b) : a ∈ A′ \ {c}} and ei = (b, c).

Therefore E[
∑

i=1 gTi ({ei})] =  · E[gT1 ({e1})]. Call a subset R ⊆ [n] of m+ 1 edges an
(m+ 1)-star if all edges in R have a common endpoint; in particular, the vertex cover
value fV C(R) = 1. Let N denote the number of (m+ 1)-stars. Note that for any (m+ 1)-
star R and any edge f ∈ R, we have Pr[T1 = (R \ { f }) ∧ e1 = f ] = p := 1

(m+1)N . For a
fixed (m+ 1)-star R, grouping those terms in E[gT1 ({e1})] that have T1 ∪ {e1} = R gives
us:

p ·
∑
f ∈R

gR\ f ({ f }) ≤ p · g(R) ≤ p. (6.9)

The second inequality is due to g(R) ≤ fV C(R) = 1, since R is a star. To see the first
inequality, let R = { f1, . . . , fm+1}. Then, by Equation (6.7),

∑
f ∈R

gR\ f ({ f }) ≤
m∑

j=0

g{ f1,..., f j }({ f j+1}) = g(R).

Using Equation (6.9), we obtain:

E

[
∑

i=1

gTi ({ei})
]

=  ·E[gT1 ({e1})] =  ·
∑

R :(m+1)-star

p ·
∑
f ∈R

gR\ f ({ f }) ≤  · p · N = 

m+ 1

Recall that by Equation (6.6), we have:

E

[
∑

i=1

gTi ({ei})
]

≥ E[gT (M)] ≥ 

α
− m,

the last inequality uses Equation (6.8), which holds for every outcome. Combining
the above two inequalities, it follows that α ≥ m+

+m2+m ≥ m/3. Recall that the number
of covering requirements in the vertex cover instance n = O(t2) = O(m4); therefore,
α = �(n1/4). Finally, since vertex cover is a special case of both set-cover and multicut,
the claim follows.

On the other hand, some other covering functions we considered are indeed approx-
imately submodular.

—The minimum-cut function ( fMC(S) = minimum cost cut separating vertices S from
a fixed root) is in fact submodular due to submodularity of cuts in graphs.

—The min-Steiner-tree ( fST (S) = minimum length tree that connects vertices S to a
fixed root) and min-Steiner-forest ( fSF(S) = minimum length forest connecting the
terminal-pairs in S) functions are O(log n)-approximately submodular. When the un-
derlying metric is a tree, these functions are submodular—in this case they reduce to
weighted coverage functions. Using probabilistic approximation of general metrics
by trees, we can write g(S) = ET ∈T [ f T (S)], where T is the distribution on dominating
tree-metrics (from Fakcharoenphol et al. [2004]) and f T is the Steiner-tree/Steiner-
forest function on tree T . Clearly, g is submodular. Since there exists T that approx-
imates distances in the original metric within factor O(log n) [Fakcharoenphol et al.
2004], it follows that g also O(log n)-approximates fST ( fSF , respectively).
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While approximate submodularity of the covering problem � (e.g., minimum-cut
or Steiner-tree) yields direct approximation algorithms for MaxMin(�), it is unclear
whether they help in solving Robust(�) (even under cardinality-constrained uncer-
tainty sets [Gupta et al. 2014]). On the other hand, the online-algorithms–based ap-
proach in this article solves both MaxMin(�) and Robust(�), for a large class of uncer-
tainty sets arising from p-systems and q-knapsacks.
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