
Many birds with one stone: Multi-objective approximation algorithms

(Extended Abstract)

R. Ravil~3 M. V. Marathe2~4 S. S. Ravi2’5 D. J, Rosenkrantz2~6

H.B. Hunt 1112~4

Abstract

We study network-design problems with multiple

design objectives. In particular, we look at two cost

measures to be minimized simultaneously: the total

cost of the network and the maximum degree of any
node in the network. Our main result can be roughly

stated as follows: given an integer b, we present poly-

nomial time approximation algorithms for a variety

of network-design problems on an n-node graph such

that the degree of the output network is O(b log(~))

and the cost of this network is O(log n) times that of

a minimum-cost degree-b-bounded network. Our al-

gorithms can handle costs on nodes as well as edges.

Moreover, we can construct such networks so as to sat-

isfy a variety of connectivity specifications including
spanning trees, Steiner trees and generalized Steiner

forests.

We also address the special case in which the costs

obey the triangle inequality and present approxima-

tion algorithms with better performance guarantees.

For the problem of constructing spanning networks in

this special case, we also show how to simultaneously

approximate yet another objective: the maximum cost

of any edge in the network.

1Dept. of Computer Science, Brown University, Providence,
RI 02912. Em&l: rr~cs. broun. edu

2Dept. of Computer Science, University at Albany-SUNY,
NY 12222. Email: {~adhav ,ravi ,djr ,hunt}&s .albany. edu

3Re~ea& supported by an IBM Grsduate Fellowship. Addi-

tional support provided by NSF PYI award CCR-9157620 and
DARPA contract NOO014-91-J-4052 ARPA Order No. S225.

4Supported by NSF Grsnt CCR s9-03319.
5Supported by NSF Grant CCR 89-05296.
6Supported by NSF Grant CCR 90-06396.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requirea a fee

and/or specific permission.

25th ACM STOC ‘93-51931CA,LJSA

o 1993 ACM 0-S9791 -591 -7193 /0005 /043 S... $ 1.50

1 Introduction

Several problems in the design of communication

networks can be modeled as finding a network obeying

certain connectivity y specifications. For instance, the

network may be required to connect all the nodes in

the graph (a apanning tree problem), a specified sub-

set of the nodea in the graph (a Steiner tree problem)

or to only interconnect a set of site-pairs of nodes (a

generalized Steiner forest problem). The goal in such

network-design problems can usually be expressed aa

minimizing some notion of cost associated with the

network. This coat may reflect the price of construct-

ing the network, or it may measure some form of vul-

nerability of the network, or it may even represent

some notion of the price of using the network.

There are some classic examples of such cost mea-

aurea. If we associate coata with edges and nodes that

can be used to build the network, then we may seek

a network such that the price of construction is mini-

mized. This is the manimum-cosi network design prob-

lem and has been well studied [1, 3, 10, 12,15,23, 25].

A notion of cost that reflects the vulnerability of the

network to single point failures is the maximum degree

of any node in the network. Minimizing this cost cor-

responds to the minimum-degree network design prob-

lem, which has also been well-studied [7, 8, 22].

Finding a network of sufficient generality and of

minimum cost with respect to either of these mea-

sures is often NP-complete [9]. Hence much of the

work mentioned above focuses on approximation algo-

rithms for each of these problems, However, in appli-
cation that arise in real-world situations, it is often

the case that the network to be built is required to

minimize more than one of these coat measurea simul-

taneously [5, 13]. Recent papers have identified many

such problems [2, 4, 14, 17, 20, 24] wherein more than

one objective ia specified in the statement of the prob-

lem.

In this paper, we study approximations of gen-

eral network-design problems with multiple objectives:

438

minimizing the total cost of the network subject to a

constraint on the degree of any node in the network.

We also examine the case of cost functions obeying the

triangle inequality and provide algorithms with better

performance guarantees in this case.

Degree-bounded minimum-cost network

design

We call the following the b-MST problem: Given an
undirected edge-weighted graph and an integer b ~ 2,

find a spanning tree in which the maximum degree

of any node is at most b and the total cost is mini-

mum. We assume that the edge-weights are nonneg-

ative and integral. It is straightforward to show that

this problem is NP-complete by a reduction from the

Hamiltonian path problem. To examine what kind

of approximations we can hope for, we first make the

following simple observation.

Observation 1.1 For any jixed rational number R ~
1, jinding a spanning tree of G of maximum degree

at most b and of total cost at most R times that of a

minimum-cost degree-b-bounded spanning tree of G is

NP-hard.

Given this difficulty in conforming to the degree re-

striction in any approximate solution, we set our goals

a little lower and seek a solution that is approximate

in terms of both the objectives. We present the first

such result for approximating the b-MST problem.

Theorem 1.2 There is a polynomial algorithm that,

given an undirected graph G on n nodes with nonnega-

tive costs on its edges, and a degree bound b, constructs

a spanning tree of maximum degree O(b log ~) and of

cost at most O(log ~) times that of the minimum-cost

b-bounded spanning tree of G.

Our techniques generalize to the case of construct-

ing Steiner trees as well as generalized Steiner forests.

Given an undirected graph and a subset of the nodes

called terminals, a Steiner tree for the terminals is

a subgraph spanning the terminals. Agrawal, Klein

and Ravi [1] consider a generalization of Steiner trees

called generalized Steiner forests. Given an undirected

graph and a set of site-pairs of nodes, a generalized

Steiner forest for the site-pairs is a subgraph in which

there is a path between every site-pair. In [1], they

provide the first approximation algorithm for find-

ing minimum-cost generalized Steiner forests. A b

bounded generalized Steiner forest for the site-pairs is

a generalized Steiner forest for the site-pairs in which

the maximum degree of any node is at most b. We can

extend Theorem 1.2 as follows.

costs on its edges, a set of site-pairs of nodes, and (Z

degree bound b, constructs an O(b log :)-bounded gen-

eralized Steiner forest for the site-pairs of cost at most

O(log ~) times that of the minimum-cost b- boundeli

generalized Steiner forest for the site-pairs. Here k:

represents the number of nodes of G that are sites.

Goemans and Williamson [10], building on the work

of Agrawal, Klein and Ravi [1], consider a class of

constrained forest problems for which the generalized

Steiner forest problem is a prototypical example. Our

techniques directly extend to approximating degree

bounded minimum-cost networks of this general form.

However we omit a description of these extensions in

this abstract.

Extension to the node-weighted case

We can strengthen each of the results above by con-
sidering nonnegative costs on the nodes and aiming tc~

find a small degree network of minimum total cost,

However, the performance guarantee on the cost of

the solution worsens slightly as a result of this gener-

alization.

The case of spanning trees treated in Theorem 1.2

is less interesting in the case of node-weighted graphs

since every node must be included in the solution.

This problem then reduces to computing a minimum-

degree spanning tree that has been well-studied [7, 8].

We focus our attention on the more interesting case
of Steiner trees. Recently, Klein and Ravi [15] have

presented the first polynomial-time approximation al-

gorithm for node-weighted Steiner trees. The perfor-

mance guarantee of their approximation algorithm is

logarithmic in the number of terminals specified in

the problem. Using recent results on the hardness of

approximating the set-cover problem [19], they show

that the performance guarantee is nearly best-possible

(within a constant factor) unless NP = F. 7 We ex-

tend the techniques of Klein and Ravi [15] to the case

when the degree of the Steiner tree is also required

to be bounded and derive the following analogue of

Theorem 1.2.

Theorem 1.4 There is a polynomial-time algorithm

that, given an undirected graph G on n nodes with

nonnegative costs on its nodes, a subset of k nodes

called terminals, and a degree bound b, constructs a

Steiner tree spanning all the terminals, of maximum

degree O(b log(~)) and of cost at most O(log k) times
that of the minimum-cost b-bounded Steiner tree of G

spanning the terminals.

Note that a Steiner tree problem with costs on
nodes and edges can be transformed to one with costs

Theorem 1.3 There is a polynomial-time algorithm

that, given an undirected graph G with nonnegative

7Here we ~~e ~ to ~e~ the complexity claw Deterministic

Quasi-polynomial time, or DTIME[npO1ylOg ‘].

439

only on the nodea: replace every edge e = (u, u) of

cost c(e) by two edgea (u, Z~) and (z~, u) where Z6 is

a new node of cost c(e). Thus the above theorem is a

strict generalization of Theorem 1.2.

As before, we can extend the above theorem to

generalized Steiner forests and to more general con-

strained forest problems addressed in [1, 10].

An application

Theorem 1.3 has an important application. We can

use this theorem to provide a polynomial-time approx-

imation algorithm for a class of minimum-degree for-

est problems considered by Ravi, Raghavachari and

Klein in [22]. In [22], they address the problem of

finding two-edge-connected spanning subgraphs and

one-connected networks of a general form (introduced

in [10]) such that the maximum degree is minimum.

They provide slightly super-polynomial approxima-

tion algorithms for these problems. A prototypical

example of the one-connected network problem is the

minimum-degree generalized Steiner forest problem:

given an undirected graph with site-pairs of nodea,

find a generalized Steiner forest for the site-pairs in

which the maximum degree is minimum. The tech-

niques in [22] can be adapted to provide polynomial-

time approximation algorithms with performance ra-

tio Q(n’) for any constant c > 0. We can improve

the approximation factor achievable in polynomial-

time for this problem by an application of Theorem

1.3.

Theorem 1.5 There is a polynomial-time algorithm

that, given an undirected graph G on n nodes and a set

of site-pairs of nodes, constructs a generalized Steiner

forest for the site-pairs in which the maximum degree

of any node is at most 0(6” log ~). Here k is the

number of nodes of G that are sites and & is the min-

imum degree of any generalized Steiner forest for the

site-pairs.

Approximations under triangle inequality

One way to circumvent the difficulty exhibited in

Observation 1.1 is to consider more structured cost

functions on the edges. In this direction, we turn to
the csse of coat functions on the edges satisfying the
triangle inequality. The underlying graph is assumed

to be complete with costs only on the edges and these

costs obey the triangle inequality. Define the bottle-

neck cost of a network to be the maximum cost of any

edge in it. In this case, we present approximations

that strictly conform to the degree restriction in the
input problem and approximate the bottleneck cost

of the output network as well. We introduce a short-

cutting technique to prove the following theorem.

Theorem 1.6 There is a polynomial-time algorithm

that, given an undirected graph with edge costs sat-

isfying the triangle inequality and an integer b z 3,

outputs a spanning tree in which the maximum degree

of any node is b, the total cost of the tree is at most

(2 – ~) times that of a minimum spanning tree,

and the bottleneck cost is at most twice that of the

minimum-bottleneck spanning tree.

If we insist on a Hamiltonian path (i.e., require b = 2)

or a Traveling Salesperson (TSP) tour, then the simple

short-cutting heuristic of Rosenkrantz, Stearns and

Lewis [23] provides a TSP tour of cost at most 2(1-~)

times that of a minimum spanning tree (MST) in an

n-node graph. Deleting an edge from this tour gives a

Hamiltonian path with the same guarantee. But there

is no guarantee on the bottleneck cost of the tour. We

tailor our short-cutting technique to obtain a TSP tour

with small tot al cost as well as small bottleneck cost.

Theorem 1.7 There is a polynomial-time algorithm

that, given a undirected graph with edge costs satisfy-

ing the triangle inequality, outputs a TSP tour of total

cost at most four times the cost of a MST and of bot-

tleneck cost at most eight times that of a minimum

bottleneck-cost spanning tree.

We can extend Theorem 1.6 to higher-connected

networks as follows.

Theorem 1.8 There is a polynomial-time algorithm

that, given an undirected graph with edge costs satisfy-

ing the triangle inequality, an integer k z 2 (the node-

connectivity requirement), and an integer b ~ k + 1

(the degree bound), outputs a k-connected spanning

subgraph of G in which the degree of any node is at

most b, the total cost of all the edges in the sub-

graph is at most 4(k + 1) times that of the minimum-

cost k-connected subgraph, and the bottleneck cost of

the subgraph is at most 8k times that of a minimum

bottleneck-cost spanning tree.

This theorem is proved by using short-cuts that in-

duce higher-connected graphs.

In the next section, we discuss related work. Then

we present the algorithm for approximating degree-

bounded edge-weighted networks, and prove Theorem
1.2. We present the algorithm for degree-bounded

node-weighted networks in the following section. Fi-

nally, we outline the algorithms for the problems under

triangle inequality.

2 Related work

While there has been much work [1, 7,8, 10, 11, 12,

21, 22, 25] on finding minimum-cost networks for each

440

of the cost measures that we simultaneously minimize,

there has been relatively little work on approximations

for multi-objective network-design. In this direction,

Bar-Ilan and Peleg [4] considered balanced versions

of problems of assigning network centers. In the bal-

anced version, a budget is imposed on the number of

nodes that any center can service. They extend ex-

isting approximation algorithms for center problems

to the balanced versions. Lin and Vitter [17] provide

approximations for the s-median problem where s me-

dian nodes must be chosen so as to minimize the sum

oft he dist antes from each vertex to its nearest median.

The solution they output is approximate in terms of

both the number of median-nodes used and the sum of

the distances from each vertex to the nearest median.

Other researchers have addresses multi-objective

approximation algorithms for problems arising in ar-

eas other than network design. Agrawal, Klein and

Ravi [2] provide an approximation algorithm for find-

ing an elimination ordering for sparse Gaussian elimi-

nation to simultaneous y minimize the fill-in, the total

operation count and the elimination height. Khuller,

Raghavachari, and Young [14] provide an algorithm

for finding a rooted spanning tree of weight at most a

constant times that of a MST such that the distance

in this tree from the root is at most a constant times

the distance in the input graph. Shmoys and Tardos

[24] study the problem of scheduling unrelated paral-
lel machines with costs associated with processing a

job on a given machine. Given a budget on the cost

of the schedule, they present an approximation algo-

rithm for minimizing the makespan of the schedule.

Mitchell, Piatko and Arkin [20] study bicriteria opti-

mization problems arising in computational geometry.

3 Approximating both the degree and

cost: the edge-weight ed case

In this section, we sketch a proof of the results on

edge-weighted degree-bounded networks.

3.1 Background

In this section, we describe some background mate-

rial on a degree constrained subgraph (DCS) problem.

The general DCS problem can be stated as follows:

Given an undirected graph with nonnegative costs on

the edges, and an integer-valued function f defined on

the vertices of the graph, find a minimum-cost sub-

graph (if any) such that the degree of any vertex v in
this mbgraph is f(v). This problem is also referred

to as the f-factor problem [18], and is known to be

polynomially solvable [6, 18]. The following variant of

this problem is also known to be polynomially solvable

using matching techniques [18]. Denote the degree of

a node v in a subgraph H by degH(v),

Fact 3.1 [18] (b-bounded even DCS problem) The fol-

lowing problem has a polynomial-time solution: Given

an undirected graph G = (V, E) such that V = S U T

and S fl T = 0, and an integer b ~ 2, jind a subgraph

H (if one exists) of G of minimum cost such that

● for ail vertices v E T, we have degH(v) = 1, and

● for a!! vertices v c S, we have O < degH(v) < b

and def7H(V) s O (mod 2),

The b-bounded even DCS problem described above

is a generalization of the T-join problem [6]. When b

is allowed to be unbounded, this problem reduces to

the T-join problem.

We now recall a tree decomposition result proved
in [15].

Claim 3.2 Let T be a tree with an even nunz-

ber of marked nodes. Then there is a pairing

(VI, WJ,..., (vk, Wk) of the marked nodes such that the

Vi — wi paths in T are edge-disjoint.

Any minimal solution to the b-bounded even DCS

problem is a forest in which each tree contains an even

number of nodes of T. Applying the above claim to

each tree in such a solution we have the following.

Proposition 3.3 Let H be any subgraph satisfying

the conditions in Fact 3.1. Then there is a pairing of

the nodes of T in H such that there are edge-disjoint

paths in H between each pair of vertices.

We use the above results in the proof of the perfor-

mance guarantee.

3.2 The approximation algorithm for &

MST

We now describe the algorithm referred to in Thec~

rem 1.2. We use b to denote the degree bound specified

in the problem, and OPTb to denote the minimum cost

of any b-bounded spanning tree of the input graph.

Overview

Our algorithm follows the same skeletal outline as an

early algorithm [7] of Fiirer and Raghavachari for ap-

proximating the minimum-degree spanning tree. How-

ever, we generalize it to ensure that the cost of the

solution chosen is small as well.

The algorithm works in O(log ~) iterations where :n
is the number of nodes in the original graph. To begin

with, the solution subgraph is empty and each node

is in a connected component by itself in the current

solution. At each iteration, we add edges between the

441

components, thus reducing the number of connected

components in the current solution by a factor of half.

When the number of connected components falls to
O(b) we run a standard MST algorithm to connect up

all these components. Thus there are O(log ~) iter-

ations in all. We also ensure that in each iteration,

the degree of any node in the graph increases by at

most O(b) and the set of edges added has cost at most

OPTb. Thus we prove the bound on the degree and

the cost of the solution subgraph as stated in Theorem

1.2.

The Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

Initialize the set of edges in the solution subgraph

F := 0, and the iteration count i := 1.

Repeat until the number of connected comp~

nents of (V, F) is O(b)

Let C = {Cl..., CP} be the set of connected

components of (V, F).

Construct an auxiliary graph Gi as fol-

lows.

The node set of Gi is V UC.

We now describe the edges included in Gi:

Between all the nodes of V in each connected

component C’j E (!, include edges of zer~cost

to form a clique in Gi.

Let E’ ~ E represent the set of edges of

G whose endpoints are in different compo-

nents in C. For each edge e = (u, v) c E’

of cost c(e), include four edges in Gi: let

u ~ C’u and v E C’v. We include the edges

(a, v), (u, C”), (v, C“) and (Cu, C“), each of

cost c(e), in Gi.

If ICI is odd, we include an extra dummy node

z in C and include zero-cost edges between z

and every Cj E C in Gi.

Find a 2bbounded even DCS of Gi with nodes

in V having even degree (between O and 2b)

and the nodes in C having degree one.

F := F U the set of edges of G found by the

DCS algorithm in Step 8.

i:=i+l.

The number of connected components of (V, I’)

is now O(b). Contract each of these connected

components to single nodes and find a MST of

these nodes. Add the edges of this MST to the

set F.

Output a spanning tree of (V, F).

Note that at each iteration, the solution to the DCS

problem may contain one or more copies of an edge

e E E’. In any case, in Step 9, we include only one

copy of such an edge in the set F.

3.3 Performance Guarantee

We prove the performance guarantee using a series
of lemmas.

At each iteration, applying Proposition 3.3 to the

solution to the DCS problem in Step 8, we can derive

a pairing of the connected components in C such that

there are paths between these pairs in the solution.

Thus at each iteration, the number of connected com-

ponents of (V, F) reduces by a factor of half. Using

this observation, it is essy to prove the following.

Lemma 3.4 The total number of iterations of the
above algorithm is O(log ~).

The following lemma is proved using the constraint on

the degree of the nodes in the subgraph added at each

iteration of the algorithm.

Lemma 3.!5 The degree of the spanning tree output

by the above algorithm is O(b log ~).

Lemma 3.6 At each iteration i of the algorithm, the

cost of the solution to the DCS problem in Step 8 in

this iteration is at most OPTb.

Proofi This is trivial to see in the last iteration of

the algorithm since a bMST of cost OPTb induces a

spanning tree on the remaining O(b) components of

cost at most OPTb. For every other iteration i of

the algorithm, we show that there exists a solution of

cost at most OPTb to the DCS problem set up in the

iteration.

To construct a feasible solution of value at most

OPTb for the DCS problem on Gi, consider a

minimum-cost bbounded spanning tree T“ of cost

OPTb. Let ci represent the set of connected com-

ponents in C at the beginning of iteration i. For each

component in Ci, contract all the nodes in it to form

a single supernode representing this component. It is

ensy to derive a subgraph Ti of T* such that Ti is a

spanning tree on the supernodes Ci. The cost of Ti is

at most OPTb.

We use the edges of Ti to construct a solution to the

DCS problem set up in Step 8. Assume for the sake

of simplicity that lCi I is evens Applying Claim 3.2

to the tree Ti with all the supernodes marked, we can
find a pairing ‘P of all the components in Ci such that

the paths in Ti between the pairs are edge-disjoint.

We convert these paths into a feasible solution to the

DCS problem as follows:

(i) First, consider all pairs of components in 7 such
that the path between them in Ti is a single

edge. Let Cu, Cv be such a pair joined by an edge

8The CXe when ICi I is odd can be treated simikrlY by ad~ng

the dummy node included in Step 7 in the set Ci.

442

(ii)

(u, v) c E’. By the construction in Step 6 of the

algorithm, there is an edge (CU, Cv) of cost c(e)

in Gi. We include this edge (C’u, C’.) of cost c(e)

in the DCS solution.

Then we consider pairs of components in P be-

tween which the paths in Ti consist of more

than a single edge. Let C=, CY be such a

pair and let the path between them in T~ be

(C=, CJ, (CI, C2), (Cq, Cy). For each edge in
this path, there is a corresponding edge in T“

from which this edge is derived. Let these edges

)in T* be (Vz, vl,in)j (Vi, Out, v2,in , . . ., (%,out , %)

respectively. Note that for 1 < ~ < g, both vj,in

and vj,OUt are in the component Cj but they may

be two distinct vertices. However there is a zero-

cost edge in Gi joining them. Thus, using these

edges, we can form a path P=,Y in Gi between

every such pair C=, CY in P. We then take the

modulo two sum of all these paths 9 and include

this subgraph in the DCS solution.

It is routine to verify that the set of edges identified

above form a valid solution to the DCS problem and

that the cost of this solution is at most OPTb. This

completes the proof of Lemma 3.6. Cl

Combining Lemmas 3.4, 3.5 and 3.6 gives Theorem

1.2.

4 Approximating both the degree and

cost: the node-weighted case

In this section, we present the algorithm for node-

weighted networks and prove Theorem 1.4.

4.1 The algorithm for node-weighted net-

works

The algorithm maintains a set S of nodes and a set

F of edges. Initially S contains all the terminals and

F is empty. During the course of the algorithm, the

connected components of the graph (S, F) are node-

disjoint trees containing all the terminals. Define a

connected component of (S, F) to be active if it con-

tains at least one terminal and does not contain at

least one terminal.
AS in Section 3, the algorithm works in O(log($))

iterations. However, in each iteration, instead of a

DCS problem we follow the approach of Klein and

Ravi [15]: we run a greedy algorithm to choose a sub-

graph of small degree and node-cost whose addition
to the current solution reduces the number of con-

nected components of (S, F) by a constant factor. As

9 An edge is in the moddo two sum only if it occ~ in an

odd number of the paths that are being summed.

before, we use OPTb to denote the minimum cost of

any bbounded Steiner tree of the input graph. In the

algorithm, we use the term “shortest path” between

two vertices to mean the minimum node-cost of any

path between the vertices excluding the costs of these

vertices.

The Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

Initialize S to be the set of terminals, and F

be the empty set.

Repeat while there are active components

to

in

(S;F)

Let C be the set of active components of (S, F).

Let C = {Cl..., C~] where q = ICI. Let G’ ::=

G.

Repeat while the number of active components
in (S, F) is greater than ~ (If q = O(b), then

we run this iteration until there are no active

components.)

Let V’ be the nodes in G’.

Construct an auxiliary complete bipartite

graph H from G’ as follows.

The node set of H is V’ U C. The cost of

a node v is zero if v E S, otherwise it is as

specified in the input graph G.

The edge (v, Cj) in H is assigned cost

C(V, C’j) equal to that of a shortest path from
v to any node in Cj in G’.

Find anode v G V’ in the graph H minimizing

the ratio

c(~) + ~~=1C(V, Cj)
min min

2<r<b+l {C1,...,C7r}~C r

Let v be the node and Cl,..., C, be the comp-

onents in C chosen in the previous step of the

algorithm. Let P1, P, be a set of shortest
paths in GI connecting v to Cl, C. respec-

tively. Add an acyclic subgraph of U~=l Pj

to the current solution (S, F) so as to merge

CI, C3..., C, into one. Update C.

For every node v G V’, if the degree of the

node using edges added in this iteration is be-

tween 2b and 3b, delete this node from G’. In

the last iteration, i.e., when q = O(b), we ig-

nore this step and delete no nodes from G’.

The number of active components in (S, F) is

now at most ~. We go on to the next itera-

tion.

Output (S, F) w the solution.

It is easy to implement Step 9 as shown by Klein

and Ravi in [15]. For each node v, define the quotient

cost of v to be the minimum value of the ratio in Step

9 achieved by this node. To find the quotient cost of

443

v, we can order the components in C as CI, G, C3, . . .

in nondecreasing order of C(V, C’j). In computing the

quotient cost of v, it is sufficient to consider subsets

of Coftheform {Cl, Cz,Cj} where2Sj <b+l.

Thus the quotient cost for a given vertex can be com-
puted in polynomial time; by computing the quotient

cost for each vertex, we can determine the minimum

quotient cost, and thus carry out Step 9 in polynomial

time.

4.2 Performance guarantee

We prove the performance guarantee using a series

of lemmas. As in Section 3, the following two lemmas
can be easily proved.

Lemma 4.1 The number of iterations of the algo-

rithm is O(log(~)) where k is the number of terminals.

Lemma 4.2 At any iteration of the algorithm, the de-

gree of any node due to edges added in this iteration

is at most O(b).

Now we turn to the cost of the subgraph added in an

iteration.

Lemma 4.3 At any iteration of the algorithm except

the last, the cost of the set of nodes added to the solu-

tion in this iteration is at most O(OPTa).

Lemma 4.4 The cost of the set of nodes added to the

solution in the last iteration is at most O(OPTb log b).

We prove Lemma 4.3 in the remainder of this section.

Lemma 4.4 is proved similarly.

4.3 Proof of Lemma 4.3

We prove an averaging lemma and use this in con-

junction with a potential function argument due to

Leighton and Rao [16] to prove Lemma 4.3. First we

prove a simple lemma bounding the number of nodes

deleted from G’ in each iteration.

Fix an iteration and let q denote the number of

active components at the beginning of the iteration. In

the beginning of this iteration, we initialize the graph

G’ := G. During the course of this iteration, we may

delete nodes from G’ in Step 11.

Claim 4.5 At any iteration of the algorithm, the

number of nodes deleted from G’ is at most ~.

Proof Sketch: Assume for a contradiction that more

than & nodes were deleted from GI during this iter-

ation. By the condition for the deletion of a node in

Step 11, each of the deleted nodes haa degree at least

2b. Hence the sum of the degrees of all the deleted

nodes is at least q. The idea of the proof is to show

that a large portion of this degree contributes to merg-

ing the q active components in the beginning of this

iteration, using the fact that the subgraph added in

this iteration is acyclic. This allows us to derive a con-

tradiction to the fact that the inner loop terminates
when a small factor (i.e., ~) of the active components

are merged using edges added in this iteration. u

Spider decompositions

We employ the notion of spider decompositions intro-

duced in [15] in showing that the each node chosen

in Step 9 has small quotient cost with respect to the

optimal solution.

Definitions: A spider is a tree with at most one node

of degree greater than two. A center of a spider is a

node from which there are node-disjoint paths (called

legs) to the leaves of the spider. Note that if a spider

has at least three leaves, its center is unique. A foot

of a spider is a leaf, or, if the spider has at lesst three

leaves, the spider’s center. Thus every spider contains

disjoint paths from its center to all of its feet. A non-

trivial spider is one with at least two leaves. Let G be

a graph, and let M be a subset of its nodes. A spider

decomposition of M in G is a set of node-disjoint non-

trivial spiders in G such that the union of the feet of

the spiders in the decomposition contains M.

Theorem 4.6 (Klein and Ravi [15]) Let G be a

connected graph, and let M be a subset of its nodes

such that IMI z 2. Then G contains a spider decom-

position of M.

An averaging lemma

Let v be a node chosen in Step 9 in this iteration and

let C denote the cost of the subgraph added subse-

quently in Step 10. Let this subgraph merge r trees.

We prove the following claim.

Claim 4.7
r > 5cq

– ~20PTb
(1)

Proof: Let T* be a minimum-cost b-bounded Steiner

tree. Let Cl, CP be the active components when

the node v was chosen. Let T*(v) be the graph ob-

tained from T“ by contracting each Cj to a supernode

of zero cost. T*(v) is connected and contains all su-
pernodes.

Delete all edges incident to nodes in V–V’ in T* (v).

The number of nodes in V – V’ is at most ~ by Claim

4.5. Since any node has degree at most b in T*, the

number of edges deleted from T*(v) is at most ~. The

deletion of these edges breaks T*(v) into many sub-

trees. But at least p – ~ of the supernodes are in

subtrees with at least two or more supernodes. Since

P 2 ~, at kmst ~ supernodes are in such trees.

444

Proposition 4.8 Letit4 denote the subset ofsupern-
odes that are in subtrees with two or more supernodes.

Then we have

1’4

We apply Theorem 4.6 to each subtree of T* (v) with at

least two supernodea to obtain a spider decomposition

of M. We now compare the quotient cost of the node v

chosen by the algorithm with that of each spider in the

decomposition. To do this however, the center of each

spider in the decomposition must be a real node (not

a supernode) and the number of legs of each spider

must be at most b + 1. It is easy to further partition

a spider centered at a supernode into many nontrivial

spiders each centered at a real node contained in this

supernode such that the union of their feet contain

the feet of the original spider. Let the centers of the

resulting spider decomposition be the set of real nodes

vl,v~.

For a spider with only two legs, i.e., a path, pick any

node in the path ss its center. Let 11, . . .,& denote

the number of nodes of M in each of these spiders
respectively. Since every spider in the decomposition

is nontrivial and is derived from T*, each tj is at least

two and at most b +1. Moreover, a spider with center

vj induces a subset of the current active components,

namely the .tj components whose supernodes belong

to this spider. Let the cost of the spider centered at

Vj (i.e., cost of vj plus the sum of the node-costs of
the paths from vj to the lj components) be Costj.

Then the quotient cost of vj in the auxiliary graph H

constructed in this loop is at most ~.

Since the algorithm chooses a vertex of minimum

quotient cost in H, for each spider in the decomposi-

tion we have ~ z $. Summing over all the spiders

in the cover yields

t -t

Since the union of the feet of the spiders contains

~> ~~=1 ~~ Z [Ml 2 % by Proposition 4.8. AISO

~~=1 Costj is exactly the cost of the spider decom-

position, which is at most that of T* (v) which in turn

is at most OPTb. Substituting in the above equation

and simplifying yields the Claim. II

A potential function argument

Now we are ready to complete the proof of Lemma

4.3. Fix an iteration i and let the set of nodes chosen
in Step 9 of the algorithm in this iteration be w, . . . of
in the order in which they were chosen.

Let ~j denote the number of active components in

the solution after choosing vertex vj in this iteration.

Thus, for instance, do = q, the number of active com-
ponents at the beginning of this iteration in (S, F)

and 4! ~ ~. Let the number of trees merged using

vertex vj be rj. Then we have

#j = @j-l - (rj - 1) (2)

Let Cj denote the cost of the subgraph added by the

algorithm in the step when vertex vj was chosen. Then

by Claim 4.7, we have

5Cjq , 5Cj~j-1
rj >

120PTb – 120PTb
(3)

We now use an analysis technique due to Leighton

and Rao [16] to complete the proof as in [15]. Substi-

tuting Equation (3) into (2) and simplifying gives

5Cj
~j 5 @j-l(l – 240PT~) (4)

Unraveling (4), taking natural logarithms and simpli-

fying finally yields

f

E Cj = O(OPT*)

j=l

This completes the proof of Lemma 4.3.

Lemmas 4.1, 4.2, 4.3 and 4.4 together prove the

performance guarantee in Theorem 1.4.

5 Algorithms under triangle inequality

In this section, we present the short-cutting tech-

niques used in proving Theorems 1.61.7 and 1.8.

The algorithm for an approximate b-MST

1

2

3

Find an MST of the given graph [3]. Root the

spanning tree at any node r of degree at least

two.

Partition the edges of the tree into “claws”,

namely, sets of edges going from every internal
node to its children in the tree. Sort the edges in

every claw in the order of non-decreasing cost.

Thus if a typical internal node v has children

V1, V2, ..., vd then for 1 ~ i < d, the costs obey

C(v, vi) ~ C(v, vi+l).

We short-cut each claw locally by replacing edges

from the internal node to its first (d – b +

2) children except the very first child, with

edges between consecutive children. Thus if
an internal node v hae d children in the tree

and d > (b — 1), then replace the edges

(v, v~), (v, vs), (v, v&*+z) in the tree with the

set of edges (vi, VZ), (Vz, Us), (U&b+l, Vd-b+2).

445

4 Output the resulting spanning tree.

It is straightforward to verify that the short-cutting

above produces a degred spanning tree. Using the

fact that the cost of each claw is incressed by at most

the cost of (d – b + 1) cheapest edges in it, we can

prove the bound on the cost of the output tree. To

prove the bound on the bottleneck cost, observe that

the MST is also a minimum bottleneck-cost spanning

tree and we used short-cuts of length at most two.

Next, we describe how to obtain a spanning sub-

graph that is tw~edge-connected and has small total

cost, degree and bottleneck cost. No edge is allowed

to be duplicated in this subgraph. We then short-cut

this subgraph to obtain a TSP tour as described in

Theorem 1.7. Theorem 1.7 proves the case of k = 2

in Theorem 1.8. However, we use the TSP tour ob-

tained in Theorem 1.7 to prove Theorem 1.8 in its full

generality.

The algorithm for 2-edge-connected span-

ning subgraphs

The algorithm for finding a 2-edge-connected span-

ning subgraph works in two phsses. In the first phase
we use our bMST algorithm to obtain a spanning tree

of degree at most 3. We then augment the tree using

edges in the square of this tree to get a 2-edge con-

nected subgraph.

1

2

3

4

Find a 3-bounded spanning tree of the input

graph using the previous algorithm. Denote this

tree by T1. Note that every internal vertex hss

either one or two children and that the root has

two children.

Initialize the solution to be the tree T1. We loop

through the vertices of the tree starting from the

root in a breadth-first fashion. For each vertex v,
we do one of the following.

Case 1: The vertex v has two children.

Let the children of the vertex v be VI and V2.

We add the edge (U1, V2) to the solution.

Case 2: The vertex v has a single child v= in

T1. In this case add the edge (VP, UC), where

VP denotes the parent of v in T1 and delete the

edge (v, VP).

Output the resulting subgraph.

We can prove the following-by a simple induction.

Claim 5.1 The subgraph obtained at the end of the

algorithm is 2-edge connected and has maximum de-

gree 4.

Theorem 5.2 The cost of the output subgraph is no

more than four times the cost of a minimum spanning

tree and the maximum cost of any edge in the sub-

graph is no more than four times that of a minimum

bottleneck-cost spanning tree.

Using a more involved short-cutting procedure that

bypasses the first phase of constructing a degree-three

tree, we can improve the performance ratios in the

above theorem to two for the cost and three for the

bottleneck cost.

TSP by short-cutting

The 2-connected subgraph (call it G2) obtained by

the above algorithm has a nice structure: it can be

viewed as a tree of cycles. Each vertex v with two

children in T1, can be uniquely identified with such a

cycle that contains only descendants of v in T1. Fur-

thermore, these are exactly the vertices of degree four

in G2; all other vertices have degree two in G2.

Using this structure we can perform two-edge-

short-cuts on this 2-connected subgraph to obtain a

TSP tour. We perform as many short-cuts as the num-

ber of degree-four nodes. Each short-cut involves two

of the four edges incident on such a node. Also we can

ensure that no two short-cuts involve the same edge of

G2. We omit further elaboration of this short-cutting

for lack of space. Since the tour is derived by simply

short-cutting G2, the cost of the tour is at most that

of G2 by the triangle inequality. However, the bottle-

neck cost of the tour is at most twice that of G2. Thus

we prove the bounds in Theorem 1.7.

Higher connectivities

Now we are ready to prove Theorem 1.8 in its full

generality. The starting point is the TSP tour ob-

tained in Theorem 1.7. Let c* and b* denote the

cost of a MST and the minimum bottleneck-cost of

a spanning tree of the input graph respectively. By
Theorem 1.7, we can obtain a TSP tour of cost at

most 4c* and bottleneck cost at most 8b*. Let the

vertices in this tour be numbered VI, V2, Vn. We

add edges to the tour as follows to convert it into a

k-connected graph as follows: For each vertex vi, add

edges joining vj to each of its neighbors to the right

reachable from it using a path of at most k edges in

the tour. Thus for each vertex vi, we add the edges

(vi, V[i+2jmOdn), (vi, V(i+klmodn). It is easy to see

that the resulting graph is k-connected. The degree of

every node in this graph is k + 1. Since each short-cut
employed replaces a path of at most k edges, the bot-

tleneck cost goes up by this factor. This proves that

the bottleneck cost of this subgraph is at most 8kb*.

The cost of the graph obtained this way is ~

times that of the TSP tour that we started with. This

in turn is at most 2k(k + l)c*. However, we can

apply an approximate min-max relation between the

cost of a MST and the value of a packing of cuts in

the graph derived in [10] to obtain a better perfor-

mance guarantee. In particular, if OPTk denotes the

446

minimum cost of any k-connected subgraph, we show

that OPTk ~ ~. This proves that the cost of the

k-connected subgraph output by our algorithm is at

most 4(k + 1) . OPTk as claimed.

Acknowledgements

We thank P. N. Klein, B. Raghavachari, V. S. Ra-

makrishnan and S. Sairam for helpful discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A. Agrawid, P. Klein, and R. Ravi, “When trees col-

lide: an approximation algorithm for the generalized

Steiner tree problem on networks,” Proc., 23rd An-

nual ACM STOC (1991), pp. 134-144.

A. Agrawal, P. Klein, and R. Ravi, “Near-optimal

nested d=ction,” submit ted to SIAM J. on Com-

puting. A preliminary version appeared as P. Klein,

A. Agrawal, R. Ravi, and S. Rae, “Approximation

through multicommodit y flow,” in Proc. 91 th Annual

IEEE FOCS (1990), pp. 726-737.

A. V. Aho, J. E. Hopcroft, and J. D. Unman, The De-

sign and Analysis of Computer Algorithms, Addison

Wesley, Reading MA., 1974.

J. Bar-Ilan and D. Peleg, “Approximation algorithms

for selecting network centers (Preliminary version),”

LNCS 519, Proceedings, 2nd Workshop, WADS ’91,

Algorithms and Data Structures series, Springer-

Verlag, pp. 343-354.

C. W. Duin and A. Volgenant, “Some generahzations

of the Steiner problem in graphs,” Networks, 17, pp.

353-364, (1987).

J. Edmonds and E. L. Johnson, “Matching, Euler

tours and the Chinese postman”, Math. Prog. 5,

(1973), pp. 88-124.

M. Fiirer and B. Raghavachari,

tion algorithm for the minimum

problem,” Proc., 28th Annual

(1990), pp. 274-281.

M. Fiirer and B. Raghavachari,

‘An AfC approxima-

degree spanning tree

Allerton Conference

“Approximating the

minimum degree spanning tree to within one from

the optimal degree,” Proc., %d Annual A CM-SIAM

SODA (1992), pp. 317-324.

M. R. Garey and D. S. Johnson, Computers
and Intractability: A guide to the theory of NP-

completeness, W. H. Freeman, San Francisco (1979).

M. X. Goemans and D. P. Williamson, “A general

approximation technique for constrained forest prob-

lems,” Proc. %d Annual ACM-SIAM SODA (1992),

pp. 307-316.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. S. Hochbaum and D. B. Shmoys, “An unified ap-

proach to approximation algorithms for bottleneck

problems,” JA CM, Vol. 33, No. 3, pp. 533-55o, (July

1986).

F. K. Hwang and D. S. Richards, “Steiner tree prob-

lems,” Networks, Vol. 22, No. 1, pp. 55-90 (1992).

A. Iwainsky, E. Canuto, O. Taraszow, and A.

Villa, “Network decomposition for the optimization

of connection structures,” Networks, 16, pp. 205-235,

(1986).

S. Khuller, B. Raghavachari, and N. Young, “Bal-

ancing Minimum Spanning and Shortest Path Trees,’”

Proc, ith Annual ACM-SIAM SODA (1993), pp. 243-

250.

P. Klein and R. Ravi, “A nearly best-possible approx-

imation for node-weighted Steiner trees,” to appear

in Proc., IPCO HI (1993).

F. T. Leighton and S. Rae, “An approximate max-

flow rein-cut theorem for uniform multicommodity

flow problems with application to approximation al-

gorithms,” Proc., 29th Annual IEEE FOCS (1988),

pp. 422-431.

J.-H. Lin and J. S. Vitter, “c-approximations with

minimum packing const mint violation,” Proc., 24th
Annual ACM STOC (1992), pp. 771-782.

L. Lovi4sz and M. D. Plummer, Matching theorsl,

Akad4miai Kiad6, Budapest (1986).

C. Lund and M. Yannakakis, “On the Hardness of Ap-

proximating Minimization Problems,” in these pro-

ceedings.

J. S. B. Mitchell, C. Piatko, and E. M. Arkin, “Com-

puting a shortest k-link path in a polygon”, Proc.,

.?3rd Annual IEEE FOCS (1992), pp. 573-582.

R. G. Parker and R. L. Rardin, “Guaranteed perfor-

mance heuristic for the bottleneck traveling salesman

problem,” Oper. Res. Lett. 6, pp. 269-272, (1982).

R. Ravi, B. Raghavachari, and P. N. Klein, “Ap-

proximation through local optimality: Designing net-

works wit h small degree,” Proc., 12th Annual Conj.

on FST&TCS (1992), LNCS 652, pp. 279-290.

D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis

II, “An analysis of several heuristics for the traveling

salesman problem,” SIAM J. Computing, 6(3), pp.

563-581, 1977.

D. B. Shmoys and E. Tardos, “Scheduling unre-

lated parallel machines with costs,” Proc., ith Annual

ACM-SIAM SODA (1993), pp. 448-454.

P. Winter, “Steiner problem in networks: a survey,”

BIT 25 (1985), pp. 485-496.

447

