
A Constant-factor Approximation Algorithm for the k-MST Problem

(Extended Abstract)

Avrim Blum”

Abstract

R. Ravit

Given an undirected graph with non-negative edge costs and

an integer k, the k-MST problem is that of finding a tree

of minimum cost on k nodes. This problem is known to
be NP-hard. We present a simple approximation algorithm
that finds a solution whose cost is less than 17 times the
cost of the optimum. This improves upon previous per-

formance ratios for this problem – O(w) due to Ravi et

al., 0(log2 k) due to Awerbuch et al, and the previous best
bound of O(log k) due to Rajagopalan and Vazirani. Given
any O < cr < 1, we first present a bicriteria approximation

algorithm that ~o~tputs a tree on p z cYk vertices of total
cost at most ~1~, where L is the cost of the optimal k-

MST. The running time of the algorithm is 0(rz2 log2 n) on

an n-node graph. We then show how to use this algorithm

to derive a constant factor approximation algorithm for the

k-MST problem. The main subroutine in our algorithm is
identical to an approximation algorithm of Goemans and
Williamson for the prize-collecting Steiner tree problem.

● School of Computer Science, Carnegie Mellon University, Pitts-

burgh PA 15213. Supported in part by NSF National Young Investi-

gator grant CCR-9357793 and a Sloan Foundation Research Fellow-

ship. Em ail: avrim@cs.cmu .edu.

* Graduate School Of Industrial Administration, Carnegie Mellon

University, Pittsburgh PA 15213. Em ail: ravi+@cmu .edu.

~ School of Computer Science, Carnegie Mellon university, Pitts-
burgh PA 15213. Em ail: svempala@cs.cmu .edu.

Permission to make digital/hard copies of all or pari of tlds material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, tbe c~y-
right notice, the title of the publication and ita date appear, and notice la
given that copyright ia by permission of the ACM, he. To copy otherwise,
to republish, to poet on servers or to redistribute to lists, requires specific
permission andlor fm.
STOC’96, Philadelphia PA, USA
@1996 ACM ()-89791.785+/96/()5. .$3.50

Santosh Vempala*

1 introduction

Given an undirected graph G = (V, E) with non-negative
edge costs and an integer k, the k-MST problem is that of

finding a tree of minimum cost that spans k vertices of G.
We refer to a tree that spans k vertices as a k-tree. Note
that we may aasume that the edge costs satisfy the triangle
inequality without loss of generalit y [11].

The main result of this paper is a constant factor approx-
imation algorithm for the k-MST problem. This algorithm
naturally extends to give constant factor approximations for
several problems whose solution is based on the k-MST.

One example is the quota-driven TSP in which we are given

an undirected graph with distances on the edges and val-
ues (positive real numbers) on the vertices. Our goal is to

find a tour such that the sum of the values of the vertices
reached is at least some specified quota, while minimizing

the total distance traveled. Other examples are the more
general prize-collecting traveling salesman problem of Balas
[2], and the orienteering problem of Golden, Levy and Vohra
[8]. More details of the relation of these problems to the k-
MST problem can be found in [1].

Previous work

The k-MST problem waa shown to be NP-hard by R. Ravi,
Sundaram, Marathe, Rosenkrantz, and S. S. Ravi [11] and
independently by Zelikovsky and Lozevanu [12]. The former

paper also presented an O(fi)-approximation algorithm for
this problem. This was improved by Awerbuch, Azar, Blum
and Vempala [1] who gave an 0(log2 k)-approximation algo-
rithm. Recently, RajagopaJan and Vazirani [1 O] obtained an

O(log k)-approximation algorithm for the k-MST problem.
For the k-MST problem arising from points in the plane,

Ravi et al. [11] presented an O(k ~)-approximation algo-
rithm. The approximation ratio was improved to O(log k)

by Garg and Hochbaum [5], and subsequently to a constant
factor by Blum, Chala-sani and Vempa.la [4]. A smaller con-
st ant was obtained by Mitchell [9].

Main result

The rooted version of the k-MST problem requires inclu-
sion of a specific root node in the k-tree. As observed in
[1], solving the rooted and unrooted versions are essentially

equivalent. We present a solution to the rooted version of
the problem for simplicity.

442

Theorem 1 There is an approximation algorithm for the

rooted k-MST problem on geneml graphs with performance

ratio at most 17 and running time 0(n2 log4 n) on an n-

node graph.

The key ingredient in proving the above theorem is the

following blcriteria approximation algorithm.

Theorem 2 Given any O < a <1, there is an approxima-

tion algorithm for the rooted k-MST problem th;~utputs a

tree on p ~ crk vertices of total cost at most (lya)k, where

L is the cost of the (optimal) k-MST. The running time of

the algorithm is 0(n2 log2 n) on an n-node graph.

The algorithm used to prove the above theorem is iden-
tical to an approximation algorithm used by Goemans and
Williamson [7] for the prize-collecting Steiner tree problem,
with a particular setting of node penalties. We use key

properties of their algorithm to show the performance ratio.
We can solve the unrooted problem by trying all the

different vertices as roots and outputting the minimum tree

obtained. This gives us an extra factor of n in the running
time. As an easy consequence of Theorem 2 and Lemma

3 (see Section 4) we also get the following result for the

unrooted problem.

Theorem 3 Given any O < a < 1 them is an approxima-

tion algorithm for the unmated k-MST problem that ot$~uts

a tree on p vertices, ak s p < 2ak, of cost at most ~.

The running time of the the algorithm is 0(n3 log2 n).

In the next section, we present the main bicriteria ap-
proximation algorithm used to prove Theorem 2. In the fol-
lowing section, we present the analysis of the performance

ratio and the running time. In Section 4, we show how

Theorem 1 follows from Theorem 2.

2 Algorithm

We will consider the rooted version of the k-MST problem
where we are given a root T and the tree is required to

contain the root. Let the cost of the optimal tree with k

vertices be L. In this section we show how to find a tree
with p vertices, p ~ a k, of cost at most p o & for any

O<cr <l.
Our algorithm for the k-MST problem is identical to the

approximation algorithm used by Goemans and Williamson
for the prize-collecting Steiner tree problem. The prize-
collecting Steiner tree problem is defined on an undirected

graph with costs on edges, a subset of nodes specified as
terminals, and nonnegative penalty values on the terminals.

The goal is to find a tree such that the total cost of edges
in the tree plus the penalties of all the terminals not in the

tree is minimized.

2.1 Overview

In the version of the Goemans-Williamson algorithm we

use, all nodes are designated terminals and have the same
penalty value r = ~~.

We begin with an intuitive description. The penalty

value K of a node can be thought of as the potential or
charge assigned to it. The potential specifies how much
“time” the node v can stay active. The algorithm begins

with nodes in singleton clusters, each of radius O and with

potential rr.
The algorithm is perhaps better visualized as running in

continuous, rather than discrete time, As time progresses,
every cluster grows a breadth-first region around it, with all

clusters growing at the same rate. TO grow for a “width”
or breadth-first dist ante of t, the cluster must expend po-

tential equal to e. As the algorithm proceeds, some clusters
may meet; for inst ante, the very first meeting will occur
when the clusters growing from the two nearest neighbors
in the graph meet at the midpoint of the edge between them.
When two clusters meet, they are merged into a single clus-
ter and their remaining potentials are added together to be-
come the remaining potential of the new cluster. Another
event that may happen is that a cluster may expend all its
potential without meeting another cluster. In this case, the
cluster stops growing and is deactivated. When a cluster is

deactivated, the nodes inside are stamped with the “time of
death” (technically, they are labeled with the set of vertices
in the cluster).

A deactivated cluster in some ways is much like an active

cluster: if an active cluster meets a deactivated one, the two
will merge and have their potentials added together in the

same way as done when two active clusters meet. On the
other hand, once a vertex becomes labeled, it remains so
forever.

The key property of this growing scheme is that the un-
labeled nodes in a growing cluster can be connected together
in a tree, which may also contain some of the labeled nodes
of the cluster, such that the cost of the tree is not more than
twice the potential ~ times the total number of nodes in the
tree. Thus, this tree has an appropriate cost-to-nodes ratio
as compared to an optimal k-tree. The growing scheme also

allows us to argue that the algorithm will find such a tree of
reasonably large size, thereby giving the result in Theorem
~
b.

The algorithm described below implements the above

ideas in two phases. In the first phase we grow clusters, and

in the second we prune inessential edges to create the desired
tree. The reason for labeling vertices when their cluster

becomes deactivated is to ensure that the tree produced in
the second phase has sufficient potential to cover its cost. In
particular, when we connect an unlabeled vertex to the tree,

if the connection passes through a vertex with label Q, then

all other vertices with label C, or even with label C ~ C,
are placed into the tree as well. It can then be proven that
this preserves the desired ratio.

One small modification to the above description is that

for the sake of simplicit y in the arguments, we consider the
cluster containing the root node to be inactive. Whenever

an active cluster merges with the root cluster, the result-
ing cluster becomes inactive even though the nodes in the
cluster may have remaining potential to grow.

2.2 Description

The complete description of the algorithm is in Figure 1.
The input to the algorithm is an undirected graph G =

(V, E) with edge costs cc >0, a root ~, the cost ~ of an

optimal k-tree containing r, and a fraction a. The algorithm
outputs a tree F“ containing r and at least crk nodes.

The algorithm runs in two phases. In the first we pick

up edges and in the second we may delete some of the edges
chosen in the first phase. In the first phase the algorithm
maintains a forest F of edges. Initially the potentisl of each

443

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

FtO.

Comment: Implicitly set growth variables ys + O and cu-
mulative growth variables w[S) +- O for all S C v. w(S)
denotes tie total potential &pended ‘in component S ;n~

eluding any sub-components th;t were merged in creating

S. Also implicitly set x“ + ~ for all nodes v # T.

C+{{ V}: VE V}.
For each v E V set d(v) + 0,
Comment: d(v) denotes the distance of node v to the
boundary of the component containing v.

Foreachv EV, ifv= r then A({v}) + O else A({v}) + 1.
Comment: A(S) equals 1 if S is active and O otherwise.

While the component C, containing the root has less than
ak unlabeled nodes

Comment: Find the next event.

Find edgee= (i, j) withi ECP cC, j ~ cq Cc, cp #

FfY4
cq that minimizes Cl = ~ Cp + A G,

Find 6 E C with A(&) = 1 that minimizes Cz = /6/ ~

(1-i)k – w(d).

c = rnin(e~,cz).

w(C) t w(C)+ e .A(C) fOr alI C EC.

Forallv EC” EC

d(v) t d(V) + c . A(Cv)

Ife=q (i.e., 6’ is deactivated before Cp and Cq

meet)

A(d) + o.

Mark all unlabeled vertices of& with label 6’.

else (i.e., Cp and C, meet before 6 is deactivated)

F+ Fu{e}.

c t c u {Cp Ucq} – {Cp} – {Cq}.
W(GPu Cg) + W(cp) + W(cq).
IfT C CpUCq then A(CpuCq) t- Oelse A(CpUCq) + 1.

For every unlabeled vertex v ~ C,

Mark v with the label Cv where v E C“.

F’ is derived from F by removing as many edges as pos-
sible so that the following two properties hold: (1) every
unlabeled vertex is connected to r; (2) if a vertex v with

label C is connected to r, then so is every vertex with label

e~c.

C’ is the set of vertices spanned by F’.

Figure 1: The bicriteria approximation algorithm for k-
MST.

vertex, T., is set to & , where a is our input parameter.

F is empty and hence each vertex is in a connected compo-
nent by itself. All initial components except the one con-
taining the root node are considered active. We can think
of the potential of a node as the price it is willing to pay for
connecting into a k-tree containing r.

At each step the algorithm does one of two things. First,
it may add an edge between two connected components; if
the resulting component contains the root it becomes inac-
tive, otherwise it is considered active. Second, it may “de-

activate e“ a component. Intuitively, a component is active if
it is still growing and it is deactivated when we are unwill-

ing to pay any more for vertices of this component. When
a component is deactivated, the algorithm labels each un-

labeled vertex within it (every node is initially unlabeled)
with the set of all nodes in the component. The first phase

ends when the component containing the root acquires more
than a . k unlabeled vertices. We argue in the next section
that if the value of L is chosen correctly, this stopping con-
dition is always reached.

In the second phase, we remove as many edges as we can
from F while maintaining two properties: first, all unlabeled
vertices in the root component must remain connected to
the root node. Second, if a vertex with label C is connected

to the root, then every vertex with label d ~ C must be
connected to the root aa well. Let C’ be the resulting con-
nected component containing the root, and F’ the set of its
edges.

To determine the choices in the first phase, the algorithm

keeps a set of growth variables, ys, one for each subset S
of vertices. These are all initially implicitly set to zero.

A growth variable can be positive for a subset of vertices,
iff the vertices form an active component at some point in
the first phase. (A useful property to keep in mind is that

if yS > 0 and vs > 0 then either S and S’ are disjoint
or else one of the two cent ains the other.) At each step
of the first phase we increase uniformly the ys’s for the

active components by a value c which is the largest possible
without violating one of the following constraints. For a

subset of vertices S let 8(S) denote the set of edges with
one end point in S and the other outside S.

a) Forallee E,

E
ys<ce,

5. E6(S)

b) For all T c V,

xys~x”,
SET IET

Increasing yS’s causes one of the above constraints (called
“packing” constraints in [7]) to become tight. If a constraint
of the first type becomes tight, that happens for some edge e
between two connected components and the algorithm adds
this edge to F. If a constraint of the second type becomes
tight, this happens for some active component, and we then
deactivate the component.

3 Analysis

3.1 Upper bound

In the analysis of their algorithm for the prize-collecting

Steiner tree problem, Goemans and Williamson use linear

444

programming duality to compare the cost of their solution

to an optimal one. Although we don’t use an LP, we retain

the basic elements of their analysis. A result equivalent to

the following has been proven independently in [6].

Theorem 4 The algorithm produces a connected compo-

nent C! with a set of edges F’ such that

Proof. By the construction, every vertex of C, not spanned

by F’ lies in a component deactivated at some point in the

algorithm. Further if a vertex v in a deactivated component
C, is not spanned by F’ then no vertex of C, is spanned by
F’. With these observations we can partition the vertices

of CT not spanned by F! into disjoint deactivated compo-

nents Cl, . .C1. Thus C, is the disjoint union of the sets

C’, cl,... cl.
Now consider the component C’. We must show that

Since we have for each edge in F’,

c.= ~ ,.s

Sec6(S)

s~c’ Cccl

it suffices to show that

Adding in the erowth values accumulated bv deactivated
components within C.

we need to show that

EDS
eCF~ S:e@(S)

to both sides of the ab&e equation,

+2~~Ys

3 s~c,

Since Cr is the disjoint union of C’, Cl . . . Cl, we have that

~SgCI YS + ~J ~s~cj YS = EsGCr YS. SO we need to

show that

Rewriting the first term in the LHS (summing over S instead
of over e), we finally get

We show by induction that the above condition is main-
tained at every step of the algorithm. Initially this is true

At some stage let C be the set of active components. Let
H be the graph formed by considering active and inactive
components that are subsets of G ss vertices and the edges

e G F’ (1 $(C) for active C ~ C. as the edges of H. Discard
vertices corresDondin~ to isolated inactive vertices.

We need so-me mo~e notation. Let N. and N, denote the

active and inactive vertices in H respectively. Let Nd denote

the vertices active in H, but in some inactive component
Cj at the end of the algorithm. Finally, let degv denote

the degree of a vertex in H. Note that iid corresponds to
vertices that are subsets of some deactivated component not

spanned by F’, so Nd = {v c N. : deg. = O}.

At the current step, the increase in the LHS of (1) is

c(&N@ deg. + 21Ndl) while the increase in the RHS is

2cIN.I. We would like to show that ~06Na deg. + 21Ndl S

2 IN. 1. Since the degree of a vertex in Nd is zero, it is
enough to show that ~V6No _N~ dego + 21Ndl ~ 21Nal which

is equivalent to

To prove this we shall need one last fact, namely that
all but one of the leaves of H are all active vertices. For
suppose that v is an inactive leaf of H not cent aining r,
adj scent to edge e, and let Cu be the connected component

corresponding to v. Since C. was deactivated, no vertex of

C. is unlabeled; Also since it is a leaf it is not on a path
between any unlabeled vertex and r. So the edge e can be

deleted in the second phase and e @ F’, a contradiction.

t@Na-Ndu N, VEN,

2(l(Na – Nd) U~,l – 1) – (’lNil – 1)

21Na – Ndl – 1.

We used above the fact that all but one inactive vertex
have degree at least 2, and that H is a tree on the vertices

3.2 Termination and lower bound

Theorem 4 argued that the tree produced by the algorithm

has the correct “ratio cost ,“ namely the correct cost of the

tree per node. To complete the proof of Theorem 2, we need
to argue that the tree produced has the claimed number of

nodes. Note that this condition is also required to ensure
the stopping condition in step 6 of the algorithm. We do
this next.

Suppose the value of L is chosen to be at least as much

as the cost of a k-MST containing ~. We then show that the
root component will always acquire at least ak unlabeled
vertices. We do this by showing that at most (1 —a) k nodes
of some optimal k-tree will belong to deactivated sets (i.e.,

be labeled) during the course of the algorithm. Before we
do this, we need a couple of preliminaries.

Lemma 1 Let S* be a subset of nodes of a deactivated com-

ponent C. The sum of growth values yS assigned by the

algorithm to subsets S such that S ~ S“ # 0 is at least

since all the y.s’s are zero. p*l.7r=gg.

445

Proof. At any point in the running of the algorithm be-

fore C was deactivated, the nodes in C’ are partitioned into
active and deactivated clusters. Let C; . . . C’; denote the

maximal subsets of C that were active at some point during
the algorithm such that C: n S* = 0 for alf i. Note that the
sets C: are disjoint and that

c: See’
-t s~c,sgc~ for any i

The sets C; either became deactivated or merged with other

active components that contained a node of S*. Hence we
have

from the condition for deactivation. Thus we finally have

The last inequality follows since no C: contains any node of
S* by definition. ■

Lemma 2 Let T* be a tree spanning the root T and the

nmles S*. Let Esns.$fi YS = L’. Then the wst of T* is at

least L’,

Proof. Note that if ys >0 then r @ S. A growth value of ys

assigned to the set S by the algorithm identifies a breadth-
first cut of distance y’ around the set S. If S n S* # O, then
since T* connects the nodes in S* to the root r, it must

cross this cut for at least distance ys. Since the growth val-

ues assigned by the algorithm obey the packing constraints

(a), the breadth-first distances identified by different cuts

are disjoint. Hence the tree T* must have cost at least

E slls*#O ~“ ■

Theorem 5 Let T“ be a k-MST containing r of cost L.

At most (1 – a)k nodes of T* are in deactivate sets (i. e.,
labeled) during the course of the algorithm.

Proof. The proof is by contradiction. Let the node set of T*

be S* U {r}. Suppose more than (1 – a)k nodes of S* are in

deactivated components. By Lemma 1 for each deactivated

component Ci,

Ssns*#O, s~c,

Summing over all deactivated components, we get

> (l–a)k, T=L.

But then lemma 2 imp&es that the cost of T* is greater than
L, a contradiction.

3.3 Turning the proof into an algorithm

The algorithm in the proof of Theorem 2 assumes that L,

the cost of a k-MST is known. One simple way to fix this

lack of information is to run the algorithm for a guess value
of L and perform binary search on the guess value depending
on the outcome of the algorithm (a smaller value results in
the algorithm terminating with fewer unlabeled nodes in the

root component). This would require O(log ~) invocations

of the basic algorithm where ~ is the sum of the k —1 largest
edge-costs in the graph.

The number of invocations of the basic algorithm can
be reduced to O(log k) by providing an upper bound and a

lower bound on the value of L that differ by a factor of at
most k. Let f denote the shortest distance such that there

exists at least k nodes within dist ante t from the root T.

Then f? < L $ k./, and we have the required bound.
The running time of the algorithm then follows from not-

ing that the basic algorithm can be implemented in O(n2 log n)
time using ideas from [7].

4 Completion

The ahzorithm mesented so far has the following marantee.

Given & integ~r k, a bound L on the cost of ~~e optimal
k-MST, and CYE (O, 1), the algorithm finds a tree on p z ak

vertices of cost at most p . ~-.

There are two issues that must be dealt with to yield our

final k-MST result. First, it is possible that the algorithm
finds a tree with too many vertices; i.e., p is much larger
than k. Second, if p < k then we need to “boost” the tree
found to a k-MST.

We handle the first problem as follows. Before running
the algorithm, we remove alf vertices of distance greater

than L from the root, as these cannot possibly be in the

optimal tree. We now run the algorithm. If the result is a
tree on p > k vertices, we apply the following lemma with

q=k.

Lemma 3 Given a tree T on p vertices and an integer q s

p, we can find a subtree T’ of T on p’ vertices such that

p’ c [q, 29] and cost(T’) < $cosi(T). The running time of

this procedure is 0(n2).

Lemma 3 (with q = k) guarantees that the resulting tree

T’ has at least k vertices and cost at most &. We then

pay an additional cost at most L to connect T’ to the root,
resulting in a total cost at most L + ~. So, for inst ante,

if we run the bicriteria algorithm with a = 1/2 and it pro-
duces a tree on too many vertices, we can use this Lemma
to find a k-tree of cost at most 9L.

446

Proof of Lemma 3. If p < 2q we are done. Otherwise, notice
that in any tree of p vert~es, there exists some vertex v such
that removing v produces a forest in which each tree haa at

most p/2 vertices. Let T1, Td be the trees produced by

removing v. Let pi be the number of vertices in T: and let
Cl be the cost of Ti plus the length of the edge connecting
T, to v in the original tree. This means that the cost of
Tis C~+... +Cdandp=p~ +... +pd+l. Therefore,
there must exist some i such that C,/p, z co.d(Z’)/p. So, we

simply remove tree T, from T, which preserves (or improves)
the cost-to-vertices ratio of the tree remaining and repeat.

Notice that each iteration reduces the size of T by less than a
factor of 2, so we can be assured that its size will eventually

fall within our desired window. ■

We now handle the second problem listed: that of boost-

ing the tree found in the case that it is too small. We do
this using the notion of an (a, b)-tree approximator follow-

ing [3]. An (a, b)-tree approximator is given quantities c and

L and has the following guarantee: if there exists a rooted

tree on at least (1 – c)n vertices having total weight at most
L, the algorithm will find a rooted tree on at least (1 – ac)

vertices having tot al weight at most bL. It is easy to see (as
noted in [3]) that the results of Goemans and Williamson on

approximating the prize-collecting Steiner tree problem [7]

yield a (3, 6)-tree approximator. Goemans and Klein berg [6]

show that the Goemans-Williamson algorithm in fact pro-

duces a (2, 4)-tree approximator. Using this fact, we prove

the following theorem:

Theorem 6 Let L be an upper bound on the cost of the

optimal rooted k-MST, and let ~ G [0, 1/2]. Given a rooted

(
tree on 1 – y)k vertices having cost at most 4L, in time

0(n2 log n) we can produce either:

(i) A rooted tree on at least (1 – ~y)k vertices of cost at

most 4L, or

(ii) A rooted tree on at least k vertices of cost at most 17L.

We can satisfy the preconditions of Theorem 6, in partic-
ular that y ~ 1/2, by initially running the bicriteria algo-
rithm with a = 1/2. Assuming the “first problem” discussed

above does not occur, this will find a tree on at least k/2

vertices with cost at most 4L, (If the “first problem” does

occur, then as noted above we can find a tree on k vertices

of total cost at most 9L and we are done.) Now, applying

Theorem 6 O(log k) times yields a constant factor solution
to the Ic-MST. Note that we do this for each of possibly

O(log k) guess values for L. This gives the performance ra-
tio and the running time claimed in Theorem 1.

Proof of Theorem 6. The idea is similar to that used in
[I] to reduce their performance ratio by a logarithmic fac-
tor. We are given a tree with (1 – y)k vertices. We know
that in the remaining graph there exists a rooted tree on yk

vertices of total cost at most L. We now apply our bicrite-

ria approximation algorithm with a = ~ on the remaining
graph. Let us aasume for now that the tree returned has
at most ~k vertices, and so its cost is at most 7L; we will
return to the case that it has too many vertices at the end

of the proof. (If the tree found has more than yk vertices,
we can immediately achieve using Lemma 3 a k-tree of cost
of at most 4L + (L + ~) = 19L: the extra complication is

just in reducing this cost to 17 L.)

Let T be the union of our original tree and the new tree
found, and p be the number of vertices in T. Note that

p ~ (1 - y)k + ;~k = (1 - ~y)k.

Define .s = 7/3, and let us run the (2, 4)-tree approxi-
mator on the subgraph induced by the nodes of the tree T

using this e. If it is the case that the optimal tree has at

le~t (1 - c)p vertices inside T, then this approximator will

find a tree on at least (1 – 2c)p vertices of total cost at most
4L. Using our definition of c and our bound on p, this tree
contains at least (1 - ~y)(1 – ~~)k z (1 - ~~)k vertices,
satisfying property (i) of the Theorem as desired.

If the approximator fails to find the desired number of
vertices at the desired cost, it means that the optimal tree
has fewer than (1 – c)p vertices inside T, and therefore at
least k’ = k – (1 – c)p vertices outside T. We now run
our bicriteria algorithm one final time, with cr = ~, on the
remaining graph with tree T contracted to a root node. We
are now guaranteed that onr total number of vertices found
is at least

p+; (k–(1–c)p) = &+(; +E/2)P

> ;k + (; +Y/~)(1 – ;~)k

= k + (~/42 – ~2/21)k

z k. (since ~ < 1/2)

If we did not run into our “first problem” of finding too

many vertices in this run of the algorithm (i.e., we found

between ~k’ and k’ vertices), we are done with total cost at
most 4L + 7L + 4L = 15L. If the tree found did have more

than k’ vertices, we apply Lemma 3 with g = ~k’ to find a

low cost subtree having between ~k’ and k’ vertices. In this
case we may need to pay an additional cost L to connect

the subtree to the root, for a total of 16L.
We have now proven the theorem assuming that we are

satisfied with a total cost of 19L. To reduce the constant to

17 we must handle the case that when we ran the bicriteria
algorithm with a = 5/7, we found too many vertices. We do
this by applying the algorithm of Lemma 3 with g = ~yk,

and consider two cases depending on the number of vertices
p’ in the subtree found.

1.

2.

The first case is that P’ c [7k, ~yk]. This means that

the cost of the subtree is at most ~ . & = 10L, or a

total of 11 L when we connect it to the root. Adding

this cost to the 4L cost of our initial tree results in a

k-tree of cost at most 15L.

The second case is that p’ ~ [~yk, yk]. This means
that the cost of the subtree is at most 7L, or 8L when
we connect it to the root. We can thus continue in the

proof as if this were the tree returned by the bicriteria
algorithm, paying an extra cost of L for a total of 17L.

To show the running time, note that we used at most two
calls to our bicriteria approximator, one call to the (2, 4)-
tree approximator of [6], and one call to the procedure in the
proof of Lemma 3. The tree approximator in [6] can be im-
plemented using at most log n calls to the prize-collecting

Steiner tree approximation algorithm of [7] giving a run-
ning time 0(n2 log2 n). The bicriteria approximation has

running time from Theorem 2. The procedure in Lemma
3 takes 0(n2) time. Thus the overall running time is as
claimed.

■

447

Acknowledgements. The second author thanks Naveen

Garg and Balaji Raghavachari for stimulating discussions

on the k-MST problem.

References

[1] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Im-
proved approximation guarantees for minimum-weight
k-trees and prize-collecting salesmen. In Proceedings of

the 27th Annual ACM Symposium on Theory of Com-

puting, pages 277-283, May 1995.

[2] E. Balas. The prize collecting traveling salesman prob-
lem. Networks, 19:621-636, 1989.

[3] A. Blum, P. Chalasani, D. Coppersmith, B. Pulley-
blank, P. Raghavan, and M. Sudan. The minimum

latency problem. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, pages 163–

171, 1994.

[4] A. Blum, P. Chalasani, and S. Vempala. A constant-

factor approximation for the k-rest problem in the

plane. In Proceedings of the 27th Annual ACM Sym-

posium on Theory of Computing, pages 294–302, May

1995.

[5] N. Garg and D. Hochbaum. An o(log k) approximation

algorithm for the k minimum spanning tree problem

in the plane. In Proceedings of the 26th Annual ACM

Symposium on Theory of Computing, pages 432-438,

1994.

[6] M. Goemans and J. Kleinberg. An improved approx-
imation ratio for the minimum latency problem. In
Proceedings of the 7th Annual A CM-SIAM Symposium

on Discrete Algorithms, pages 152–158, 1996.

[7] M. Goemans and D. Williamson. A general approxima-

tion technique for constrained forest problems. SIAM

J. Computing 24, pages 296-317, 995.

[8] B.L. Golden, L. Levy, and R. Vohra. The orienteering

problem. Naval Research Logistics, 34:307–318, 1987.

[9] J.S.B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple new method for
the geometric k-MST problem. In Proceedings of the

7th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, 1996. to appear.

[10] S. Rajagopalan and V. Vazirani. Logarithmic ap-

proximation of minimum weight k trees. Unpublished

manuscript, August 1995.

[11] R. Ravi, R. Sundaram, M.V. Marathe, D.J.
Rosenkrantz, and S.S. Ravi. Spanning trees short and
small. In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1994.

[12] A. Zelikovsky and D. Lozevanu. Minimal and
bounded trees. In Tezele Cong. XVIII Acad. Romano-

Americane, Kishinev, pages 25-26, 1993.

448

