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A b s t r a c t  

Given an undirected graph with two different nonnegative costs 
associated with every edge e (say, we for the weight and le for the 
length of edge e) and a budget L, consider the problem of finding 
a spanning tree of total edge length at most L and minimum total 
weight under this restriction. This constrained minimum spanning 
tree problem is weakly NP-hard. We present a polynomial-time ap- 
proximation scheme for this problem. This algorithm always pro- 
duces a spanning tree of total length at most (1 + e)L and of total 
weight at most that of any spanning tree of total length at most L, 
for any fixed e > 0. The algorithm uses Lagrangean relaxation, and 
exploits adjacency relations for matroids. 

K e y w o r d s :  Approximation algorithm, minimum spanning trees, La- 
grangean relaxation, adjacency relations. 

1 I n t r o d u c t i o n  

Given an undirected graph G = (V, E) and nonnegative integers le and 
We for each edge e E E,  we consider the problem of finding a spanning 
tree that  has low total  cost with respect to both the cost functions l and 
w. For convenience, we will refer to le and We of an edge e as its length 
and weight respectively. Thus the problem we consider is that  of finding 
a spanning tree with small total  weight and small total  length. 
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This is a bicriteria problem. A natural way to formulate such problems 
is to specify a budget on one of the cost functions and minimize the 
other objective under this constraint. The problem therefore becomes a 
capacitated problem. In this case, we can specify a budget L on the total 
length of the spanning tree and require a tree of minimum weight under 
this budget restriction. We call this problem the Constrained Minimum 
Spanning Tree problem. 

L e m m a  I . i  [i] The constrained minimum spanning tree problem is (weakly) 
NP-hard. 

Define an (c~, ~)-approximation for this problem as a polynomial-time 
algorithm that always outputs a spanning tree with total length at most 
c~L and of total weight at most/~W, where W is the minimum weight of 
any spanning tree of G of length at most L. In other words, W is the 
answer to the constrained minimum spanning tree problem formulated 
in the previous paragraph. Observe that the definition is not completely 
symmetric in the two cost functions; the quantity L is given. 

In this extended abstract, we first present a (2, 1)-approximation al- 
gorithm for the constrained minimum spanning tree problem. The al- 
gorithm is based on Lagrangean relaxation, and the proof of the perfor- 
mance guarantee exploits the fact that two adjacent spanning trees on 
the spanning tree polytope differ by exactly two edges (one in each tree). 
Moreover, this algorithm can be implemented in almost linear time using 
an elegant technique of Meggido [6]. 

We then refine the algorithm to derive an approximation scheme. The 
precise result is given below. 

T h e o r e m  1.2 For any fixed e > 0, there is a (1 + e, 1)-approximation 
algorithm for the constrained minimum spanning tree problem that runs in 
polynomial time. 

The same result holds if we replace the set of spanning trees by the 
bases of any matroid. 

Note also that the above approximation can be used to derive a (1, l +  
e)-approximation algorithm for the constrained minimum spanning tree 
problem that runs in pseudopolynomial time. This observation follows 
from more general arguments in [5]; we reproduce it here for completeness. 
In this latter problem, we must find a tree of length at most the budget 
L and of cost at most (1 + e) times the minimum weight of any tree of 
length at most L. The idea is to use the weights rather than the lengths 
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as the budgeted objective in the available algorithm. Consider running 
the given algorithm for all possible integral budget values on the weight 
of the tree to find a tree of approximately min imum length. Over all 
these runs, find the smallest value W ~ of the budget such that  the length 
of the tree output  is at most L. Since no smaller value of the budget 
on the weight of the tree gives a tree of length at most L, it must be 
the case that  W ~ is a lower bound on the weight of any spanning tree of 
length at most L. But the tree obtained by running the given algorithm 
with a weight budget of W t must have weight at most (1 + e)W ~, and 
therefore has the desired properties. Binary search can be used to speed 
up the determination of W ~ using O(log Wreak) invocations of the given 
approximation algorithm, where Wmax is the sum of the largest n - 1 
weights. 

R e l a t e d  w o r k  

Aggarwal, Aneja and Nair [1] studied the constrained minimum spanning 
tree problem; they prove weak NP-hardness and describe computational  
experience with an approach for exact solution. Guignard and Rosenwein 
[3] apply a special form of Lagrangean relaxation to solve to optimality 
the directed version of the problem we consider here, that  of finding 
constrained minimum arborescences. 

There have not been too many approximation algorithms for bicrite- 
ria problems. This may come from the fact that  capacitated problems 
are typically much harder than their uncapacitated counterparts. We 
mention here some work that  is closely related; see also [9] for additional 
references. Lin and Vitter [4] provided approximations for the s-median 
problem where s median nodes must be chosen so as to minimize the sum 
of the distances from each vertex to its nearest median. The solution 
output  is approximate in terms of both  the number of median-nodes used 
and the sum of the distances from each vertex to the nearest median. 
Shmoys and Tardos [10] studied the problem of scheduling unrelated par- 
allel machines with costs associated with processing a job on a given 
machine. Given a budget on the cost of the schedule, they presented an 
approximation algorithm for minimizing the makespan of the schedule. 
Both the papers mentioned above use a linear programming formulation 
of the respective problems and use different rounding methods to round 
a fractional solution to a feasible integral solution. Even though these 
methods employ linear programming, our approach is quite different. 

Recently, Marathe, R. Ravi, Sundaram, S.S. Ravi, Rosenkrantz and 
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Hunt studied several bicriteria network design problems in [5]. They 
presented a (2, 2)-approximation algorithm for the constrained minimum 
spanning tree problem using a parametric search method combined with 
a cost-scaling technique. Their method also yields approximation algo- 
ri thms for several bicriteria problems for which the two criteria are similar, 
i.e. bo th  the objectives are of the same type but  only differ in the cost 
function based on which they are computed. The constrained minimum 
spanning tree problem is such an example. Theorem 1.2 is an improve- 
ment of the result in [5] in two ways: the performance ratio is better, 
and the algorithm we present is strongly polynomial and does not de- 
pend on the magnitude of the costs assigned to edges. The method in [5] 
uses a cost-scaling approach and hence the running time depends on the 
magnitudes of the costs. 

In the next section, we review Lagrangean relaxation as applied to 
our problem. Then we present the approximation algorithm in Section 3, 
and describe a fast implementation in Section 4. 

2 Lagrangean relaxation 

Lagrangean relaxation is a classical technique to get rid of a set of "hard" 
constraints in an optimization problem. This gives lower bounds (for 
minimization problems) on the opt imum value. We refer the reader to 
Nemhauser and Wolsey [7] for a discussion of the method.  In this section, 
we consider the application of Lagrangean relaxation to the constrained 
minimum spanning tree problem. In a subsequent section, we will show 
how to derive from this Lagrangean relaxation a spanning tree of approx- 
imately minimum length and weight. 

Given a graph G = (V, E), let S denote the set of incidence vectors 
of spanning trees of G. The constrained minimum spanning tree problem 
can be formulated by the following optimization problem: 

( IP)  r r S 

Z lex  <_ L. (1) 
e c E  

Considering the budget constraint (1) as the complicating constraint, we 
can obtain a lower bound on the op t imum value W by duMizing it and 

W = Min 2_.,w~xe 
e c E  

subject to: 
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considering for any z _> 0 the following minimum spanning tree problem: 

l(z) = Min ~ ( W e + Z l e ) x e - z L  
eCE 

subject to: 

(Pz) x e  S. 

The value l(z) is clearly a lower bound on W since any spanning tree 
which satisfies the budget constraint would give an objective function 
value in (Pz) no higher than in (IP) .  We observe that  (Pz) is simply a 
min imum spanning tree problem with respect to the costs ce = We + zle. 
In order to get the best lower bound on W, we can maximize l(z) over 
all z > 0 to obtain: 

L R  = Maxz>0 l(z). 

We let z* denote the value of z which maximizes /(z), and let c* = 
we + z*le. It is well-known and easy to see that  l(z) is concave and 
piecewise linear. For an illustration, see Figure 1. 

l(z) 

LR 

w(T)  ...... 

tree 

= I (T)-  L 

Z 

Z ~ 

Figure 1: The plot of l(z) as z varies. Every spanning tree of weight 
w(T)  and length l(T) corresponds to a line with intercept w(T)  and slope 
l (T) - L. The plot above is the lower envelope of the lines corresponding 
to all spanning trees in the graph. 
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3 The approximation algorithm 

Our algorithm is based on solving the Lagrangean relaxation and deriving 
a good spanning tree out of it. Our main result will follow from the 
following theorem. 

T h e o r e m  3.1 Let O denote the set of spanning trees of minimum cost 
with respect to c*. There exists a spanning tree T 6 (9 of weight at most 
LR < W and of length less than L + lmaz where Imax = m a x e 6 E  le. 

P r o o f  o f  T h e o r e m  3.1:  

The weight w ( T )  of any tree T in 59 is equal to 

w ( T )  = [w(T) + z l (T)  - z i ]  - z ( l (T )  - L) = L R  - z ( l (T )  - L), 

and therefore is at most L R  if and only if l (T)  >_ L. 
We start  by establishing a well-known and simple proper ty  of 0 .  If 

we consider z = z* + e or z = z* - e for an arbitrari ly small e > 0, the 
op t imum spanning trees with respect  to we + zle must be contained in 0 .  
This implies that  (_9 must contain a spanning tree T< of length at most L. 
If not, we would have that  l(z* + e) > / ( z* ) ,  contradicting the opt imal i ty  
of z*. Similarly, there must exist a spanning tree T> of length at least L 
in (9. 

To derive the existence of a tree in O of length between L and L T l m a x ,  
we use the adjacency relationship on the spanning tree polytope  (the 
convex hull of incidence vectors of spanning trees) given in the following 
lemma. This adjacency relationship follows from the fact that  forests of 
a graph define a matroid, the graphic matroid. 

L e m m a  3.2 The spanning trees T and T I are adjacent on the spanning 
tree polytope if and only if they differ by a single edge swap, i.e. there exist 
e 6 T a n d  e ' E T ' s u c h t h a t T - e = T ' - e ' .  

By considering the op t imum face of the spanning tree poly tope  in- 
duced by the spanning trees in (9, this lemma implies that  if we have 
two op t imum spanning trees T and T '  then there must exist a sequence 
T = T0,T1, . . .  ,Tk = T'  of opt imum spanning trees such that  Ti and Ti+l 
are adjacent for i = 0 , . . . , k - 1 .  If we take T = T< a n d T '  = T>, we 
derive that  there must exist two adjacent spanning trees Ti and Ti+l bo th  
in (9 such that  l(Ti) <_ L and l(Ti+l) >_ L. But Ti and Ti+l differ only 
in one edge swap. Thus l(Ti+l) = l(Ti) + lei+l - le~ ~- l(Ti) + lmax where 
ei 6 Ti - Ti+l and ei+l 6 Ti+l  - Ti.  This shows that  Ti+l has length at 
least L and less than L + Imax, completing the proof. 
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3.1 H i g h - l e v e l  a l g o r i t h m  a n d  i t s  p e r f o r m a n c e  g u a r a n t e e  

Theorem 3.1 and its proof motivates the following algorithm. First of all, 
observe that  we can assume without loss of generality tha t  le <_ L for all 
edges e in G. Edges that  have higher values of le would never be included 
in a feasible solution and therefore can be discarded. Then,  compute the 
value z* solving the Lagrangean relaxation. Among all op t imum trees for 
the cost function ce = we + Z*le, find one that  satisfies the conditions of 
Theorem 3.1. Because we have pruned all edges with le > L, we have that  
Imax <_ L and, as a result, the tree output  has weight at most L R  < W 
and length at most 2L. Therefore, this constitutes a (2, 1)-approximation 
algorithm, provided we can implement the various steps of the algorithm. 

4 I m p l e m e n t a t i o n  

In this section, we show that  the (2, 1)-approximation algorithm can be 
implemented in almost linear time. In particular,  we sketch an imple- 
mentat ion that  runs in t ime O ( m l o g 2 n  + nlog3n) ,  where m = IEI and 
n = IYl. 

4.1 S o l v i n g  t h e  L a g r a n g e a n  r e l a x a t i o n  

In order to compute the value z*, we use an algorithm of Meggido [6]. 
We briefly summarize his elegant method here. 

For any value of z, we can compute a min imum spanning tree with 
respect to c = w + zl. We can also easily determine if z < z*, z = z* 
or z > z*. For this purpose, among all op t imum trees with respect to c, 
we can find the two trees Tmin and Tmax which have smallest and largest 
length. This can be done by using a lexicographic ordering of the edges 
instead of the ordering induced by c; for example, to compute  Train, we 
use the ordering (ce, 4)  < (c/, If) if ce < c/ or if ce = c/ and le < I/. 
Then  z < z* if l(Tm~n) > L, z > z* if l(Tmax) < L, and z is (a possible 
value for) z* otherwise. 

Meggido's approach is the following. Suppose we t ry  to find an op- 
t imum tree for the value z*, without knowing z*. For this purpose, we 
would like to sort the edges with respect to their costs at z*. Given two 
edges e and f ,  we can determine if c* < c~, c* = c~ or c~ > c~ without 
actually knowing z*! Indeed, we only need to determine the breakpoint,  
say zel, of the two linear functions ce and c/ as a function of z and de- 
termine i f z e /  < z*, zeI =- z* or ze/ > z*. This can be done by two 
minimum spanning tree computat ions (to determine Train and Tmax) at 
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the value ze/. Therefore, if we use an algorithm which makes O(m log m) 
comparisons to determine the ordering of the costs at z*, we will be able 
to determine z* by O(m log m) minimum spanning tree computations. 

However, Meggido proposed to do this much more efficiently. In- 
stead of using a serial sorting algorithm, we can use a parallel sorting 
Mgorithm which takes say O(logm) rounds and in each round make 
O(mlogm) comparisons [8]. The advantage is that in any round the 
O(mlogm) breakpoints can be computed in advance, then sorted (this 
is not even necessary), and then one can use binary search to deter- 
mine where z* lies compared to all these breakpoints by doing only 
O(log(m log m)) = O(log m) minimum spanning tree computations. Over 
all rounds, this algorithm therefore makes O(log 2 m) minimum spanning 
tree computations. If we use the fastest MST algorithm available [2], this 
results in a total running time of O(m log 2 n + n log 3 n). 

4.2 F i n d i n g  a tree  sat i s fy ing  the  cond i t i ons  of  T h e o r e m  
3.1 

The second part of the implementation is how to find the tree whose 
existence is claimed in Theorem 3.1, once z* is known. The algorithm 
described in the previous section not only gives z* but also produces two 
trees Train and Tmax which are optimum for z* and such that l(Tmin) <_ L 
and l(Tmax) >_ L. 

Following the proof of Theorem 3.1, we need to compute a sequence 
of optimum trees T,~i~ -- To, (171,..., Tk = Tmaz such that Ti and Ti+l are 
adjacent (i -- 0,.- �9 k - 1) and simply return the first tree of the sequence 
whose length is at least L. To compute the sequence, we simply repeatedly 
swap an edge e in Tma~ but not in the current tree with a maximum cost 
edge not in Tmaz but on the cycle closed by e. This sequence will therefore 
end in k = ITmax - Tmin I --~ n -- 1 steps. 

If we were to implement each swap naively, this would take O(n) time 
per swap, for a total running time of  O ( n 2 ) .  However, using dynamic 
trees [11], Sleator and Tarjan show how to make this series of O(n) swaps 
in O(n log n) time. 

Summarizing, the (2, 1)-approximation algorithm can be implemented 
in O(m log 2 n + n log 3 n) time. 
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5 A polynomial-t ime approximation scheme 

The (2, 1)-approximation algorithm can be turned into a PTAS by mod- 
ifying the initial edge-pruning rule in the algorithm. Earlier, we pruned 
all edges with length greater then L since no such edge would be used in 
any feasible solution. The approximation guarantee of 2L on the length 
of the solution then followed from Theorem 3.1. To reduce this ratio, we 
could prune away all edges whose length is greater than eL for some fixed 
e > 0. Then lrnax would be at most eL, resulting in a final tree of length 
at most (1 + e)L. However, we may discard edges that  could possibly 

1 be used in an optimal solution. The key observation is that  at most 
of the pruned edges can be used in any optimal solution, and there are 
only O(n~ )) choices of subsets of pruned edges that  may occur in any 
optimal solution. For each one of these polynomially many choices, we 
include the chosen edges in the tree, shrink the connected components, 
and run our algorithm on the resulting graph with a budget value of L 
minus the length of the chosen edges. The solution output  is the tree 
with minimum weight among all the trees over all the choices (note that  
all these trees have length at most (1 + e)L). The proof that  the weight 
of the tree output  is at most the opt imum value W is completed by con- 
sidering the running of the algorithm for the same choice of the chosen 
edges as in some optimal solution of the constrained minimum spanning 
tree problem. This completes the proof of Theorem 1.2. 

A c k n o w l e d g e m e n t s  Thanks to Philip Klein and David Williamson for 
discussions that  led to this line of work. 
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