
T h e C o n s t r a i n e d M i n i m u m S p a n n i n g T r e e

P r o b l e m

(Extended Abstract)

R. Ravi* M. X. Goemans t

A b s t r a c t

Given an undirected graph with two different nonnegative costs
associated with every edge e (say, we for the weight and le for the
length of edge e) and a budget L, consider the problem of finding
a spanning tree of total edge length at most L and minimum total
weight under this restriction. This constrained minimum spanning
tree problem is weakly NP-hard. We present a polynomial-time ap-
proximation scheme for this problem. This algorithm always pro-
duces a spanning tree of total length at most (1 + e)L and of total
weight at most that of any spanning tree of total length at most L,
for any fixed e > 0. The algorithm uses Lagrangean relaxation, and
exploits adjacency relations for matroids.

K e y w o r d s : Approximation algorithm, minimum spanning trees, La-
grangean relaxation, adjacency relations.

1 I n t r o d u c t i o n

Given an undirected graph G = (V, E) and nonnegative integers le and
We for each edge e E E, we consider the problem of finding a spanning
tree that has low total cost with respect to both the cost functions l and
w. For convenience, we will refer to le and We of an edge e as its length
and weight respectively. Thus the problem we consider is that of finding
a spanning tree with small total weight and small total length.

*GSIA, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213.
Email: rav• edu.

tMIT, Department of Mathematics, Room 2-382, Cambridge, MA 02139. Email:
goemans0math.rait.edu. Research supported in part by NSF contract 9302476-CCR,
ARPA Contract N00014-95-1-1246, and a Sloan fellowship.

67

This is a bicriteria problem. A natural way to formulate such problems
is to specify a budget on one of the cost functions and minimize the
other objective under this constraint. The problem therefore becomes a
capacitated problem. In this case, we can specify a budget L on the total
length of the spanning tree and require a tree of minimum weight under
this budget restriction. We call this problem the Constrained Minimum
Spanning Tree problem.

L e m m a I . i [i] The constrained minimum spanning tree problem is (weakly)
NP-hard.

Define an (c~, ~)-approximation for this problem as a polynomial-time
algorithm that always outputs a spanning tree with total length at most
c~L and of total weight at most/~W, where W is the minimum weight of
any spanning tree of G of length at most L. In other words, W is the
answer to the constrained minimum spanning tree problem formulated
in the previous paragraph. Observe that the definition is not completely
symmetric in the two cost functions; the quantity L is given.

In this extended abstract, we first present a (2, 1)-approximation al-
gorithm for the constrained minimum spanning tree problem. The al-
gorithm is based on Lagrangean relaxation, and the proof of the perfor-
mance guarantee exploits the fact that two adjacent spanning trees on
the spanning tree polytope differ by exactly two edges (one in each tree).
Moreover, this algorithm can be implemented in almost linear time using
an elegant technique of Meggido [6].

We then refine the algorithm to derive an approximation scheme. The
precise result is given below.

T h e o r e m 1.2 For any fixed e > 0, there is a (1 + e, 1)-approximation
algorithm for the constrained minimum spanning tree problem that runs in
polynomial time.

The same result holds if we replace the set of spanning trees by the
bases of any matroid.

Note also that the above approximation can be used to derive a (1, l +
e)-approximation algorithm for the constrained minimum spanning tree
problem that runs in pseudopolynomial time. This observation follows
from more general arguments in [5]; we reproduce it here for completeness.
In this latter problem, we must find a tree of length at most the budget
L and of cost at most (1 + e) times the minimum weight of any tree of
length at most L. The idea is to use the weights rather than the lengths

68

as the budgeted objective in the available algorithm. Consider running
the given algorithm for all possible integral budget values on the weight
of the tree to find a tree of approximately min imum length. Over all
these runs, find the smallest value W ~ of the budget such that the length
of the tree output is at most L. Since no smaller value of the budget
on the weight of the tree gives a tree of length at most L, it must be
the case that W ~ is a lower bound on the weight of any spanning tree of
length at most L. But the tree obtained by running the given algorithm
with a weight budget of W t must have weight at most (1 + e)W ~, and
therefore has the desired properties. Binary search can be used to speed
up the determination of W ~ using O(log Wreak) invocations of the given
approximation algorithm, where Wmax is the sum of the largest n - 1
weights.

R e l a t e d w o r k

Aggarwal, Aneja and Nair [1] studied the constrained minimum spanning
tree problem; they prove weak NP-hardness and describe computational
experience with an approach for exact solution. Guignard and Rosenwein
[3] apply a special form of Lagrangean relaxation to solve to optimality
the directed version of the problem we consider here, that of finding
constrained minimum arborescences.

There have not been too many approximation algorithms for bicrite-
ria problems. This may come from the fact that capacitated problems
are typically much harder than their uncapacitated counterparts. We
mention here some work that is closely related; see also [9] for additional
references. Lin and Vitter [4] provided approximations for the s-median
problem where s median nodes must be chosen so as to minimize the sum
of the distances from each vertex to its nearest median. The solution
output is approximate in terms of both the number of median-nodes used
and the sum of the distances from each vertex to the nearest median.
Shmoys and Tardos [10] studied the problem of scheduling unrelated par-
allel machines with costs associated with processing a job on a given
machine. Given a budget on the cost of the schedule, they presented an
approximation algorithm for minimizing the makespan of the schedule.
Both the papers mentioned above use a linear programming formulation
of the respective problems and use different rounding methods to round
a fractional solution to a feasible integral solution. Even though these
methods employ linear programming, our approach is quite different.

Recently, Marathe, R. Ravi, Sundaram, S.S. Ravi, Rosenkrantz and

69

Hunt studied several bicriteria network design problems in [5]. They
presented a (2, 2)-approximation algorithm for the constrained minimum
spanning tree problem using a parametric search method combined with
a cost-scaling technique. Their method also yields approximation algo-
ri thms for several bicriteria problems for which the two criteria are similar,
i.e. bo th the objectives are of the same type but only differ in the cost
function based on which they are computed. The constrained minimum
spanning tree problem is such an example. Theorem 1.2 is an improve-
ment of the result in [5] in two ways: the performance ratio is better,
and the algorithm we present is strongly polynomial and does not de-
pend on the magnitude of the costs assigned to edges. The method in [5]
uses a cost-scaling approach and hence the running time depends on the
magnitudes of the costs.

In the next section, we review Lagrangean relaxation as applied to
our problem. Then we present the approximation algorithm in Section 3,
and describe a fast implementation in Section 4.

2 Lagrangean relaxation

Lagrangean relaxation is a classical technique to get rid of a set of "hard"
constraints in an optimization problem. This gives lower bounds (for
minimization problems) on the opt imum value. We refer the reader to
Nemhauser and Wolsey [7] for a discussion of the method. In this section,
we consider the application of Lagrangean relaxation to the constrained
minimum spanning tree problem. In a subsequent section, we will show
how to derive from this Lagrangean relaxation a spanning tree of approx-
imately minimum length and weight.

Given a graph G = (V, E), let S denote the set of incidence vectors
of spanning trees of G. The constrained minimum spanning tree problem
can be formulated by the following optimization problem:

(IP) r r S

Z lex <_ L. (1)
e c E

Considering the budget constraint (1) as the complicating constraint, we
can obtain a lower bound on the op t imum value W by duMizing it and

W = Min 2_.,w~xe
e c E

subject to:

70

considering for any z _> 0 the following minimum spanning tree problem:

l(z) = Min ~ (W e + Z l e) x e - z L
eCE

subject to:

(Pz) x e S.

The value l(z) is clearly a lower bound on W since any spanning tree
which satisfies the budget constraint would give an objective function
value in (Pz) no higher than in (IP) . We observe that (Pz) is simply a
min imum spanning tree problem with respect to the costs ce = We + zle.
In order to get the best lower bound on W, we can maximize l(z) over
all z > 0 to obtain:

L R = Maxz>0 l(z).

We let z* denote the value of z which maximizes /(z), and let c* =
we + z*le. It is well-known and easy to see that l(z) is concave and
piecewise linear. For an illustration, see Figure 1.

l(z)

LR

w(T)

tree

= I (T)- L

Z

Z ~

Figure 1: The plot of l(z) as z varies. Every spanning tree of weight
w(T) and length l(T) corresponds to a line with intercept w(T) and slope
l (T) - L. The plot above is the lower envelope of the lines corresponding
to all spanning trees in the graph.

71

3 The approximation algorithm

Our algorithm is based on solving the Lagrangean relaxation and deriving
a good spanning tree out of it. Our main result will follow from the
following theorem.

T h e o r e m 3.1 Let O denote the set of spanning trees of minimum cost
with respect to c*. There exists a spanning tree T 6 (9 of weight at most
LR < W and of length less than L + lmaz where Imax = m a x e 6 E le.

P r o o f o f T h e o r e m 3.1:

The weight w (T) of any tree T in 59 is equal to

w (T) = [w(T) + z l (T) - z i] - z (l (T) - L) = L R - z (l (T) - L),

and therefore is at most L R if and only if l (T) >_ L.
We start by establishing a well-known and simple proper ty of 0 . If

we consider z = z* + e or z = z* - e for an arbitrari ly small e > 0, the
op t imum spanning trees with respect to we + zle must be contained in 0 .
This implies that (_9 must contain a spanning tree T< of length at most L.
If not, we would have that l(z* + e) > / (z*) , contradicting the opt imal i ty
of z*. Similarly, there must exist a spanning tree T> of length at least L
in (9.

To derive the existence of a tree in O of length between L and L T l m a x ,
we use the adjacency relationship on the spanning tree polytope (the
convex hull of incidence vectors of spanning trees) given in the following
lemma. This adjacency relationship follows from the fact that forests of
a graph define a matroid, the graphic matroid.

L e m m a 3.2 The spanning trees T and T I are adjacent on the spanning
tree polytope if and only if they differ by a single edge swap, i.e. there exist
e 6 T a n d e ' E T ' s u c h t h a t T - e = T ' - e ' .

By considering the op t imum face of the spanning tree poly tope in-
duced by the spanning trees in (9, this lemma implies that if we have
two op t imum spanning trees T and T ' then there must exist a sequence
T = T0,T1, . . . ,Tk = T' of opt imum spanning trees such that Ti and Ti+l
are adjacent for i = 0 , . . . , k - 1 . If we take T = T< a n d T ' = T>, we
derive that there must exist two adjacent spanning trees Ti and Ti+l bo th
in (9 such that l(Ti) <_ L and l(Ti+l) >_ L. But Ti and Ti+l differ only
in one edge swap. Thus l(Ti+l) = l(Ti) + lei+l - le~ ~- l(Ti) + lmax where
ei 6 Ti - Ti+l and ei+l 6 Ti+l - Ti. This shows that Ti+l has length at
least L and less than L + Imax, completing the proof.

72

3.1 H i g h - l e v e l a l g o r i t h m a n d i t s p e r f o r m a n c e g u a r a n t e e

Theorem 3.1 and its proof motivates the following algorithm. First of all,
observe that we can assume without loss of generality tha t le <_ L for all
edges e in G. Edges that have higher values of le would never be included
in a feasible solution and therefore can be discarded. Then, compute the
value z* solving the Lagrangean relaxation. Among all op t imum trees for
the cost function ce = we + Z*le, find one that satisfies the conditions of
Theorem 3.1. Because we have pruned all edges with le > L, we have that
Imax <_ L and, as a result, the tree output has weight at most L R < W
and length at most 2L. Therefore, this constitutes a (2, 1)-approximation
algorithm, provided we can implement the various steps of the algorithm.

4 I m p l e m e n t a t i o n

In this section, we show that the (2, 1)-approximation algorithm can be
implemented in almost linear time. In particular, we sketch an imple-
mentat ion that runs in t ime O (m l o g 2 n + nlog3n) , where m = IEI and
n = IYl.

4.1 S o l v i n g t h e L a g r a n g e a n r e l a x a t i o n

In order to compute the value z*, we use an algorithm of Meggido [6].
We briefly summarize his elegant method here.

For any value of z, we can compute a min imum spanning tree with
respect to c = w + zl. We can also easily determine if z < z*, z = z*
or z > z*. For this purpose, among all op t imum trees with respect to c,
we can find the two trees Tmin and Tmax which have smallest and largest
length. This can be done by using a lexicographic ordering of the edges
instead of the ordering induced by c; for example, to compute Train, we
use the ordering (ce, 4) < (c/, If) if ce < c/ or if ce = c/ and le < I/.
Then z < z* if l(Tm~n) > L, z > z* if l(Tmax) < L, and z is (a possible
value for) z* otherwise.

Meggido's approach is the following. Suppose we t ry to find an op-
t imum tree for the value z*, without knowing z*. For this purpose, we
would like to sort the edges with respect to their costs at z*. Given two
edges e and f , we can determine if c* < c~, c* = c~ or c~ > c~ without
actually knowing z*! Indeed, we only need to determine the breakpoint,
say zel, of the two linear functions ce and c/ as a function of z and de-
termine i f z e / < z*, zeI =- z* or ze/ > z*. This can be done by two
minimum spanning tree computat ions (to determine Train and Tmax) at

73

the value ze/. Therefore, if we use an algorithm which makes O(m log m)
comparisons to determine the ordering of the costs at z*, we will be able
to determine z* by O(m log m) minimum spanning tree computations.

However, Meggido proposed to do this much more efficiently. In-
stead of using a serial sorting algorithm, we can use a parallel sorting
Mgorithm which takes say O(logm) rounds and in each round make
O(mlogm) comparisons [8]. The advantage is that in any round the
O(mlogm) breakpoints can be computed in advance, then sorted (this
is not even necessary), and then one can use binary search to deter-
mine where z* lies compared to all these breakpoints by doing only
O(log(m log m)) = O(log m) minimum spanning tree computations. Over
all rounds, this algorithm therefore makes O(log 2 m) minimum spanning
tree computations. If we use the fastest MST algorithm available [2], this
results in a total running time of O(m log 2 n + n log 3 n).

4.2 F i n d i n g a tree sat i s fy ing the cond i t i ons of T h e o r e m
3.1

The second part of the implementation is how to find the tree whose
existence is claimed in Theorem 3.1, once z* is known. The algorithm
described in the previous section not only gives z* but also produces two
trees Train and Tmax which are optimum for z* and such that l(Tmin) <_ L
and l(Tmax) >_ L.

Following the proof of Theorem 3.1, we need to compute a sequence
of optimum trees T,~i~ -- To, (171,..., Tk = Tmaz such that Ti and Ti+l are
adjacent (i -- 0,.- �9 k - 1) and simply return the first tree of the sequence
whose length is at least L. To compute the sequence, we simply repeatedly
swap an edge e in Tma~ but not in the current tree with a maximum cost
edge not in Tmaz but on the cycle closed by e. This sequence will therefore
end in k = ITmax - Tmin I --~ n -- 1 steps.

If we were to implement each swap naively, this would take O(n) time
per swap, for a total running time of O (n 2) . However, using dynamic
trees [11], Sleator and Tarjan show how to make this series of O(n) swaps
in O(n log n) time.

Summarizing, the (2, 1)-approximation algorithm can be implemented
in O(m log 2 n + n log 3 n) time.

74

5 A polynomial-t ime approximation scheme

The (2, 1)-approximation algorithm can be turned into a PTAS by mod-
ifying the initial edge-pruning rule in the algorithm. Earlier, we pruned
all edges with length greater then L since no such edge would be used in
any feasible solution. The approximation guarantee of 2L on the length
of the solution then followed from Theorem 3.1. To reduce this ratio, we
could prune away all edges whose length is greater than eL for some fixed
e > 0. Then lrnax would be at most eL, resulting in a final tree of length
at most (1 + e)L. However, we may discard edges that could possibly

1 be used in an optimal solution. The key observation is that at most
of the pruned edges can be used in any optimal solution, and there are
only O(n~)) choices of subsets of pruned edges that may occur in any
optimal solution. For each one of these polynomially many choices, we
include the chosen edges in the tree, shrink the connected components,
and run our algorithm on the resulting graph with a budget value of L
minus the length of the chosen edges. The solution output is the tree
with minimum weight among all the trees over all the choices (note that
all these trees have length at most (1 + e)L). The proof that the weight
of the tree output is at most the opt imum value W is completed by con-
sidering the running of the algorithm for the same choice of the chosen
edges as in some optimal solution of the constrained minimum spanning
tree problem. This completes the proof of Theorem 1.2.

A c k n o w l e d g e m e n t s Thanks to Philip Klein and David Williamson for
discussions that led to this line of work.

References

[1]

[2]

[3]

[4]

V. Aggarwal, Y. Aneja and K. Nair, "Minimal spanning tree subject
to a side constraint," Comput. Operations Res. 9, 287-296 (1982).

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to algo-
rithms, McGraw Hill (1990).

M. Guignard and M.B. Rosenwein, "An application of Lagrangean
decomposition to the resource-constrained minimum weighted ar-
borescence problem," Networks 20, 345-359 (1990).

J.-H. Lin and J.S. Vitter, "e-approximations with min imum packing
constraint violation," Proceedings of the 2~th Annual ACM Sympo-
sium on the Theory of Computing, 771-782 (1992).

[6]

[7]

[8]

[9]

[10]

[11]

75

M.V. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D.J. Rosenkrantz,
and H.B. Hunt III, "Bicriteria network design problems," Proc. of
the 22nd ICALP, LNCS 944, 487-498 (1995).

N. Meggido, "Applying parallel computation algorithms in the design
of serial algorithms," Journal of the A CM30, 852-865 (1983).

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Opti-
mization, John Wiley & Sons, New York (1988).

F.P. Preparata, "New parallel-sorting schemes", IEEE Trans. Corn-
put. C-27, 669-673 (1978).

R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and H.B. Hunt
III, "Many birds with one stone: Multi-objective approximation al-
gorithms," Proceedings of the 25th Annual A CM Symposium on the
Theory of Computing, 438-447 (1993).

D.B. Shmoys and E. Tardos, "Scheduling unrelated parallel machines
with costs," Proc., 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, 448-454 (1993).

D.D. Sleator and R.E. Tarjan, "A Data Structure fo Dynamic Trees,"
Journal of Computer and System Sciences 26, 362-391 (1983).

